JPH06350115A - Film solar battery and its manufacture - Google Patents
Film solar battery and its manufactureInfo
- Publication number
- JPH06350115A JPH06350115A JP5136298A JP13629893A JPH06350115A JP H06350115 A JPH06350115 A JP H06350115A JP 5136298 A JP5136298 A JP 5136298A JP 13629893 A JP13629893 A JP 13629893A JP H06350115 A JPH06350115 A JP H06350115A
- Authority
- JP
- Japan
- Prior art keywords
- electrode layer
- transparent electrode
- solar cell
- metal
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、アモルファスシリコン
等を主成分とする半導体薄膜を光電変換層とする薄膜太
陽電池およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film solar cell having a semiconductor thin film containing amorphous silicon as a main component as a photoelectric conversion layer and a method for manufacturing the same.
【0002】[0002]
【従来の技術】原料ガスのグロー放電分解などにより形
成されるアモルファスシリコンのような非晶質半導体の
薄い膜は、気相成長であるため大面積化が容易で、低コ
スト太陽電池の光電変換膜として期待されている。こう
した大面積の薄膜太陽電池から効率よく電力を取り出す
ためのよく知られた構造として、図2に示されるよう
に、1枚の基板上の薄膜太陽電池を複数の単位太陽電池
セルに分割し、これを直列接続したものがある。これ
は、ガラスや透明高分子フィルムなどの透光性絶縁基板
11上に、酸化すずやITO、ZnOなどの透明導電材料の
薄膜からなる透明電極21、22、23──を短冊状に形成
し、その上に光起電力発生部である非晶質半導体層領域
31、32、33──を、次いでAlやAgなどの金属薄膜からな
る金属電極41、42、43──を形成したものである。そし
て、透明電極21、非晶質半導体層31および金属電極41の
組合わせ、透明電極22、非晶質半導体層32および金属電
極42の組合わせ等が各ユニットセルを構成する。そし
て、一つのユニットセルの金属電極の延長部51、52、53
──が隣接するユニットセルの透明電極の縁部と接触す
るように両電極および非晶質半導体層のパターンが形成
されて、各ユニットセルは直列に接続される。2. Description of the Related Art A thin film of an amorphous semiconductor such as amorphous silicon formed by glow discharge decomposition of a raw material gas is vapor phase growth, so that it is easy to make a large area and photoelectric conversion of a low cost solar cell is performed. Expected as a membrane. As a well-known structure for efficiently extracting electric power from such a large-area thin film solar cell, as shown in FIG. 2, the thin film solar cell on one substrate is divided into a plurality of unit solar cells, There is a series connection of these. This is a transparent insulating substrate such as glass or transparent polymer film.
A transparent electrode 21, 22, 23 made of a thin film of a transparent conductive material such as tin oxide, ITO, or ZnO is formed in a strip shape on 11 and an amorphous semiconductor layer region which is a photovoltaic generation portion is formed thereon.
31, 32, 33-, and then metal electrodes 41, 42, 43-, which are made of a metal thin film such as Al or Ag, are formed. Then, the combination of the transparent electrode 21, the amorphous semiconductor layer 31, and the metal electrode 41, the combination of the transparent electrode 22, the amorphous semiconductor layer 32, and the metal electrode 42, and the like constitute each unit cell. And the extension parts 51, 52, 53 of the metal electrodes of one unit cell
Each unit cell is connected in series by forming a pattern of both electrodes and the amorphous semiconductor layer so that each of the unit cells contacts the edge of the transparent electrode of the adjacent unit cell.
【0003】このような太陽電池の直列接続構造の形成
は最も一般的には、各層をそれぞれ全面に被着したの
ち、その都度レーザスクライビング法によりパターニン
グすることにより行われる。The formation of such a series connection structure of solar cells is most generally performed by depositing each layer on the entire surface and then patterning by a laser scribing method each time.
