JPH06345572A - Oxidation resistant coating layer of c/c composite material - Google Patents
Oxidation resistant coating layer of c/c composite materialInfo
- Publication number
- JPH06345572A JPH06345572A JP5166094A JP16609493A JPH06345572A JP H06345572 A JPH06345572 A JP H06345572A JP 5166094 A JP5166094 A JP 5166094A JP 16609493 A JP16609493 A JP 16609493A JP H06345572 A JPH06345572 A JP H06345572A
- Authority
- JP
- Japan
- Prior art keywords
- coating
- composite material
- layer
- sio
- glassy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、C/C複合材(「炭素
繊維強化炭素複合材」、以下同じ)の表面に形成された
高温酸化雰囲気下において優れた酸化抵抗性を示す耐酸
化被覆層に関する。FIELD OF THE INVENTION The present invention relates to an oxidation resistant coating formed on the surface of a C / C composite material (“carbon fiber reinforced carbon composite material”; the same applies hereinafter) and which exhibits excellent oxidation resistance in a high temperature oxidizing atmosphere. Regarding layers.
【0002】[0002]
【従来の技術】C/C複合材は、1000℃を越える温
度域においても高度の比強度、比弾性率を維持し、かつ
低い熱膨張率を示す等の特異は材質特性を有することか
ら、航空宇宙用の部材として注目されている。ところ
が、この材料は500℃以上の大気雰囲気下で酸化が進
行するという炭素材固有の性癖があるため、高温大気中
での使用は極く短時間に限られる材質上の欠点である。
このため、C/C複合材の表面に耐酸化性の被覆を施し
て改質化する試みが従来から盛んにおこなわれている。2. Description of the Related Art C / C composite materials have peculiar material characteristics such as maintaining a high specific strength and a specific elastic modulus even in a temperature range exceeding 1000 ° C. and exhibiting a low coefficient of thermal expansion. It is drawing attention as a member for aerospace. However, since this material has a peculiar tendency of a carbon material that oxidation progresses in an air atmosphere of 500 ° C. or more, its use in a high temperature atmosphere is a material defect that is limited to an extremely short time.
For this reason, there have been many attempts to modify the surface of the C / C composite material by coating it with an oxidation resistant coating.
【0003】このうち、最も一般的な耐酸化処理とされ
ているのはCVD(化学的気相蒸着)によりセラミック
ス被膜層を形成する方法で、SiCを被覆化する処理が
代表的な技術として知られている。CVD法によればC
/C複合基材面に緻密なSiC被膜を形成することがで
きるが、僅かな熱負荷でSiC被膜が層間剥離したり、
層界面にクラックが発生する等の現象が多発し易い。こ
の現象は、主にC/C複合基材とSiC被膜層との熱膨
張差が大きいため最大歪みが追随できないことに起因す
るため、C/C複合基材面をSiCの熱膨張率に近似さ
せるように改質させれば軽減化させることができる。し
たがって、C/C複合基材面に気相熱分解法により熱分
解炭素層を形成し、ついでCVDまたはCVI法でSi
Cを被覆する方法(特開平2−111681号公報) が提案さ
れているが、十分な効果は期待できない。Of these, the most general oxidation resistance treatment is a method of forming a ceramic coating layer by CVD (chemical vapor deposition), and the treatment of coating SiC is known as a typical technique. Has been. C according to the CVD method
Although a dense SiC coating can be formed on the / C composite substrate surface, the SiC coating may be delaminated with a slight heat load,
Phenomena such as cracks tend to occur frequently at the layer interface. This phenomenon is mainly caused by the fact that the maximum strain cannot follow because the difference in thermal expansion between the C / C composite base material and the SiC coating layer is large, so the C / C composite base material surface approximates the thermal expansion coefficient of SiC. If it is modified so that it can be reduced, it can be reduced. Therefore, a pyrolytic carbon layer is formed on the surface of the C / C composite substrate by the vapor phase pyrolysis method, and then the Si layer is formed by the CVD or CVI method.
A method of coating C (Japanese Patent Laid-Open No. 2-111681) has been proposed, but a sufficient effect cannot be expected.
【0004】これに対し、C/C複合基材の炭素を反応
源に利用してSi成分と反応させることによりSiCに
転化させるコンバージョン法は、基材の表層部が連続組
織としてSiC層を形成する傾斜機能組織となるため界
面剥離を生じることはない。しかし、CVD法に比べて
緻密性に劣るうえ、反応時、被覆層に微小なクラックが
発生する問題がある。On the other hand, in the conversion method in which carbon of the C / C composite base material is used as a reaction source to react with the Si component to be converted into SiC, the surface layer portion of the base material forms a SiC layer as a continuous structure. Since it becomes a functionally graded structure that does not cause interfacial peeling. However, in addition to being less dense than the CVD method, there are problems that minute cracks are generated in the coating layer during the reaction.
【0005】このような問題の解消を図るため、本発明
者はC/C複合基材の表面に傾斜機能組織を備えるSi
C被覆層と微粒子状のSiO2 被膜による中間被覆層を
形成し、更にその表面にSiO2 −B2 O3 系、Al2
O3 −SiO2 系、B2 O3−Al2 O3 −SiO2 系
等の耐熱ガラス質被膜を積層被覆した耐酸化性C/C複
合材を開発した(特開平4−42883 号公報、特開平5−
43366 号公報) 。In order to solve such a problem, the inventor of the present invention has proposed that Si having a functionally graded structure on the surface of a C / C composite substrate.
An intermediate coating layer composed of a C coating layer and a fine particle SiO 2 coating is formed, and a SiO 2 —B 2 O 3 system, Al 2
Oxidation-resistant C / C composites have been developed, which are laminated and coated with heat-resistant glassy coatings such as O 3 —SiO 2 system and B 2 O 3 —Al 2 O 3 —SiO 2 system (JP-A-4-42883). Japanese Patent Laid-Open No. 5-
No. 43366).
