JPH063403A - Detection of power cable grounding position - Google Patents
Detection of power cable grounding positionInfo
- Publication number
- JPH063403A JPH063403A JP18434792A JP18434792A JPH063403A JP H063403 A JPH063403 A JP H063403A JP 18434792 A JP18434792 A JP 18434792A JP 18434792 A JP18434792 A JP 18434792A JP H063403 A JPH063403 A JP H063403A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- ground fault
- cable
- power cable
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Locating Faults (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は光ファイバを内蔵あるい
は外部被覆の外周上に巻きつけることによって複合した
電力、光複合ケーブルの電力ケーブルの地絡位置検出方
法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a ground fault position of a power cable of an electric power / optical composite cable which is combined by winding an optical fiber on the outer circumference of a built-in or outer coating.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】一般
に、電力ケーブルに地絡事故が発生した場合、その地絡
点近傍では非常に大きな地絡電流が導体と遮蔽層の間に
流れるため、瞬時に温度が上昇する。この温度上昇をケ
ーブルに内蔵した、あるいはケーブル外周に沿って布設
した光ファイバとセンサとする光ファイバ温度分布計測
装置によって検出し、地絡位置を検出する方法が試みら
れている。(例えば平成3年電気学会全国大会「光ファ
イバ分布型温度センサを用いた地絡点位置標定の可能性
検討」参照)2. Description of the Related Art Generally, when a ground fault occurs in a power cable, a very large ground fault current flows between the conductor and the shielding layer in the vicinity of the ground fault. The temperature rises. An attempt has been made to detect the ground fault position by detecting this temperature rise by an optical fiber temperature distribution measuring device which is a sensor and an optical fiber built in the cable or laid along the outer circumference of the cable. (For example, refer to "Analysis of the 1st Annual Meeting of the Institute of Electrical Engineers of Japan," Possibility of locating the ground fault point using an optical fiber distributed temperature sensor ")
【0003】ここで、電力ケーブルに地絡事故が発生し
たとき、そのケーブルに接続されている変電設備等の保
護のため、ケーブルへの通電は例えば数10msという瞬時
に遮断されるため、温度上昇はその間の極短時間に限ら
れる。又温度が上昇するのは、地絡点を中心(最高温
度)とする極近傍(例えば1m区間)に限られる。一
方、光ファイバ温度分布計測装置は、光ファイバの一端
から光パルスを入射し、光ファイバから入射端に戻って
くる後方散乱光を時間的にサンプリングして、その強度
から温度、時間遅れから発生位置(入射端からの距離)
を求める装置であるが、測定している温度は光ファイバ
の一定距離区間の平均温度で、かつ一定の計測時間内の
時間平均温度である。従って、瞬時で、かつ限られた距
離区間の温度上昇を検出するためには、温度計測の平均
距離、平均時間を出来るだけ短くして測定する必要があ
る。[0003] Here, when a ground fault occurs in a power cable, the power supply to the cable is instantaneously cut off for several tens of ms to protect the substation equipment connected to the cable, so that the temperature rises. Is limited to a very short period of time. Further, the temperature rises only in the very vicinity (for example, 1 m section) with the ground fault as the center (highest temperature). On the other hand, the optical fiber temperature distribution measuring device receives an optical pulse from one end of the optical fiber, temporally samples the backscattered light returning from the optical fiber to the incident end, and generates the temperature and time delay from its intensity. Position (distance from the incident end)
However, the temperature being measured is an average temperature in a fixed distance section of the optical fiber and a time average temperature within a fixed measurement time. Therefore, in order to detect the temperature rise in a limited distance section in an instant, it is necessary to make the average distance and the average time of temperature measurement as short as possible.