【0004】[0004]
【発明が解決しようとする課題】大面積太陽電池におい
て、このような直列接続構造をとる理由の一つに、1枚
の太陽電池で高い出力電圧を得る目的がある。しかし、
実際には、多数の太陽電池でシステムを構成する場合も
多く、必ずしも1枚の太陽電池で出力電圧を出す必要の
ない場合も多い。ところが、直列接続構造を形成するこ
となく、全面に太陽電池の一つのユニットセルを形成す
ると、発生したキャリアが透明電極および裏面の金属電
極中を太陽電池端部に設けられるリード線取出し部まで
長い距離にわたって移動することになる。金属電極は一
般に抵抗が小さく、したがって金属電極中を電流が流れ
ることによるジュール損失は無視することができる。し
かしながら透明導電材料薄膜のシート抵抗は、通常5〜
30Ω/□と比較的大きく、透明電極層を長い距離電流が
流れることによるジュール損失は無視することができな
い。One of the reasons for adopting such a series connection structure in a large area solar cell is to obtain a high output voltage with a single solar cell. But,
In many cases, a system is often composed of a large number of solar cells, and it is not always necessary to output the output voltage with a single solar cell. However, when one unit cell of the solar cell is formed on the entire surface without forming a series connection structure, the generated carriers are long in the transparent electrode and the metal electrode on the back surface to the lead wire extraction portion provided at the end of the solar cell. Will travel over a distance. The metal electrode generally has a low resistance, and therefore the Joule loss due to the current flowing through the metal electrode can be ignored. However, the sheet resistance of the transparent conductive material thin film is usually 5 to
It is relatively large at 30Ω / □, and the Joule loss due to long-distance current flow through the transparent electrode layer cannot be ignored.
【0005】本発明の目的は、このような問題点を解決
し、低出力電圧で大出力電流を得るために、大面積の基
板上に直列接続構造としないで形成され、しかもジュー
ル損失の少ない薄膜太陽電池およびその製造方法を提供
することにある。An object of the present invention is to solve the above problems and to obtain a large output current at a low output voltage. The object of the present invention is to form a serial connection structure on a large-sized substrate without causing joule loss. A thin-film solar cell and a method for manufacturing the same are provided.
【0006】[0006]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明の薄膜太陽電池は、絶縁性基板の一面上に
金属電極層、非晶質半導体層および透明電極層が積層さ
れ、他面上に金属箔が密着し、透明電極層と金属箔と
が、非晶質半導体層、金属電極層および絶縁性基板を実
質的に等間隔で分散して貫通し、金属電極層と実質的に
絶縁された複数の導体により接続されたものとする。そ
して、金属箔の反絶縁性基板面が耐候性樹脂によって覆
われたことが有効である。また、このような薄膜太陽電
池の製造方法は、実質的に等間隔で分散した小孔の明け
られた絶縁性基板の一面上に金属電極層を被着したの
ち、レーザ光の照射により小孔の内壁および周辺上の金
属電極層を除去し、次いで絶縁性基板の一面側から非晶
質半導体層および透明電極層を順次積層し、さらに他面
側に金属箔を密着させ、透明電極層と金属箔とを小孔を
充填する低融点合金により接続するものとする。In order to achieve the above object, the thin film solar cell of the present invention comprises a metal electrode layer, an amorphous semiconductor layer and a transparent electrode layer laminated on one surface of an insulating substrate, The metal foil adheres to the other surface, and the transparent electrode layer and the metal foil penetrate the amorphous semiconductor layer, the metal electrode layer, and the insulating substrate while being dispersed at substantially equal intervals, and the metal electrode layer and the metal electrode layer. It is assumed that they are connected by a plurality of electrically insulated conductors. Then, it is effective that the anti-insulating substrate surface of the metal foil is covered with a weather resistant resin. In addition, such a method for manufacturing a thin-film solar cell is such that a metal electrode layer is deposited on one surface of an insulating substrate in which small holes are substantially evenly distributed and then the small holes are irradiated by laser light. The inner electrode and the metal electrode layer on the periphery are removed, then the amorphous semiconductor layer and the transparent electrode layer are sequentially laminated from one side of the insulating substrate, and the metal foil is further adhered to the other side to form the transparent electrode layer. The metal foil shall be connected by a low melting point alloy that fills the small holes.