【0006】[0006]
【発明が解決しようとする課題】上記の先行技術で形成
される複合被覆層によれば、表面層として形成したガラ
ス質被膜が高温雰囲気に曝されて軟化し、溶融状態で内
層のSiC被覆層および微粒子状SiO2 中間被覆層に
生じた微細なポアやクラックを完全にシールして基材の
C/C複合材を酸化雰囲気から保護するため、1200
℃を越える苛酷な高温酸化雰囲気において優れた耐酸化
性を発揮する。According to the composite coating layer formed by the above-mentioned prior art, the vitreous coating formed as the surface layer is exposed to a high temperature atmosphere to be softened, and the SiC coating layer as the inner layer in a molten state. In order to completely seal fine pores and cracks generated in the particulate SiO 2 intermediate coating layer and protect the C / C composite material of the base material from the oxidizing atmosphere, 1200
Exhibits excellent oxidation resistance in severe high-temperature oxidizing atmospheres exceeding ℃.
【0007】ところが、この複合被覆構造では1000
℃以下の比較的低温域において耐酸化性能に低下現象が
生じることがある。この現象を解明するために検討した
ところ、中間層に接するガラス質のベース層がSiO2
ガラス被膜で形成されていると低温域での溶融軟化が円
滑に進行せず、結果的に十分なシール効果が発揮されな
いことに起因することが判明した。引き続き研究を重ね
た結果、中間層とガラス質被覆層との間に比較的低融点
のB2 O3 単独のガラス被膜を介在させると前記の不都
合な現象は改善され、1000℃以下の低温度域から1
200℃を越える高温度域に至る範囲で実用性のある耐
酸化性被覆層となることが解明された。However, in this composite coating structure, 1000
In a relatively low temperature range below ℃, the oxidation resistance may deteriorate. As a result of studying to clarify this phenomenon, the vitreous base layer in contact with the intermediate layer is SiO 2
It was found that when it was formed of a glass coating, melt softening in a low temperature region did not proceed smoothly, and as a result, a sufficient sealing effect was not exhibited. As a result of further research, the above-mentioned inconvenient phenomenon was improved by interposing a glass coating of B 2 O 3 alone having a relatively low melting point between the intermediate layer and the vitreous coating layer, and the low temperature of 1000 ° C. or less was improved. From area 1
It has been clarified that a practical oxidation resistant coating layer can be obtained in a high temperature range exceeding 200 ° C.
【0008】本発明は前記の解明知見に基づいて開発さ
れたもので、その目的は、500〜1200℃の高温酸
化雰囲気において安定かつ十分な酸化抵抗性を示す複合
被覆構造によるC/C複合材の耐酸化被覆層を提供する
ことにある。The present invention was developed on the basis of the above-mentioned findings, and its purpose is to provide a C / C composite material having a composite coating structure which exhibits stable and sufficient oxidation resistance in a high temperature oxidizing atmosphere at 500 to 1200 ° C. To provide an oxidation resistant coating layer.
【0009】[0009]
【課題を解決するための手段】上記の目的を達成するた
めの本発明によるC/C複合材の耐酸化性被覆層は、炭
素繊維強化複合材の表面に、傾斜機能組織を有するSi
C被膜による下地層、微粒子SiO2 被膜による中間
層、および耐熱ガラス質被膜による表面層を順次に積層
した複合被覆構造において、前記微粒子SiO2 被膜に
よる中間層と耐熱ガラス質被膜による表面層との間にガ
ラス質ベース層としてB2 O3 ガラス単独の被膜を介在
させてなることを構成上の特徴とする。The oxidation resistant coating layer of a C / C composite material according to the present invention for achieving the above object is a Si having a functionally graded structure on the surface of a carbon fiber reinforced composite material.
In a composite coating structure in which an underlayer made of a C coating, an intermediate layer made of a fine particle SiO 2 coating, and a surface layer made of a heat resistant glassy coating are sequentially laminated, the intermediate layer made of the fine particle SiO 2 coating and the surface layer made of a heat resistant glassy coating are formed. A constitutional feature is that a coating of B 2 O 3 glass alone is interposed as a glassy base layer therebetween.
【0010】本発明において、基材となるC/C複合材
は、炭素繊維の織布、フエルト、トウなどにマトリック
ス樹脂液を含浸または塗布して積層成形したのち焼成炭
化処理を施す常用の方法で製造されたものが使用され、
材料の製造履歴や材質組織等には限定はない。In the present invention, the C / C composite material as the base material is a conventional method in which carbon fiber woven cloth, felt, tow and the like are impregnated or applied with a matrix resin liquid, laminated and molded, and then subjected to firing carbonization treatment. The one manufactured in
There is no limitation on the manufacturing history of the material or the material structure.
【0011】C/C複合材の表面に直接被覆されるSi
C被膜の下地層は、表層部が多結晶質のSiC層でC/
C複合材の組織内部に向かってSiCの生成濃度が漸次
低下する傾斜機能組織を備える結合性の高い被覆層で、
好適な膜厚は100〜300μm である。中間層となる
微粒子状SiO2 被膜は、下地層のSiC被膜に発生す
る微細なポアやクラックを充填封止すると共に上面のガ
ラス質被覆層との密着性を高めるために機能する。中間
層の膜厚は5μm 前後で十分である。Si directly coated on the surface of C / C composite
The base layer of the C coating is a polycrystalline SiC layer whose surface layer is C /
A coating layer having a high bonding property, which has a functionally-graded structure in which the generation concentration of SiC gradually decreases toward the inside of the structure of the C composite material,
The preferred film thickness is 100 to 300 μm. The fine particulate SiO 2 film serving as the intermediate layer functions to fill and seal the fine pores and cracks generated in the SiC film of the underlayer and to enhance the adhesion with the glassy coating layer on the upper surface. A thickness of about 5 μm is sufficient for the intermediate layer.