【0004】しかし、一般にこの種の温度分布計測装置
は、光ファイバから生じる非常に微弱な後方散乱光の検
出を必要とするために、測定のためにはできるだけ大き
な信号光(後方散乱光)強度を得るために、長時間の、
あるいは長距離にわたる積算処理、即ち平均化処理が必
要であり、前記のような、瞬時の温度上昇の検出が困難
な場合があった。However, in general, this type of temperature distribution measuring device requires detection of very weak backscattered light generated from the optical fiber, and therefore the signal light (backscattered light) intensity as large as possible for measurement. For a long time to get
Alternatively, integration processing over a long distance, that is, averaging processing is required, and it may be difficult to detect the instantaneous temperature rise as described above.
【0005】[0005]
【課題を解決するための手段】本発明は上述の問題点を
解消し、使用する光ファイバ温度分布計測装置の性能に
合せて通電、発熱を起こすことによって、容易に地絡位
置の検出が可能な電力ケーブルの地絡位置検出方法を提
供するもので、その特徴は、光ファイバを複合した電
力、光複合ケーブルに地絡事故が発生した場合、電力ケ
ーブルの導体と遮蔽層からなる電気回路に電流を流すこ
とによって地絡点を故意に発熱させ、その温度上昇位置
を上記複合されている光ファイバの一端に接続した光フ
ァイバ温度分布計測装置によって検出することにより、
地絡位置を検出することにある。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and can easily detect the ground fault position by energizing and generating heat according to the performance of the optical fiber temperature distribution measuring device used. A method for detecting the ground fault position of a power cable is provided, which is characterized by the power that combines optical fibers, and when a ground fault occurs in the optical composite cable, the electrical circuit that consists of the conductor and the shielding layer of the power cable. By intentionally heating the ground fault point by passing a current, by detecting the temperature rise position by the optical fiber temperature distribution measuring device connected to one end of the optical fiber which is the composite,
It is to detect the ground fault position.
【0006】[0006]
【作用】本発明においては、地絡発生ヶ所で長時間の温
度上昇を故意に発生させることを考える。地絡事故、即
ち導体と遮蔽層の間の絶縁が破壊されてアーク放電によ
る導通が生じたケーブルは、地絡点において、その痕跡
によって電流が流れ易い状態が残っており、図2のよう
に、ケーブルの一端に通電装置10を接続して電流を流す
と、導体1から地絡点Aを通って遮蔽層3へとつながる
電気回路を形成することができる。ここで、地絡点の導
通は、ケーブル導体に比べればはるかに電気抵抗が大き
いために、導体部や遮蔽層部に比べて大きな発熱を生じ
る。この発熱は通電する電流によって制御することがで
きるため、光ファイバ温度分布計測装置によって、その
温度上昇地点を検出するのに充分な時間通電することに
よって、容易に発熱地点、つまり地絡点を検出すること
が可能である。In the present invention, it is considered that the temperature rise is intentionally generated for a long time at the place where the ground fault occurs. A ground fault accident, that is, a cable in which the insulation between the conductor and the shield layer is broken and electrical continuity is generated by arc discharge, has a state in which current easily flows due to the trace at the ground fault point, as shown in Fig. 2. By connecting the current-carrying device 10 to one end of the cable and passing a current, an electric circuit connected from the conductor 1 through the ground fault point A to the shielding layer 3 can be formed. Here, since the electrical continuity of the ground fault point has a much higher electric resistance than that of the cable conductor, a larger amount of heat is generated than that of the conductor portion or the shielding layer portion. Since this heat generation can be controlled by the current flowing, the optical fiber temperature distribution measuring device can easily detect the heat generation point, that is, the ground fault point by supplying the current for a sufficient time to detect the temperature rise point. It is possible to
【0007】[0007]
【実施例】図4(イ)及び(ロ)はいずれも本発明の対
象とする電力、光複合ケーブルの構造例の横断面図であ
る。図面において、1は導体、2は架橋ポリエチレン絶
縁体等のケーブル絶縁体、3はケーブルの遮蔽層、4は
塩化ビニル、ポリエチレン等の外部被覆層である。5は
複合した光ファイバで、図4(イ)においては光ファイ
バ5はケーブル絶縁体2上に巻きつけられており、図4
(ロ)においては外部被覆層4の外周上に巻きつけられ
ている。EXAMPLE FIGS. 4A and 4B are cross-sectional views of a structural example of a power / optical composite cable which is the object of the present invention. In the drawings, 1 is a conductor, 2 is a cable insulator such as a cross-linked polyethylene insulator, 3 is a cable shielding layer, and 4 is an outer coating layer such as vinyl chloride or polyethylene. Reference numeral 5 denotes a composite optical fiber, and in FIG. 4A, the optical fiber 5 is wound around the cable insulator 2.