【0007】[0007]
【作用】絶縁性基板の一面上に積層された金属電極層お
よび非晶質半導体層を貫通する導体によりその上の透明
電極層が基板の他面上の金属箔と接続されるので、金属
電極層と金属箔から半導体層に透明電極層を通じて光が
入射することによって発生するキャリアを、シート抵抗
の高い透明電極層に長い径路をとることなく取り出すこ
とができる。そして、予め小孔を明けた絶縁性基板の上
に各層を成膜する際には、小孔内壁上にも各層の薄膜が
生ずる。このうち最初に形成する金属電極層を小孔周辺
も含めてレーザ光の照射により除去すれば、小孔の内壁
上に延びる高抵抗率の非晶質半導体層により、小孔を通
る透明電極層と金属箔の接続導体とは絶縁される。Since the transparent electrode layer thereabove is connected to the metal foil on the other surface of the substrate by the conductor penetrating the metal electrode layer and the amorphous semiconductor layer laminated on the one surface of the insulating substrate, the metal electrode Carriers generated by light incident from the layer and the metal foil to the semiconductor layer through the transparent electrode layer can be taken out without taking a long path to the transparent electrode layer having high sheet resistance. When each layer is formed on the insulating substrate in which the small holes are formed in advance, a thin film of each layer is also formed on the inner wall of the small holes. If the metal electrode layer that is formed first, including the area around the small hole, is removed by irradiation with laser light, the transparent electrode layer that passes through the small hole is formed by the amorphous semiconductor layer with a high resistivity that extends on the inner wall of the small hole. And the connection conductor of the metal foil are insulated.
【0008】[0008]
【実施例】図1(a) 、(b) は本発明の一実施例の薄膜太
陽電池を模式的に示し、図1(c)は図1(a) に示すよう
な小孔6の一つを拡大した断面図である。高分子フィル
ムを用いた絶縁性基板1には、半径0.5mmの小孔6が、
二つの小孔の最近接距離が20mmとなるように明けられて
いる。この小孔6は、CO2 レーザもしくはパンチング
装置によって加工、形成される。次にこの小孔付高分子
フィルム1の一方の面にアルミニウム薄膜を300mm の厚
さでスパッタ成膜して金属電極層2とし、次いでこのAl
薄膜上から小孔6の部分に直径0.9mm以上のスポット径
のレーザ光を照射し、小孔6の内壁上に付着したAl膜お
よび周辺のAl膜を除去する。さらに、この金属電極層2
の上に非晶質半導体層3をプラズマCVD法により、ま
たZnO膜からなる透明電極層4をスパッタ法によりそれ
ぞれ500nm 、0.1〜1μmの厚さに形成する。これら非
晶質半導体層並びに透明電極材料は、図1(c) に示した
ように、一部が高分子フィルム1の小孔6の内壁に付着
する。以上の工程で、金属電極層2は、Al薄膜のほかAg
薄膜で形成してもよく、あるいは金属膜と透明導電膜の
2層構造にしてもよいが、これらに制限されることな
く、面抵抗が十分に低い材料であれば使用することが可
能である。またこの金属電極層2を加工する方法には、
レーザ光のほかにウォータジェットなども適用でき、あ
るいは高分子フィルムに損傷を与えるおそれがあれば、
金属電極層形成前にあらかじめ高分子フィルム上にスポ
ット状のマスクを設ける方法を用いれば防止することが
できるので、加工方法は制限されるものではない。1 (a) and 1 (b) schematically show a thin-film solar cell according to an embodiment of the present invention, and FIG. 1 (c) shows an example of a small hole 6 as shown in FIG. 1 (a). It is sectional drawing which expanded one. Insulating substrate 1 made of polymer film has small holes 6 with a radius of 0.5 mm.
It is opened so that the closest distance between the two small holes is 20 mm. This small hole 6 is processed and formed by a CO 2 laser or a punching device. Next, an aluminum thin film is sputter-deposited to a thickness of 300 mm on one surface of the polymer film 1 with small holes to form a metal electrode layer 2, and then this Al film is formed.