【0012】表面層の耐熱ガラス質被膜は、例えばSi
O2 系、SiO2 −B2 O3 系、Al2 O3 −SiO2
系、SiO2 −AlO3 −B2 O3 系などの材質で構成
されるが、本発明の目的にはSiO2 −B2 O3 系ガラ
ス質被膜が最も好適である。なお、SiO2 −B2 O3
系とは、これら成分の固溶体ばかりでなくSiO2 被膜
とB2 O3 被膜が連続的に積層して複合被膜をも意味す
る。該耐熱ガラス質被膜は1000℃を越える温度域で
溶融軟化し、全表面を均一にシールして外気との接触を
遮断するためのバリア層として機能する。The heat-resistant vitreous coating of the surface layer is, for example, Si.
O 2 based, SiO 2 -B 2 O 3 system, Al 2 O 3 -SiO 2
System, SiO 2 —AlO 3 —B 2 O 3 system, etc., but SiO 2 —B 2 O 3 system glassy coating is most suitable for the purpose of the present invention. In addition, SiO 2 -B 2 O 3
The system means not only a solid solution of these components but also a composite coating in which a SiO 2 coating and a B 2 O 3 coating are continuously laminated. The heat-resistant glassy coating melts and softens in a temperature range exceeding 1000 ° C., uniformly seals the entire surface, and functions as a barrier layer for blocking contact with the outside air.
【0013】本発明の主要な構成要件は、上記の複合被
覆構造において微粒子状SiO2 被膜による中間層と耐
熱ガラス質被膜による表面層との間にガラス質ベース層
としてB2 O3 ガラス単独の被膜を介在させたところに
ある。このB2 O3 ガラス単独被膜からなるガラス質ベ
ース層は、高温酸化雰囲気に曝された際に耐熱ガラス質
被膜の表面層に優先して1000℃以下の温度域で円滑
に溶融軟化し、シール層となって効果的な耐酸化性を発
揮する。The main constituent feature of the present invention is that, in the above composite coating structure, B 2 O 3 glass alone is used as a vitreous base layer between the intermediate layer made of the particulate SiO 2 coating and the surface layer made of the heat-resistant vitreous coating. It is where the coating is interposed. The vitreous base layer consisting of this B 2 O 3 glass single coating preferentially melts and softens in a temperature range of 1000 ° C. or lower in preference to the surface layer of the heat resistant glassy coating when exposed to a high temperature oxidizing atmosphere, and seals. As a layer, it exhibits effective oxidation resistance.
【0014】上記した本発明によるC/C複合材の耐酸
化性被覆層は、C/C複合材の表面にSiOガスを接触
させてコンバージョン法によりSiC被膜を反応形成す
る下地層被覆工程と、アルコキシド法によりSi (OC
2 H5) 4を塩基性水溶液で加水分解して得られるSiO
2 の微粒子サスペンジョンを減圧含浸する中間層被覆工
程と、B(OC4 H9)3 溶液を含浸または付着させたの
ち加熱処理を施してB2 O3 ガラス質層に転化させるガ
ラス質ベース層被覆工程と、アルコキシド法によりSi
(OC2 H5)4 を酸性水溶液またはAlCl3 水溶液を
含む酸性水溶液で加水分解して得られるガラス前駆体溶
液を含浸または付着したのち乾燥してAl2 O3 −Si
O2 系ガラス質被覆層を形成するか、さらにB(OC4
H9)3 溶液を用いて前記同様に処理してSiO2 −B2
O3 系あるいはSiO2 −Al2O 3−B2 O3 系のガ
ラス質被覆層を順次に形成するプロセスにより製造する
ことができる。このプロセスを詳細に説明すると、次の
ようになる。The above-mentioned oxidation resistant coating layer of the C / C composite material according to the present invention comprises an underlayer coating step of reacting a SiO gas on the surface of the C / C composite material to form an SiC coating film by a conversion method. Si (OC) by alkoxide method
SiO obtained by hydrolyzing 2 H 5 ) 4 with a basic aqueous solution.
Intermediate layer coating step of impregnating the fine particle suspension of 2 under reduced pressure, and glassy base layer coating in which a B (OC 4 H 9 ) 3 solution is impregnated or adhered and then heat-treated to convert it into a B 2 O 3 glassy layer Process and Si by alkoxide method
Al 2 O 3 -Si is impregnated or adhered with a glass precursor solution obtained by hydrolyzing (OC 2 H 5 ) 4 with an acidic aqueous solution or an acidic aqueous solution containing an AlCl 3 aqueous solution and then dried.
An O 2 -based glassy coating layer is formed, or B (OC 4
H 9 ) 3 solution was used and treated in the same manner as described above to obtain SiO 2 —B 2
It can be manufactured by a process of sequentially forming a glassy coating layer of O 3 system or SiO 2 —Al 2 O 3 —B 2 O 3 system. A detailed description of this process is as follows.
【0015】C/C複合材を構成する炭素繊維には、ポ
リアクリロニトリル系、レーヨン系、ピッチ系など各種
原料から製造された平織、綾織などの織布、フェルトあ
るいはトウが使用され、マトリックス樹脂としてはフェ
ノール系、フラン系その他炭化性の良好な液状熱硬化性
樹脂が用いられる。炭素繊維は、浸漬、含浸、塗布など
の手段を用いマトリックス樹脂液で十分に濡らしたのち
半硬化してプリプレグを形成し、ついで積層加圧成形す
る。成形体は加熱して樹脂成分を完全に硬化し、引き続
き焼成炭化処理または更に黒鉛化してC/C複合基材を
得る。このC/C複合基材には、必要に応じてマトリッ
クス樹脂を含浸、硬化、炭化する処理を反復して組織の
緻密化が図られる。As the carbon fiber constituting the C / C composite material, plain weave, twill weave or other woven fabric, felt or tow produced from various raw materials such as polyacrylonitrile type, rayon type and pitch type is used, and as a matrix resin. The liquid thermosetting resin having good carbonization property such as phenol type, furan type or the like is used. The carbon fiber is sufficiently wetted with the matrix resin liquid by means of dipping, impregnation, coating, etc., and then semi-cured to form a prepreg, and then laminated and pressure-molded. The molded body is heated to completely cure the resin component, and subsequently subjected to firing carbonization treatment or further graphitization to obtain a C / C composite substrate. The C / C composite substrate is subjected to a process of impregnating with a matrix resin, curing, and carbonizing, if necessary, to densify the structure.