In (b), it is wrapped around the outer periphery of the outer coating layer 4.
【0008】図1は本発明の地絡位置検出方法の具体例
の説明図である。地絡事故を起こした電力、光複合ケー
ブルCの一端(いずれの端部でもよく、又ケーブルの途
中を切り出して端部を形成してもよい)の、導体1と遮
蔽層3の間に通電装置10を接続し、I(A)の電流を流
す。ここで地絡点Aの電気抵抗をR(Ω)とすると、発
熱量はI2 R(W)で求められる。このケーブルには光
ファイバ5が複合されており、光ファイバ5の一端には
光ファイバ温度分布計測装置11が接続されている。通
常、ケーブルを故意に加熱していない場合は、例えば図
3(イ)のようにケーブルに沿った温度分布が測定され
ている。ここで、上記通電装置10によって通電を行い、
地絡点が発熱すると、測定された温度分布は図3(ロ)
のようになり、温度上昇位置が地絡位置を示すことにな
る。いま、通電によって5℃の温度上昇が得られたとす
ると、現状のこの種の光ファイバ温度計測装置では、そ
の温度測定のために、例えば10分間の平均温度が必要で
あるが、本発明では通電時間は任意に継続することが出
来るため、容易にその温度を測定することができ、地絡
位置の検出が可能となる。FIG. 1 is an explanatory view of a concrete example of the ground fault position detecting method of the present invention. Electricity between the conductor 1 and the shielding layer 3 at one end of the optical composite cable C (either end may be formed or the end may be formed by cutting out the middle of the cable) resulting in a ground fault The device 10 is connected and a current of I (A) is passed. Here, when the electric resistance at the ground fault point A is R (Ω), the heat generation amount is obtained by I 2 R (W). An optical fiber 5 is combined with this cable, and an optical fiber temperature distribution measuring device 11 is connected to one end of the optical fiber 5. Normally, when the cable is not intentionally heated, the temperature distribution along the cable is measured as shown in FIG. Here, energization is performed by the energization device 10,
When the ground fault generates heat, the measured temperature distribution is shown in Fig. 3 (b).
As a result, the temperature rise position indicates the ground fault position. Now, assuming that a temperature rise of 5 ° C. is obtained by energization, the current optical fiber temperature measuring device of this type requires an average temperature of, for example, 10 minutes to measure the temperature. Since the time can be continued arbitrarily, the temperature can be easily measured and the ground fault position can be detected.
【0009】[0009]
【発明の効果】以上説明したように、本発明の地絡位置
検出方法によれば、通電装置の通電電流及び時間を制御
することによって、使用する光ファイバ温度分布計測装
置の性能に合せて通電発熱を起こすことが出来、容易に
電力ケーブルの地絡位置の検出が可能となる。As described above, according to the ground fault position detecting method of the present invention, by controlling the energizing current and time of the energizing device, the energizing is performed according to the performance of the optical fiber temperature distribution measuring device used. It can generate heat and easily detect the ground fault position of the power cable.
【図1】本発明の地絡位置検出方法の具体例の説明図で
ある。FIG. 1 is an explanatory diagram of a specific example of a ground fault position detection method of the present invention.
【図2】本発明の地絡位置検出方法の基本原理の説明図
である。FIG. 2 is an explanatory diagram of the basic principle of the ground fault position detection method of the present invention.