Laser light having a spot diameter of 0.9 mm or more is irradiated onto the small hole 6 from above the thin film to remove the Al film adhering to the inner wall of the small hole 6 and the surrounding Al film. Furthermore, this metal electrode layer 2
An amorphous semiconductor layer 3 is formed thereon by a plasma CVD method, and a transparent electrode layer 4 made of a ZnO film is formed by a sputtering method to have a thickness of 500 nm and a thickness of 0.1 to 1 μm, respectively. As shown in FIG. 1C, a part of the amorphous semiconductor layer and the transparent electrode material adheres to the inner wall of the small hole 6 of the polymer film 1. In the above process, the metal electrode layer 2 is formed of Ag thin film in addition to Ag
It may be formed of a thin film or may have a two-layer structure of a metal film and a transparent conductive film, but the material is not limited to these and any material having a sufficiently low sheet resistance can be used. . Further, the method of processing the metal electrode layer 2 includes
In addition to laser light, water jet etc. can be applied, or if there is a risk of damaging the polymer film,
This can be prevented by using a method of previously providing a spot-shaped mask on the polymer film before forming the metal electrode layer, and therefore the processing method is not limited.
【0009】最後に、図3に示すように、以上の工程を
経た高分子フィルム1を送り出しローラ61から、補助ロ
ーラ62、63を経て巻き取りローラ64に向けて矢印のよう
に送ると共に、金属箔5を送り出しローラ65から巻き取
りローラ54に向けて送り、ヒータを内蔵する案内板71の
上で高分子フィルム1の下面に密着させ、自動的に横方
向および上下方向に移動するはんだごて72を用いてはん
だ7により図1(c) のように透明電極層4と金属箔5を
はんだ付けする。金属箔5は、厚さ50μm程度のもの
で、シート状に加工が容易にできる材料であり、ろう付
け性の良好なもので、特に高抵抗でなければ、材質に制
限はない。Finally, as shown in FIG. 3, the polymer film 1 which has undergone the above steps is fed from the feeding roller 61 to the winding roller 64 via the auxiliary rollers 62 and 63 as indicated by the arrow, and the metal film A soldering iron that feeds the foil 5 from the feed roller 65 toward the take-up roller 54, makes it adhere to the lower surface of the polymer film 1 on the guide plate 71 with a built-in heater, and automatically moves in the horizontal and vertical directions. Using 72, the transparent electrode layer 4 and the metal foil 5 are soldered with the solder 7 as shown in FIG. 1 (c). The metal foil 5 has a thickness of about 50 μm, is a material that can be easily processed into a sheet shape, has a good brazing property, and is not particularly limited as long as it has a high resistance.
【0010】また、透明電極層4と金属箔5を電気的に
接続する方法は、はんだ付けに限られるものではなく、
たとえばレーザ溶着、超音波利用による溶着、導電性ペ
ーストのディスペンサの使用など、電気的に接続が可能
な方法であれば制限されるものではない。図1に示した
太陽電池構造を取れば、小孔6の内壁、近傍部において
透明電極層4と金属箔5がはんだ7を介して電気的に導
通状態となる。一方、金属電極層2は、レーザ照射によ
り小孔6近傍が除去され、小孔内部とは電気的に絶縁さ
れているため、透明電極層4や金属箔5と導通状態にな
ることはない。The method for electrically connecting the transparent electrode layer 4 and the metal foil 5 is not limited to soldering.
For example, laser welding, welding using ultrasonic waves, and use of a conductive paste dispenser are not limited as long as they can be electrically connected. With the solar cell structure shown in FIG. 1, the transparent electrode layer 4 and the metal foil 5 are electrically connected to each other through the solder 7 on the inner wall of the small hole 6 and in the vicinity thereof. On the other hand, in the metal electrode layer 2, since the vicinity of the small hole 6 is removed by laser irradiation and is electrically insulated from the inside of the small hole, the metal electrode layer 2 is not electrically connected to the transparent electrode layer 4 or the metal foil 5.