【0016】下地層被覆工程は、SiO2 粉末をSiま
たはC粉末と混合して密閉加熱系に収納し、系内にC/
C複合材をセットもしくは埋設して加熱反応させる方法
でおこなわれる。この際の条件は、SiO2 :Siまた
はCのモル比を2:1とし、加熱温度を1850〜20
00℃の範囲に設定し、系内を還元または中性雰囲気と
することが好ましい。加熱時、SiO2 はSiまたはC
成分により加熱還元されてSiOガスを生成し、このS
iOガスがC/C複合材の炭素組織と反応して表層部を
傾斜機能組織のSiC被膜層に転化させる。In the base layer coating step, SiO 2 powder is mixed with Si or C powder and stored in a closed heating system, and C /
It is carried out by a method in which the C composite material is set or embedded and a heating reaction is performed. The conditions at this time are that the molar ratio of SiO 2 : Si or C is 2: 1 and the heating temperature is 1850 to 20.
It is preferable to set the temperature in the range of 00 ° C. and reduce or neutralize the inside of the system. When heated, SiO 2 is Si or C
The components are heated and reduced to generate SiO gas.
The iO gas reacts with the carbon structure of the C / C composite material to convert the surface layer portion into a SiC coating layer having a functionally gradient structure.
【0017】中間層被覆工程は、アルコキシド法による
SiO2 微粒子サスペンジョンに下地層を形成したC/
C複合材を投入し、減圧含浸したのち乾燥させる操作で
おこなわれる。更に、必要によりSiO2 微粒子サスペ
ンジョンを塗布、乾燥する処理を付加することもでき
る。この際、使用するSiO2 の微粒子サスペンジョン
は、Si(OC2 H5)4 とエタノール、メタノールなど
のアルコール類をモル比1:10〜15になるように混
合して環流下で加熱撹拌し、ついで前記Si(OC2 H
5)4 に対するモル比が1:25〜30に相当する量の水
とともにNH4 OHを加えた塩基性状態で加熱撹拌して
加水分解するアルコキシド法によって作製される。この
際の塩基性領域は、pH11.0〜12.5の範囲に調
整することが好適である。このようにして作製されたサ
スペンジョンは、0.2〜1.2μm のSiO2 球状微
粒子が均一に分散した懸濁状態を呈しており、下地層の
微細なポアやクラックを十分に目詰めする。In the step of coating the intermediate layer, the C / C in which the underlayer is formed on the SiO 2 fine particle suspension by the alkoxide method.
It is carried out by adding C composite material, impregnating under reduced pressure, and then drying. Further, if necessary, a treatment of applying and drying the SiO 2 fine particle suspension may be added. At this time, the fine particle suspension of SiO 2 used is prepared by mixing Si (OC 2 H 5 ) 4 and alcohols such as ethanol and methanol in a molar ratio of 1:10 to 15 and heating and stirring under reflux. Then, the above Si (OC 2 H
5 ) It is prepared by an alkoxide method in which NH 4 OH is added together with water in an amount corresponding to a molar ratio of 5 ) 4 to 1:25 to 30 to heat and stir in a basic state to cause hydrolysis. The basic region at this time is preferably adjusted to a pH range of 11.0 to 12.5. The suspension thus produced exhibits a suspension state in which 0.2 to 1.2 μm SiO 2 spherical fine particles are uniformly dispersed, and sufficiently fills the fine pores and cracks of the underlayer.
【0018】B2 O3 ガラス単独被膜からなるガラス質
ベース層は、中間層を形成したC/C複合材をB(OC
4 H9)3 溶液に投入して減圧含浸したのち一昼夜風乾し
て空気中の水分により加水分解し、乾燥後、500℃以
上の温度で加熱処理を施す方法で形成される。加熱処理
温度が500℃未満であると安定したB2 O3 ガラス質
被覆層を形成することが困難となる。好ましい加熱温度
範囲は、500〜800℃である。The vitreous base layer consisting of a single coating of B 2 O 3 glass has a C / C composite material with an intermediate layer formed on it as B (OC
It is formed by a method in which it is placed in a 4 H 9 ) 3 solution, impregnated under reduced pressure, air-dried for a whole day and night, hydrolyzed by moisture in the air, dried and then heat-treated at a temperature of 500 ° C. or higher. When the heat treatment temperature is lower than 500 ° C., it becomes difficult to form a stable B 2 O 3 glassy coating layer. A preferable heating temperature range is 500 to 800 ° C.
【0019】表面層としてSiO2 −B2 O3 系の耐熱
ガラス質被膜を形成するには、まずSi(OC2 H5)4
とアルコールをモル比が1:1.5〜7.0になるよう
に混合して室温下で還流撹拌をおこない、ついで前記S
i (OC2 H 5)4に対するモル比が1:2〜5に相当す
る量の水とともにHClを加えたHCl水溶液を加えて
酸性溶液(pH1〜3)としたのち、撹拌しながら加水
分解するアルコキシド法によってSiO2 ガラス前駆体
溶液を作製する。このSiO2 ガラス前駆体溶液にガラ
ス質ベース層を形成したC/C複合材を浸漬して減圧含
浸をおこなうか、C/C複合材の表面に該SiO2 ガラ
ス前駆体溶液をスプレー噴霧により均一に塗布し、つい
で風乾後に100℃前後の温度域で乾燥する。引き続き
B(OC4 H9)3 溶液に浸漬して減圧含浸するかスプレ
ー噴霧により塗布し、一昼夜風乾して空気中の水分によ
り加水分解したのち、不活性雰囲気中で800℃前後の
温度で加熱処理する方法が採られる。SiO2 −Al2
O3 −B2 O3 系の耐熱ガラス質被膜を形成するには、
前記したSiO2 ガラス前駆体溶液を作製する過程でA
lCl3 を含有する酸性水溶液で加水分解すればよく、
またAl2 O3 −SiO2 系の耐熱ガラス質被膜はこの
プロセスにおいてB(OC4 H9)3 溶液の処理を省略す
ればよい。In order to form a SiO 2 —B 2 O 3 heat-resistant vitreous coating as a surface layer, first, Si (OC 2 H 5 ) 4 is formed.