【図3】図3(イ)及び(ロ)はいずれも温度分布の測
定図で、(イ)はケーブルを故意加熱しない場合、
(ロ)は故意加熱した場合を示す。3A and 3B are measurement diagrams of temperature distribution, and FIG. 3A shows the case where the cable is not intentionally heated.
(B) shows the case of intentional heating.
【図4】図4(イ)及び(ロ)はいずれも電力、光複合
ケーブルの構造例の横断面図である。4A and 4B are cross-sectional views of a structural example of a power / optical composite cable.
C 電力、光複合ケーブル A 地絡点 1 導体 2 絶縁体 3 遮蔽層 4 外部被覆層 5 光ファイバ 10 通電装置 11 光ファイバ温度分布測定装置 C Power / optical composite cable A Ground fault 1 Conductor 2 Insulator 3 Shielding layer 4 Outer coating layer 5 Optical fiber 10 Current-carrying device 11 Optical fiber temperature distribution measuring device
───────────────────────────────────────────────────── フロントページの続き (72)発明者 広瀬 正幸 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masayuki Hirose 1-3-3 Shimaya, Konohana-ku, Osaka Sumitomo Electric Industries, Ltd. Osaka Works
Claims (1)
ブルに地絡事故が発生した場合、電力ケーブルの導体と
遮蔽層からなる電気回路に電流を流すことによって地絡
点を故意に発熱させ、その温度上昇位置を上記複合され
ている光ファイバの一端に接続した光ファイバ温度分布
計測装置によって検出することにより、地絡位置を検出
することを特徴とする電力ケーブルの地絡位置検出方
法。1. When a ground fault occurs in a power and optical composite cable that combines optical fibers, a ground fault is intentionally caused to generate heat by causing a current to flow in an electric circuit composed of a conductor and a shielding layer of the power cable, A ground fault position detecting method for a power cable, characterized in that the ground fault position is detected by detecting the temperature rise position by an optical fiber temperature distribution measuring device connected to one end of the composite optical fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4184347A JP2859491B2 (en) | 1992-06-17 | 1992-06-17 | Ground fault position detection method for power cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4184347A JP2859491B2 (en) | 1992-06-17 | 1992-06-17 | Ground fault position detection method for power cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH063403A true JPH063403A (en) | 1994-01-11 |
JP2859491B2 JP2859491B2 (en) | 1999-02-17 |
Family
ID=16151682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4184347A Expired - Lifetime JP2859491B2 (en) | 1992-06-17 | 1992-06-17 | Ground fault position detection method for power cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2859491B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6261989B1 (en) | 1999-05-19 | 2001-07-17 | Daihatsu Motor Co., Ltd. | Catalytic converter for cleaning exhaust gas |
US6576200B1 (en) | 1998-08-28 | 2003-06-10 | Daihatsu Motor Co., Ltd. | Catalytic converter for automotive pollution control, and oxygen-storing complex oxide used therefor |
JP2005181294A (en) * | 2003-12-23 | 2005-07-07 | General Electric Co <Ge> | Detection for partial discharge or arc discharge in wiring by optical fiber |
KR101277148B1 (en) * | 2011-10-20 | 2013-06-20 | 대한전선 주식회사 | Apparatus and Method for Calculating Pitch Resolution of Cross-Linked Polyethylene Insulated Cable, and Monitoring System of Cables Having the Same |
CN103267922A (en) * | 2013-05-15 | 2013-08-28 | 国家电网公司 | Intelligent cable short circuit grounding and temperature fault indicator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4928871A (en) * | 1972-07-14 | 1974-03-14 | ||
JPH01267428A (en) * | 1988-04-19 | 1989-10-25 | Hitachi Cable Ltd | Optical fiber type sensor for temperature distribution |
JPH0472582A (en) * | 1990-07-13 | 1992-03-06 | Fujikura Ltd | Structure for laying optical fiber for detection in power cable line fault point detection system |
JPH0480671A (en) * | 1990-07-24 | 1992-03-13 | Fujikura Ltd | Power cable abnormal point detector |