【0011】また、図4に示すように金属箔5のセルと
高分子フィルム1と密着する面とは反対側にあらかじめ
耐候性樹脂8を被覆させておけば、耐環境性を保持する
ための保護材の役割を兼ねることが可能となる。太陽電
池は、通常屋外で使用するため耐環境性を持たせるため
モジュール構造をとる。太陽電池のコストを考えると約
1/3がこのモジュール化のコストであり、このモジュ
ール化のコストを下げることが、太陽電池のコストを下
げるには重要な課題である。本発明による薄膜太陽電池
は、金属箔5により電気的接続を行うことにより、高価
な真空装置を用いることなく低電圧、大電流型太陽電池
を作成可能になるばかりでなく、金属箔5の他方の面に
耐候性樹脂8をあらかじめ被覆しておき、上面からは図
4に示すように酸化膜82を表面上に形成した耐候性フィ
ルム1を矢印のように圧着すれば、低コストでモジュー
ル化が可能となる。Further, as shown in FIG. 4, if weatherproof resin 8 is previously coated on the side of the metal foil 5 opposite to the side where the cells and the polymer film 1 are in close contact, the environment resistance can be maintained. It also becomes possible to serve as a protective material. Since the solar cell is usually used outdoors, it has a module structure to have environmental resistance. Considering the cost of the solar cell, about 1/3 is the cost of this modularization, and reducing the cost of this modularization is an important issue to reduce the cost of the solar cell. In the thin-film solar cell according to the present invention, by electrically connecting with the metal foil 5, not only a low-voltage, high-current solar cell can be produced without using an expensive vacuum device, but also the other side of the metal foil 5 is used. The surface is coated with the weather resistant resin 8 in advance, and the weather resistant film 1 having the oxide film 82 formed on the surface as shown in FIG. Is possible.
【0012】所定の電圧を得るためには一般的にはこの
ような薄膜太陽電池を必要数だけ、直列接続すればよ
く、図5に示すように端部で金属電極層2上の端子25と
金属箔5とをはんだ71でろう付けするなどの簡易な方法
により直列接続が可能である。また、太陽電池の用途に
よっては従来の直列接続型より低電圧ではあるが、単一
ユニットセルの電圧よりは高い電圧を単一基板上で実現
することを要求される場合も考えられる。この場合、太
陽電池全体を所定の電圧から決まる複数のユニットセル
に分割し、このユニットセル間は従来の直列接続型と同
様な方法で接続する。そして、各ユニットセル毎に本発
明の思想を応用して小孔と金属箔を用いて透明電極中を
電流が流れることによる損失を抑制すれば、任意の基板
サイズにたいして任意の電圧を効率良く取り出すことが
できる。この場合、各ユニットセルに対応する金属箔は
当然、短冊状にあらかじめ切断しておく必要がある。In order to obtain a predetermined voltage, generally, a required number of such thin-film solar cells may be connected in series. As shown in FIG. 5, the terminals 25 and the terminals 25 on the metal electrode layer 2 are connected to each other. Series connection is possible by a simple method such as brazing the metal foil 5 with solder 71. Further, depending on the application of the solar cell, it may be required to realize a voltage higher than the voltage of a single unit cell on a single substrate, though the voltage is lower than that of the conventional series connection type. In this case, the entire solar cell is divided into a plurality of unit cells determined by a predetermined voltage, and the unit cells are connected in the same manner as the conventional series connection type. Then, if the idea of the present invention is applied to each unit cell and the loss due to the current flowing through the transparent electrode is suppressed by using the small holes and the metal foil, any voltage can be efficiently extracted for any substrate size. be able to. In this case, the metal foil corresponding to each unit cell needs to be cut into strips in advance.