And alcohol are mixed at a molar ratio of 1: 1.5 to 7.0, and the mixture is stirred under reflux at room temperature.
After adding an aqueous HCl solution containing HCl together with water in an amount corresponding to 1: 2 to 5 in a molar ratio to i (OC 2 H 5 ) 4 to make an acidic solution (pH 1 to 3), hydrolyze while stirring. A SiO 2 glass precursor solution is prepared by the alkoxide method. A C / C composite material having a glassy base layer is immersed in this SiO 2 glass precursor solution for impregnation under reduced pressure, or the surface of the C / C composite material is uniformly sprayed with the SiO 2 glass precursor solution. And then dried in the temperature range around 100 ° C. Then, soak in B (OC 4 H 9 ) 3 solution and impregnate under reduced pressure or apply by spray spraying, air dry for one day and hydrolyze with moisture in the air, and then heat at a temperature of around 800 ° C in an inert atmosphere. The method of processing is adopted. SiO 2 -Al 2
To form an O 3 -B 2 O 3 -based heat-resistant glassy coating,
In the process of preparing the SiO 2 glass precursor solution described above, A
It may be hydrolyzed with an acidic aqueous solution containing lCl 3 ,
Further, for the Al 2 O 3 —SiO 2 -based heat-resistant glassy coating, the treatment of the B (OC 4 H 9 ) 3 solution may be omitted in this process.
【0020】[0020]
【作用】本発明によるC/C複合材の耐酸化被覆層は、
C/C複合材の表面に下地層として傾斜機能組織からな
る緻密で密着性の高いSiC被膜、中間層として該下地
層の微小なポアやクラック等を充填封止すると共にガラ
ス質被膜層との密着性を高める微粒子SiO2 被膜、ガ
ラス質ベース層としてB2 O3 ガラスからなる単独被
膜、そして表面層として耐熱ガラス質被膜が順次に積層
された複合被膜層により構成されている。この被覆層構
造を備えるC/C複合材を高温酸化雰囲気に曝すと、1
000℃以下の温度域において先ずガラス質ベース層の
B2 O3 ガラスが溶融軟化して下地層および中間層を完
全にシールし、外気との接触を遮断するバリアとして機
能する。雰囲気温度が1000℃以上になると、表面層
の耐熱ガラス質被膜が溶融軟化して前記同様なシール効
果を発揮する。The oxidation resistant coating layer of the C / C composite material according to the present invention comprises:
On the surface of the C / C composite material, a dense and highly adherent SiC film having a functionally graded structure is formed as an underlayer, and as an intermediate layer, minute pores, cracks, etc. of the underlayer are filled and sealed, and a glassy film layer is formed. It is composed of a fine particle SiO 2 coating for enhancing adhesion, a single coating made of B 2 O 3 glass as a glassy base layer, and a composite coating layer in which a heat-resistant glassy coating is sequentially laminated as a surface layer. When a C / C composite material having this coating layer structure is exposed to a high temperature oxidizing atmosphere, 1
In the temperature range of 000 ° C. or lower, the B 2 O 3 glass of the vitreous base layer first melts and softens to completely seal the underlayer and the intermediate layer, and functions as a barrier for blocking contact with the outside air. When the ambient temperature is 1000 ° C. or higher, the heat-resistant glassy coating of the surface layer is melted and softened, and the same sealing effect as described above is exhibited.
【0021】このようなガラスベース層ならびに耐熱ガ
ラス質被膜による段階的な酸素拡散を遮断するバリア的
作用を介して、500〜1200℃に至る広い温度範囲
において長期間安定した耐酸化性が発揮される。Owing to the barrier function of blocking the stepwise oxygen diffusion by the glass base layer and the heat-resistant glassy coating, stable oxidation resistance is exhibited for a long period in a wide temperature range of 500 to 1200 ° C. It
【0022】[0022]
【実施例】以下、本発明の実施例を比較例と対比して説
明する。EXAMPLES Examples of the present invention will be described below in comparison with comparative examples.
【0023】実施例1 (1) C/C複合基材の作製 ポリアクリロニトリル系高弾性タイプの平織炭素繊維布
にフェノール樹脂初期縮合物〔大日本インキ工業(株)
製〕をマトリックス樹脂として十分に塗布し、48時間
風乾してプレプレグシートを作製した。このプリプレグ
シートを積層してモールドに入れ、加熱温度110℃、
適用圧力20kg/cm2の条件で複合成形した。ついで、成
形体を250℃の温度に加熱して完全に硬化したのち、
N2 雰囲気に保持された焼成炉に移し、5℃/hr の昇温
速度で2000℃まで上昇し5時間保持して焼成炭化し
た。このようにして、炭素繊維の体積含有率(Vf)65
%、見掛比重1.65g/ccのC/C複合材を作製した。Example 1 (1) Preparation of C / C composite base material Polyacrylonitrile-based high elasticity type plain woven carbon fiber cloth with phenol resin initial condensate [Dainippon Ink and Machinery Co., Ltd.]