-
1992
- 1992-06-17 JP JP4184347A patent/JP2859491B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4928871A (en) * | 1972-07-14 | 1974-03-14 | ||
JPH01267428A (en) * | 1988-04-19 | 1989-10-25 | Hitachi Cable Ltd | Optical fiber type sensor for temperature distribution |
JPH0472582A (en) * | 1990-07-13 | 1992-03-06 | Fujikura Ltd | Structure for laying optical fiber for detection in power cable line fault point detection system |
JPH0480671A (en) * | 1990-07-24 | 1992-03-13 | Fujikura Ltd | Power cable abnormal point detector |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6576200B1 (en) | 1998-08-28 | 2003-06-10 | Daihatsu Motor Co., Ltd. | Catalytic converter for automotive pollution control, and oxygen-storing complex oxide used therefor |
US6261989B1 (en) | 1999-05-19 | 2001-07-17 | Daihatsu Motor Co., Ltd. | Catalytic converter for cleaning exhaust gas |
JP2005181294A (en) * | 2003-12-23 | 2005-07-07 | General Electric Co <Ge> | Detection for partial discharge or arc discharge in wiring by optical fiber |
JP4659431B2 (en) * | 2003-12-23 | 2011-03-30 | ゼネラル・エレクトリック・カンパニイ | Detection of partial discharge or arc discharge of wiring by optical fiber |
KR101277148B1 (en) * | 2011-10-20 | 2013-06-20 | 대한전선 주식회사 | Apparatus and Method for Calculating Pitch Resolution of Cross-Linked Polyethylene Insulated Cable, and Monitoring System of Cables Having the Same |
CN103267922A (en) * | 2013-05-15 | 2013-08-28 | 国家电网公司 | Intelligent cable short circuit grounding and temperature fault indicator |
Also Published As
Publication number | Publication date |
---|---|
JP2859491B2 (en) | 1999-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0441291B1 (en) | Withstand-voltage testing method and apparatus | |
Kawai et al. | A new approach to cable fault location using fiber optic technology. I | |
JPH063403A (en) | Detection of power cable grounding position | |
US4972179A (en) | Liquid leakage detection apparatus including wheatstone bridge | |
JPH02144810A (en) | Power cable and its temperature distribution measurement | |
JPH05126895A (en) | Method for detecting fault point of overhead transmission line | |
JP2018156824A (en) | Cable, cable trouble orientation method and connection method of cable | |
CN203562749U (en) | High-voltage cable connector accessory with insulation sleeve | |
JP3029269B2 (en) | Insulation abnormality detector | |
JPH06181015A (en) | Optical fiber composite electric power cable | |
JPS60207078A (en) | Detection of accident section of single-core power cable | |
JP2771625B2 (en) | Fault Detection Method for Optical Fiber Composite Overhead Ground Wire and Overhead Transmission Line | |
JP2761271B2 (en) | Optical fiber temperature sensor for detecting electric wire short circuit | |
RU196929U1 (en) | POWER CABLE FOR AC NETWORKS WITH VOLTAGE UP TO 10 KV | |
CN103618279A (en) | High-voltage cable connector accessory provided with insulation sleeve and infrared temperature measurement method thereof | |
JPH045580A (en) | Abnormality generation point detection system | |
JP3064691B2 (en) | Fault detection method for overhead transmission lines | |
JPH06148001A (en) | Optical fiber composite power cable | |
JP2568097B2 (en) | Power cable accident section detection method | |
JP2953210B2 (en) | Optical fiber temperature sensor | |
JPH06139838A (en) | Optical fiber composite power cable | |
JPH06181014A (en) | Optical fiber composite electric power cable | |
JPH08264035A (en) | Sensor built-in power cable | |
JPH05126648A (en) | Thermocouple fitting section for cable cover surface | |
JPH08304487A (en) | Method for insulation diagnosis of cable sheath in active condition |