【0013】[0013]
【発明の効果】本発明によれば、絶縁性基板上に基板よ
り遠い側から入射する光に対する太陽電池層構造を形成
し、その上面の透明電極層を層構造を貫通する導体によ
り基板裏面の金属箔を用いる電極層と接続することによ
り、基板両面の電極層に設けた出力端子より取出す電流
は大部分金属電極層中を流れるため、透明電極層中ジュ
ール損失が少なく、また接続のためのデッドスペースの
部分が縮小して有効発電面積が増加した非直列接続構造
の薄膜太陽電池を得ることができた。裏面電極には蒸着
などで成膜する金属層を用いることも可能であるが、金
属箔を用いることにより低コストになる。従って低電
圧、大電流型の薄膜太陽電池を構成するのに極めて有効
である。According to the present invention, a solar cell layer structure for light incident from a side farther than the substrate is formed on an insulating substrate, and a transparent electrode layer on the upper surface of the solar cell layer structure is formed on the back surface of the substrate by a conductor penetrating the layer structure. By connecting to the electrode layer using a metal foil, most of the current drawn from the output terminals provided on the electrode layers on both sides of the substrate flows in the metal electrode layer, so there is little Joule loss in the transparent electrode layer, and the connection It was possible to obtain a thin-film solar cell with a non-series connection structure in which the dead space was reduced and the effective power generation area was increased. A metal layer formed by vapor deposition or the like can be used for the back electrode, but the cost is reduced by using the metal foil. Therefore, it is extremely effective in constructing a low voltage, large current thin film solar cell.
【図1】本発明の一実施例の薄膜太陽電池を示し、(a)
は平面図、(b) は断面図、(c)は小孔部近傍の拡大断面
図FIG. 1 shows a thin film solar cell according to an embodiment of the present invention, (a)
Is a plan view, (b) is a sectional view, (c) is an enlarged sectional view near the small hole
【図2】従来の薄膜太陽電池の断面図FIG. 2 is a cross-sectional view of a conventional thin film solar cell.
【図3】図1の薄膜太陽電池の製造装置の一つの側面図3 is a side view of one of the thin-film solar cell manufacturing apparatuses of FIG.
【図4】本発明の異なる実施例の薄膜太陽電池の断面図FIG. 4 is a sectional view of a thin film solar cell according to another embodiment of the present invention.
【図5】図1の薄膜太陽電池の2個の接続法を示し、
(a) は平面図、(b) は断面図5 shows two connection methods of the thin film solar cell of FIG.
(a) is a plan view, (b) is a sectional view
1 絶縁性基板 2 金属電極層 3 非晶質半導体層 4 透明電極層 5 電極箔 6 小孔 7 はんだ 8 耐候性樹脂 1 Insulating Substrate 2 Metal Electrode Layer 3 Amorphous Semiconductor Layer 4 Transparent Electrode Layer 5 Electrode Foil 6 Small Hole 7 Solder 8 Weatherproof Resin
Claims (3)
半導体層および透明電極層が積層され、他面上に金属箔
が密着し、透明電極層と金属箔とが、非晶質半導体層、
金属電極層および絶縁性基板を実質的に等間隔で分散し
て貫通し、金属電極層と実質的に絶縁された複数の導体
により接続されたことを特徴とする薄膜太陽電池。1. A metal electrode layer, an amorphous semiconductor layer, and a transparent electrode layer are laminated on one surface of an insulating substrate, and a metal foil is adhered on the other surface, and the transparent electrode layer and the metal foil are amorphous. Quality semiconductor layer,
A thin-film solar cell, comprising: a metal electrode layer and an insulating substrate, which are dispersed and penetrate through the metal electrode layer at substantially equal intervals, and are connected to each other by a plurality of conductors that are substantially insulated from the metal electrode layer.
って覆われた請求項1記載の薄膜太陽電池。2. The thin film solar cell according to claim 1, wherein the anti-insulating substrate surface of the metal foil is covered with a weather resistant resin.
た絶縁性基板の一面上に金属電極層を被着したのち、レ
ーザ光の照射により小孔の内壁および周辺上の金属電極
層を除去し、次いで絶縁性基板の一面側から非晶質半導
体層および透明電極層を順次積層し、さらに他面側に金
属箔を密着させ、透明電極層と金属箔とを小孔を充填す
る低融点合金により接続することを特徴とする請求項1
あるいは2記載の薄膜太陽電池の製造方法。3. A metal electrode layer is deposited on one surface of an insulating substrate in which small holes are distributed at substantially equal intervals, and then a metal electrode is applied to the inner wall and the periphery of the small holes by laser beam irradiation. The layer is removed, then the amorphous semiconductor layer and the transparent electrode layer are sequentially laminated from one side of the insulating substrate, and the metal foil is adhered to the other side, and the transparent electrode layer and the metal foil are filled with small holes. 2. The low melting point alloy for connecting is used for connection.