Was prepared as a matrix resin and air-dried for 48 hours to prepare a prepreg sheet. The prepreg sheets are laminated and placed in a mold, and the heating temperature is 110 ° C.,
Composite molding was performed under the condition of an applied pressure of 20 kg / cm 2 . Then, after heating the molded body to a temperature of 250 ° C. to completely cure it,
It was transferred to a firing furnace maintained in an N 2 atmosphere, heated to 2000 ° C. at a temperature rising rate of 5 ° C./hr, and held for 5 hours for carbonization by firing. In this way, the carbon fiber volume content (Vf) of 65
%, A C / C composite material having an apparent specific gravity of 1.65 g / cc was produced.
【0024】(2) 下地層被覆工程 SiO2 粉末とSi粉末をモル比2:1の配合比率にな
るように混合し、混合粉末を黒鉛ルツボに入れ上部にC
/C複合材をセットして黒鉛蓋を被せた。この黒鉛ルツ
ボを電気炉に移し、内外をArガス雰囲気に保持しなが
ら50℃/hrの速度で1900℃まで昇温し、2時間保
持してC/C複合材の表層部に傾斜機能組織を備える多
結晶質のSiC被膜を形成した。形成されたSiC被膜
の厚さは約200μm であったが、その表面には幅10
μm 程度の微細なクラックが所々に発生していた。(2) Underlayer coating step SiO 2 powder and Si powder are mixed in a molar ratio of 2: 1 and the mixed powder is put in a graphite crucible and C is added on top.
The / C composite was set and covered with a graphite lid. This graphite crucible was transferred to an electric furnace, and while maintaining the inside and outside in an Ar gas atmosphere, the temperature was raised to 1900 ° C. at a rate of 50 ° C./hr and kept for 2 hours to form a functionally graded structure on the surface layer of the C / C composite material. A polycrystalline SiC coating was provided. The formed SiC film had a thickness of about 200 μm, but the surface had a width of 10 μm.
Minute cracks of about μm were generated in some places.
【0025】(3) 中間層被覆工程 Si(OC2 H5)4 とエタノールをモル比1:12にな
る量比で配合し、70℃の温度で環流撹拌をおこなった
のち、前記Si(OC2 H5)1モルに対し25モル量の
水と0.2モル量のNH4 OHの混合液を撹拌しながら
滴下した。該混合水溶液のpHは12.0であった。引
き続き撹拌を継続し、約0.2μm の球状SiO2 微粒
子が均一に懸濁するサスペンジョンを作製した。このサ
スペンジョンに下地層を形成したC/C複合材を浸漬
し、15分間減圧しながら含浸した。ついで、風乾後、
さらに表面に前記のサスペンジョンを塗布して同様に風
乾および乾燥処理を3回繰り返し、100℃の温度で乾
燥して微粒子状SiO2 被膜の中間層を形成した。中間
層の形成膜厚さは、5μm であった。(3) Intermediate layer coating step Si (OC 2 H 5 ) 4 and ethanol were mixed in a molar ratio of 1:12, and the mixture was refluxed and stirred at a temperature of 70 ° C. A mixed solution of 25 mol of water and 0.2 mol of NH 4 OH with respect to 1 mol of 2 H 5 ) was added dropwise with stirring. The pH of the mixed aqueous solution was 12.0. Then, stirring was continued to prepare a suspension in which spherical SiO 2 fine particles of about 0.2 μm were uniformly suspended. A C / C composite material having an underlayer formed thereon was dipped in this suspension and impregnated under reduced pressure for 15 minutes. Then, after air drying,
Further, the suspension was applied to the surface, and the air drying and drying treatments were repeated three times in the same manner, and the coating was dried at a temperature of 100 ° C. to form an intermediate layer of a fine particle SiO 2 coating. The thickness of the formed intermediate layer was 5 μm.
【0026】(4) ガラス質ベース層被覆工程 中間層を形成したC/C複合材を、B(OC4 H9)3 溶
液に浸漬し、15分間減圧しながら含浸処理を施した。
含浸後、一昼夜風乾して空気中の水分により加水分解し
たのち100℃で乾燥し、更に加熱炉に移して500℃
の温度で15分間加熱処理してB2 O3 ガラス単独の被
膜を形成した。この被覆膜厚は2μm であった。(4) Vitreous Base Layer Coating Step The C / C composite material on which the intermediate layer was formed was immersed in a B (OC 4 H 9 ) 3 solution and impregnated for 15 minutes under reduced pressure.
After impregnation, it is air dried for a whole day and night, hydrolyzed by moisture in the air, dried at 100 ° C, and transferred to a heating furnace to 500 ° C.
Heat treatment was carried out for 15 minutes at a temperature of 1 to form a film of B 2 O 3 glass alone. The coating film thickness was 2 μm.
【0027】(5) 表面層被覆工程 Si(OC2 H5)4 とエタノールをモル比1:4.5に
なる量比で配合し、室温で還流撹拌をおこなった溶液
に、前記Si(OC2 H5)4 1モルに対し2.5モル量
の水と0.03モル量のHClの混合水溶液を滴下し
た。滴下後の溶液pHは、3.0であった。引き続き1
時間撹拌を継続してSiO2 ガラス前駆体溶液を得た。
このガラス前駆体溶液にガラス質ベース層を形成したC
/C複合材を浸漬して15分間減圧含浸し、風乾後、1
00℃の温度で乾燥した。引き続きB(OC4 H9)3 溶
液に浸漬して15分間減圧含浸を施し、1昼夜風乾して
空気中の水分により加水分解をおこない、100℃の温
度で乾燥した。乾燥処理後のC/C複合材を電気炉に移
し、800℃で60分間加熱して表面にSiO2 −B2
O3 系のガラス質被膜を形成した。形成した耐熱ガラス
質被膜の厚さは3μm であった。(5) Surface layer coating step Si (OC 2 H 5 ) 4 and ethanol were mixed in a molar ratio of 1: 4.5, and the mixture was refluxed and stirred at room temperature. A mixed aqueous solution of 2.5 mol of water and 0.03 mol of HCl was added dropwise to 1 mol of 2 H 5 ) 4 . The solution pH after the dropping was 3.0. Continue 1
The stirring was continued for a while to obtain a SiO 2 glass precursor solution.