Alternatively, the method for manufacturing a thin film solar cell according to the item 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5136298A JPH06350115A (en) | 1993-06-08 | 1993-06-08 | Film solar battery and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5136298A JPH06350115A (en) | 1993-06-08 | 1993-06-08 | Film solar battery and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06350115A true JPH06350115A (en) | 1994-12-22 |
Family
ID=15171916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5136298A Pending JPH06350115A (en) | 1993-06-08 | 1993-06-08 | Film solar battery and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06350115A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001127322A (en) * | 1999-10-27 | 2001-05-11 | Kanegafuchi Chem Ind Co Ltd | Lead wire soldering apparatus for solar cell |
JP2001177131A (en) * | 1999-12-16 | 2001-06-29 | Kanegafuchi Chem Ind Co Ltd | Method and equipment of automatically soldering lead wire for solar battery |
WO2011145206A1 (en) * | 2010-05-21 | 2011-11-24 | 富士電機株式会社 | Thin film solar cell |
KR101405023B1 (en) * | 2008-07-04 | 2014-06-10 | 주성엔지니어링(주) | Thin film type Solar Cell, and Method for manufacturing the same |
-
1993
- 1993-06-08 JP JP5136298A patent/JPH06350115A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001127322A (en) * | 1999-10-27 | 2001-05-11 | Kanegafuchi Chem Ind Co Ltd | Lead wire soldering apparatus for solar cell |
JP4504485B2 (en) * | 1999-10-27 | 2010-07-14 | 株式会社カネカ | Solar cell lead wire soldering equipment |
JP2001177131A (en) * | 1999-12-16 | 2001-06-29 | Kanegafuchi Chem Ind Co Ltd | Method and equipment of automatically soldering lead wire for solar battery |
KR101405023B1 (en) * | 2008-07-04 | 2014-06-10 | 주성엔지니어링(주) | Thin film type Solar Cell, and Method for manufacturing the same |
WO2011145206A1 (en) * | 2010-05-21 | 2011-11-24 | 富士電機株式会社 | Thin film solar cell |
CN102770964A (en) * | 2010-05-21 | 2012-11-07 | 富士电机株式会社 | Thin film solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6720576B1 (en) | Plasma processing method and photoelectric conversion device | |
US5821597A (en) | Photoelectric conversion device | |
JP2755281B2 (en) | Thin film solar cell and method of manufacturing the same | |
JP3035565B2 (en) | Fabrication method of thin film solar cell | |
US5626686A (en) | Thin-film solar cell and method of manufacturing the same | |
US5468988A (en) | Large area, through-hole, parallel-connected photovoltaic device | |
US5259891A (en) | Integrated type solar battery | |
US6011215A (en) | Point contact photovoltaic module and method for its manufacture | |
US20060260673A1 (en) | Photovoltaic element and method of producing photovoltaic element | |
JP2939075B2 (en) | Solar cell module | |
CN101030589B (en) | Photovoltaic device | |
JP3613851B2 (en) | Integrated thin film solar cell | |
WO1989004062A1 (en) | Solar cell fabrication method and solar cell made thereby | |
JPH0799334A (en) | Photovoltaic element and module | |
JP3243232B2 (en) | Thin film solar cell module | |
WO2016158299A1 (en) | Solar cell, method for manufacturing same, solar cell module and wiring sheet | |
JPH06350115A (en) | Film solar battery and its manufacture | |
JP2000150929A (en) | Photovoltaic element and manufacture thereof | |
JP2855299B2 (en) | Solar cell module | |
JP3393842B2 (en) | Method for manufacturing photoelectric conversion device | |
JP2006041349A (en) | Photovoltaic element and its manufacturing method | |
JPH1051018A (en) | Solar battery module | |
JP3111805B2 (en) | Thin film solar cell and method of manufacturing the same | |
JPH06268241A (en) | Thin-film solar cell and manufacture thereof | |
US20160087134A1 (en) | Solar cell apparatus and method of fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Effective date: 20040127 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040326 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040824 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20040921 |