C forming a glassy base layer on this glass precursor solution
/ C composite material is dipped, impregnated under reduced pressure for 15 minutes, air-dried, then 1
It was dried at a temperature of 00 ° C. Subsequently, it was immersed in a B (OC 4 H 9 ) 3 solution, impregnated under reduced pressure for 15 minutes, air-dried for one day and night, hydrolyzed by moisture in the air, and dried at a temperature of 100 ° C. The C / C composite material after the drying treatment was transferred to an electric furnace and heated at 800 ° C. for 60 minutes to form SiO 2 —B 2 on the surface.
An O 3 based glassy film was formed. The heat-resistant vitreous coating thus formed had a thickness of 3 μm.
【0028】(6) 耐酸化性の評価 上記の工程により本発明の耐酸化性被覆層を形成したC
/C複合材を、大気雰囲気に保持された電気炉に入れ、
500℃の温度で30分間加熱したのち炉出して常温ま
で自然冷却した。この操作を500〜1200℃までの
100℃毎におこない、最終的なC/C複合基材の酸化
による重量減少率を測定した。その結果を表1に示し
た。(6) Evaluation of Oxidation Resistance The oxidation resistant coating layer of the present invention was formed by the above-mentioned process.
/ C composite material was placed in an electric furnace maintained in the atmosphere,
After heating at a temperature of 500 ° C. for 30 minutes, it was taken out of the furnace and naturally cooled to room temperature. This operation was performed every 100 ° C. from 500 to 1200 ° C., and the weight reduction rate due to the oxidation of the final C / C composite substrate was measured. The results are shown in Table 1.
【0029】比較例1 実施例1と同一の条件で傾斜機能組織を有するSiC被
膜による下地層のみを形成したC/C複合材につき、実
施例1と同様に耐酸化性試験をおこなった。その結果を
表1に併載した。Comparative Example 1 An oxidation resistance test was conducted in the same manner as in Example 1 on the C / C composite material in which only the underlayer of the SiC coating having a functionally graded structure was formed under the same conditions as in Example 1. The results are also shown in Table 1.
【0030】比較例2 実施例1の工程のうちB2 O3 ガラス質ベース層被覆工
程を省略し、表面層被覆工程のSiO2 ガラス前駆体処
理後に500℃の温度で加熱処理し、B(OC4 H9)3
処理後の加熱温度を500℃に変えてC/C複合材の表
面に複合被覆層を形成した。このC/C複合材につき、
実施例1と同様に耐酸化性試験をおこない、その結果を
表1に併載した。Comparative Example 2 Of the steps of Example 1, the B 2 O 3 glassy base layer coating step was omitted, and after the SiO 2 glass precursor treatment of the surface layer coating step, heat treatment was performed at a temperature of 500 ° C. to obtain B ( OC 4 H 9 ) 3
The heating temperature after the treatment was changed to 500 ° C. to form a composite coating layer on the surface of the C / C composite material. For this C / C composite material,
An oxidation resistance test was conducted in the same manner as in Example 1, and the results are also shown in Table 1.
【0031】 [0031]
【0032】表1の結果から、実施例1の複合被覆層を
備えたC/C複合材は500〜1200℃の全温度域に
おいて優れた耐酸化性を示した。これに対し、ガラス質
ベース層が実質的にSiO2 被覆層で構成されている比
較例2の複合被覆層では耐酸化性能がかなり減退した。From the results shown in Table 1, the C / C composite material provided with the composite coating layer of Example 1 exhibited excellent oxidation resistance in the entire temperature range of 500 to 1200 ° C. On the other hand, in the composite coating layer of Comparative Example 2 in which the glassy base layer was substantially composed of the SiO 2 coating layer, the oxidation resistance performance was considerably deteriorated.
【0033】[0033]
【発明の効果】以上のとおり、本発明によればC/C複
合材の表面に傾斜機能を有する多結晶質SiC被膜の下
地層、微粒子状SiO2 被膜の中間層および耐熱ガラス
質被膜の表面層を積層した複合被覆構造において、中間
層と表面層の間にB2 O3 単独被膜のガラス質ベース層
を介設することにより、500〜1200℃の広温度範
囲において高度の耐酸化性の付与が可能となる。したが
って、この被覆層を備えるC/C複合材は、高温酸化雰
囲気の過酷な条件に晒される構造部材用途に適用して安
定性能の確保、耐久寿命の延長化などの効果がもたらさ
れる。As described above, according to the present invention, the surface of the C / C composite material has an underlayer of a polycrystalline SiC film having a gradient function, an intermediate layer of a particulate SiO 2 film and a surface of a heat-resistant glassy film. In a composite coating structure in which layers are laminated, by interposing a glassy base layer of B 2 O 3 alone coating between the intermediate layer and the surface layer, high oxidation resistance in a wide temperature range of 500 to 1200 ° C. Can be granted. Therefore, the C / C composite material provided with this coating layer is applied to a structural member application exposed to the severe conditions of a high temperature oxidizing atmosphere, and effects such as securing stable performance and extending a durable life are brought about.
Claims (2)
機能組織を有するSiC被膜による下地層、微粒子状S
iO2 被膜による中間層、および耐熱ガラス質被膜によ
る表面層を順次に積層した複合被覆構造において、前記
微粒子状SiO2 被膜による中間層と耐熱ガラス質被膜
による表面層との間にガラス質ベース層としてB2 O3
ガラス単独の被膜を介在させてなることを特徴とするC
/C複合材の耐酸化被覆層。1. An underlayer of a SiC coating having a functionally graded structure on the surface of a carbon fiber reinforced carbon composite material, and a particulate S.
intermediate layer by iO 2 film, and the composite coating structure obtained by sequentially stacking a surface layer by heat-vitreous coatings, vitreous base-layer between the surface layer by the intermediate layer and the heat-resistant glassy coating according to the particulate SiO 2 film As B 2 O 3
C characterized by interposing a film of glass alone
/ C composite material oxidation resistant coating layer.
3 系のガラス質被膜である請求項1記載のC/C複合材
の耐酸化被覆層。2. The heat-resistant glassy coating is SiO 2 —B 2 O.
The oxidation resistant coating layer of a C / C composite material according to claim 1, which is a 3 type glassy coating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16609493A JP3749268B2 (en) | 1993-06-11 | 1993-06-11 | C / C composite oxidation resistant coating layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16609493A JP3749268B2 (en) | 1993-06-11 | 1993-06-11 | C / C composite oxidation resistant coating layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06345572A true JPH06345572A (en) | 1994-12-20 |
JP3749268B2 JP3749268B2 (en) | 2006-02-22 |
Family
ID=15824891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16609493A Expired - Fee Related JP3749268B2 (en) | 1993-06-11 | 1993-06-11 | C / C composite oxidation resistant coating layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3749268B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100455548C (en) * | 2007-06-12 | 2009-01-28 | 陕西科技大学 | Carbon/carbon composite material dissolvent thermal modification method |
CN102924107A (en) * | 2012-11-14 | 2013-02-13 | 陕西科技大学 | Method for preparing Y2SiO5 whisker toughened Y4Si3O12 composite coating |
CN114315390A (en) * | 2022-01-12 | 2022-04-12 | 西北工业大学 | Carbon/carbon composite material surface wide-temperature-range long-life antioxidant coating and low-temperature preparation method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102942387B (en) * | 2012-11-14 | 2014-01-29 | 陕西科技大学 | Preparation method of Y2Si2O7 crystal whisker toughening Y2Si2O7 composite coatings |
CN102924108B (en) * | 2012-11-14 | 2014-03-12 | 陕西科技大学 | Method for preparing Y2Si2O7 whisker-toughened mullite composite coating |
CN102936144B (en) * | 2012-11-14 | 2014-03-12 | 陕西科技大学 | Method for preparing Y4Si3O12 crystal whisker toughening Y2Si2O7 composite coating |
CN102942386B (en) * | 2012-11-14 | 2014-01-29 | 陕西科技大学 | Preparation method of Y2SiO5 crystal whisker toughening Y2Si2O7 composite coatings |
CN102964147B (en) * | 2012-11-14 | 2014-04-16 | 陕西科技大学 | Method for preparing Y2SiO5 whisker toughened Y2SiO5 composite coatings |
CN102936146B (en) * | 2012-11-14 | 2014-03-12 | 陕西科技大学 | Preparation method of Y2Si2O7 whisker toughened Y2SiO5 composite coating |
-
1993
- 1993-06-11 JP JP16609493A patent/JP3749268B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100455548C (en) * | 2007-06-12 | 2009-01-28 | 陕西科技大学 | Carbon/carbon composite material dissolvent thermal modification method |
CN102924107A (en) * | 2012-11-14 | 2013-02-13 | 陕西科技大学 | Method for preparing Y2SiO5 whisker toughened Y4Si3O12 composite coating |
CN114315390A (en) * | 2022-01-12 | 2022-04-12 | 西北工业大学 | Carbon/carbon composite material surface wide-temperature-range long-life antioxidant coating and low-temperature preparation method |
CN114315390B (en) * | 2022-01-12 | 2023-06-02 | 西北工业大学 | Carbon/carbon composite material surface wide-temperature-range long-life antioxidation coating and low-temperature preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP3749268B2 (en) | 2006-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3749268B2 (en) | C / C composite oxidation resistant coating layer | |
JP4539014B2 (en) | Oxidation resistant C / C composite and method for producing the same | |
JP3193762B2 (en) | Oxidation resistant treatment of carbon fiber reinforced carbon material | |
JP3844273B2 (en) | Oxidation resistant C / C composite and method for producing the same | |
JP3431958B2 (en) | Oxidation resistant treatment of carbon fiber reinforced carbon material | |
JP3422515B2 (en) | Method for forming oxidation-resistant coating on carbonaceous substrate | |
JPH0826859A (en) | Oxidation-resistant c/c composite material and method for producing the same | |
JP3853035B2 (en) | Oxidation resistant C / C composite and method for producing the same | |
JP2579560B2 (en) | Oxidation-resistant treatment of carbon fiber reinforced carbon materials | |
JPH0585513B2 (en) | ||
JPH04187583A (en) | Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof | |
JP3548605B2 (en) | Oxidation-resistant treatment of carbon fiber reinforced carbon composites | |
JP3033042B2 (en) | Oxidation resistant C / C composite and method for producing the same | |
JP2579563B2 (en) | Oxidation-resistant treatment of carbon fiber reinforced carbon composites. | |
JPH0794354B2 (en) | Oxidation resistant C / C material and manufacturing method thereof | |
JPH0570228A (en) | Production of oxidation-resistant c/c composite material | |
JP3198157B2 (en) | Method for producing oxidation resistant C / C composite | |
JPH0952777A (en) | Production of oxidation resistant c/c composite material | |
JPH06144967A (en) | Production of oxidation resistant c/c composite material | |
JP3818606B2 (en) | Carbon fiber reinforced carbon composite | |
JPH06144968A (en) | Production of oxidation resistant c/c composite material | |
JPH08169786A (en) | Production of oxidation resistant carbon fiber reinforced carbon composite material | |
JPH09241087A (en) | Oxidation resistant c/c composite material and its production | |
JP3461415B2 (en) | Oxidation resistant treatment of carbon fiber reinforced carbon material | |
JPH0794353B2 (en) | Oxidation resistance treatment method for carbon fiber reinforced carbon material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051201 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121209 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |