Nothing Special   »   [go: up one dir, main page]

JPH06345569A - Pulse cvi device - Google Patents

Pulse cvi device

Info

Publication number
JPH06345569A
JPH06345569A JP16023393A JP16023393A JPH06345569A JP H06345569 A JPH06345569 A JP H06345569A JP 16023393 A JP16023393 A JP 16023393A JP 16023393 A JP16023393 A JP 16023393A JP H06345569 A JPH06345569 A JP H06345569A
Authority
JP
Japan
Prior art keywords
gas
reaction chamber
reaction
silicon carbide
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16023393A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shiotani
善弘 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP16023393A priority Critical patent/JPH06345569A/en
Publication of JPH06345569A publication Critical patent/JPH06345569A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4529Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase
    • C04B41/4531Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase by C.V.D.
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide an industrial compact pulse CVI device capable of efficiently filling the same or different materials in various porous substrates or coating the substrate. CONSTITUTION:A reaction furnace consists of a reaction chamber 12 provided with a gas inlet part 11 at its end and having an internal storage space 16 for setting a substrate 17 to be treated and a means 13 for heating the periphery of the chamber 12, and the furnace is connected to a raw gas introducing line and an exhaust line to constitute a pulse CVI device. The chamber 12 is formed with a graphite material 19 coated with a gas-impermeable silicon carbide 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素質系やセラミック
ス系などの多孔質基材に同質もしくは異種物質を充填・
被覆するためのパルスCVI装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a carbonaceous or ceramics-based porous substrate filled with the same or different substances.
A pulsed CVI device for coating.

【0002】[0002]

【従来の技術】従来、ある種の基材面に同質もしくは異
種の物質を被覆するための化学的手段として、還元反
応、置換反応、不均化反応等を利用したCVD(Chemic
al VaporDeposition) 法が有用されている。しかしなが
ら、CVD法を適用して形成される被覆層は基材との界
面が明確に分離している関係で、加熱状態で使用すると
熱衝撃や相互の熱膨張差によって層間剥離現象が起こり
易い欠点がある。
2. Description of the Related Art Conventionally, as a chemical means for coating a substrate surface of a certain kind with the same or different substance, a CVD (Chemic) method utilizing a reduction reaction, a substitution reaction, a disproportionation reaction, etc.
al Vapor Deposition) method is used. However, the coating layer formed by applying the CVD method has a clear separation at the interface with the base material, and when used in a heated state, a delamination phenomenon easily occurs due to thermal shock or mutual thermal expansion difference. There is.

【0003】このような欠点を解消するために、基材組
織の内部まで被覆物質を充填させて層間剥離現象を防止
し且つ材質の緻密化を図る改良手段として、減圧CVD
法およびパルスCVI法が開発されている。減圧CVD
法は、反応系内を数十〜数Torrに減圧して基材の組織空
孔内に介在する気体を排除したうえでCVD操作をおこ
なう方法である。この減圧CVDによれば、原料ガスの
線流速が増大して部分的なガス濃度差がなくなり、基材
上のガス境界層が薄くなって均一な被覆膜を形成するこ
とができるが、基材の組織内部まで被覆物質を析出充填
するという目的に対してはさほどの改善効果は認められ
ない。
In order to eliminate such drawbacks, a low pressure CVD is used as an improved means for preventing the delamination phenomenon and densifying the material by filling the base material structure with a coating material.
Methods and pulsed CVI methods have been developed. Low pressure CVD
The method is a method in which the pressure in the reaction system is reduced to several tens to several Torr to eliminate the gas present in the tissue pores of the substrate, and then the CVD operation is performed. According to this low pressure CVD, the linear flow velocity of the raw material gas is increased and the partial gas concentration difference is eliminated, and the gas boundary layer on the substrate is thinned to form a uniform coating film. For the purpose of depositing and filling the coating substance to the inside of the structure of the material, no significant improvement effect is observed.

【0004】これに対し、パルスCVI(Pulse Chemica
l Vapor Infiltration) 法は原料ガスを加熱基材にガス
状態で接触させる操作を短周期の減圧、昇圧下で間欠的
に反復するプロセスでおこなわれるため、被覆物質を基
材の組織内部まで円滑に充填させることが可能となる。
したがって、各種の多孔質基材を固相析出物で目詰め、
充填、緻密化する充填多孔質体の製造方法(特開昭62−
205278号公報) や炭素繊維強化炭素材に強固な耐酸化性
SiC被覆層を形成する方法(特開平4−42878 号公
報) 等に利用されている。
On the other hand, pulse CVI (Pulse Chemica)
The Vapor Infiltration) method is a process in which the raw material gas is brought into contact with the heated base material in a gas state in an intermittently repeated process under a short cycle of pressure reduction and pressure increase, so that the coating substance can be smoothly introduced into the tissue of the base material. It becomes possible to fill.
Therefore, various porous substrates are packed with solid phase deposits,
A method for producing a filled porous body that is filled and densified (Japanese Patent Laid-Open No. 62-
No. 205278) and a method for forming a strong oxidation resistant SiC coating layer on a carbon fiber reinforced carbon material (Japanese Patent Laid-Open No. 4-42878).

【0005】ところが、パルスCVI法を工業的に適用
する場合には、装置構造に解決すべき課題が残されてい
る。すなわち、パルスCVI装置は基本的に加熱手段を
設けた気密性の反応炉に原料気化器を含む原料ガス導入
系列と真空ポンプを備える排気ガス系列とを組み合わせ
た構造となっており、従来、反応炉の材質は石英もしく
はインコネルのような耐熱合金で構成されている。しか
し、石英製の反応炉は破損し易いうえ、大型炉の製作や
加工が困難となるため工業用炉を設計するには難しい問
題点が多い。他方、金属製の反応炉は耐蝕性に乏しく、
高温下のパルス操作によって材質に疲労や変形が生じる
ため耐久寿命の点に問題がある。
However, when the pulse CVI method is industrially applied, there remains a problem to be solved in the device structure. That is, the pulse CVI device basically has a structure in which a source gas introduction system including a source vaporizer and an exhaust gas system including a vacuum pump are combined in an airtight reaction furnace provided with a heating means, and a conventional reaction system is used. The furnace material is made of quartz or a heat resistant alloy such as Inconel. However, since a quartz reactor is easily damaged and it is difficult to manufacture and process a large-scale furnace, there are many problems in designing an industrial furnace. On the other hand, metal reactors have poor corrosion resistance,
There is a problem in terms of durability life because the material undergoes fatigue and deformation due to pulse operation under high temperature.

【0006】また、一般にパルスCVI法を適用する場
合には、原料ガス導入−析出反応−減圧排気のパルスを
5000〜10000回反復することが条件となるが、
反応炉が大型化し、反応系の内容積が大きくなるに従っ
て原料ガス量の増大、排気時間の長時間化、排気ポンプ
の容量増加、排気ガス量の増大といった処置が必要とな
り、同時にパルス間隔も延びて制御が困難となる。この
ため、反応炉形をコンパクト化し、反応系の内容積が基
材寸法より余り大きくならない炉形態に設計することが
好ましい。ところが、加工性の悪い石英や金属材料では
炉設計に対する自由度が著しく制約される。
In general, when the pulse CVI method is applied, it is necessary to repeat the pulse of the raw material gas introduction-precipitation reaction-vacuum exhaustion 5000 to 10000 times.
As the reactor becomes larger and the internal volume of the reaction system increases, it is necessary to take measures such as increasing the amount of raw material gas, lengthening the exhaust time, increasing the capacity of the exhaust pump, increasing the amount of exhaust gas, and at the same time increasing the pulse interval. Control becomes difficult. For this reason, it is preferable to make the reactor type compact and design the reactor form so that the internal volume of the reaction system does not become much larger than the substrate size. However, the degree of freedom in the furnace design is severely restricted in the case of quartz and metal materials, which have poor workability.

【0007】本発明者らはこのような問題点の解消を図
るため、端部にガス導入部を備え、内部に被処理基材を
セットするための収納スペースを形成した緻密質黒鉛製
の反応チャンバーと前記反応チャンバーの周辺を加熱す
るための発熱手段とからなる反応炉本体を、金属製の密
閉系容器に収納設置して反応炉を構成し、該反応炉を原
料ガス導入系列と排気ガス系列に接続してなる構造のパ
ルスCVI装置を既に提案した(特願平4−238978
号)。
In order to solve such problems, the inventors of the present invention have made a reaction made of dense graphite having a gas introducing portion at an end and a storage space for setting a substrate to be treated formed therein. A reaction furnace main body comprising a chamber and a heat generating means for heating the periphery of the reaction chamber is housed and installed in a metal closed system container to constitute a reaction furnace, and the reaction furnace is constituted by a source gas introduction series and exhaust gas. A pulse CVI device having a structure connected in series has already been proposed (Japanese Patent Application No. 4-238978).
issue).

【0008】[0008]

【発明が解決しようとする課題】上記の先願技術は、反
応炉を耐熱耐蝕性、耐熱衝撃性、加工性などに優れる緻
密質黒鉛材で構成したため被処理基材の収納スペースを
小さく形成でき、長期間に亘る安定した耐久寿命を確保
することができる。しかしながら、炭素質材料は本質的
に多孔質であるため、組織内部に熱硬化性樹脂を含浸し
たのち樹脂成分を炭化したり、黒鉛材の表面に炭素被膜
を被覆して表面組織を改質しても材質の気密化には限界
がある。このため、反応炉を構成する黒鉛材の肉厚を5
0mm以上に設計しないと効率的なパルスCVI操作を安
定して継続することができない難点がある。そのうえ、
黒鉛材自体が易酸化性である関係で反応炉本体を金属製
の密閉系容器に収納することが必須の要件となり、装置
の小型化にも限度があった。
According to the above-mentioned prior art, since the reaction furnace is composed of a dense graphite material having excellent heat resistance, corrosion resistance, heat shock resistance, workability, etc., the storage space for the substrate to be treated can be made small. It is possible to secure a stable durable life over a long period of time. However, since the carbonaceous material is essentially porous, the resin component is carbonized after impregnating the inside of the tissue with the thermosetting resin, or the surface of the graphite material is coated with a carbon coating to modify the surface texture. However, there is a limit to the airtightness of the material. For this reason, the wall thickness of the graphite material that constitutes the reactor is 5
Unless it is designed to be 0 mm or more, there is a drawback that the efficient pulse CVI operation cannot be stably continued. Besides,
Due to the fact that the graphite material itself is easily oxidized, it is an essential requirement to house the reactor body in a metal closed system container, and there is a limit to the miniaturization of the device.

【0009】本発明は前記の先行技術に更に改良を加え
たもので、その目的は、各種の多孔質基材に同種または
異種物質を効率よく充填・被覆することができるコンパ
クト構造による工業的なパルスCVI装置を提供するこ
とにある。
The present invention is a further improvement of the above-mentioned prior art, and its purpose is to provide an industrially-advanced compact structure capable of efficiently filling and coating various porous substrates with the same or different substances. It is to provide a pulse CVI device.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるパルスCVI装置は、端部にガス導入
部を備え、内部に被処理基材をセットするための収容ス
ペースを形成した反応チャンバーと該反応チャンバーの
周辺を加熱するための発熱手段とならなる反応炉を、原
料ガス導入系列および排気ガス系列に接続する装置構成
において、前記反応チャンバーをガス不透過性の炭化珪
素被覆を施した黒鉛材により形成してなることを構成上
の特徴とする。
A pulse CVI device according to the present invention for achieving the above object is provided with a gas introducing portion at an end thereof and has a storage space for setting a substrate to be treated therein. In a device configuration in which a reaction chamber and a reaction furnace serving as a heat generating means for heating the periphery of the reaction chamber are connected to a source gas introduction series and an exhaust gas series, the reaction chamber is coated with a gas-impermeable silicon carbide. The structural feature is that it is formed of a given graphite material.

【0011】図1は本発明に係るパルスCVI装置を例
示した全体構成図で、反応炉1に原料ガス導入系列と排
気ガス系列が接続されている。原料ガス導入系列は、例
えば還元ガス供給ライン2とキャリアガス供給ライン3
が原料気化器4に入り、原料混合ガスとしてリザーバー
タンク5から供給バルブ6を介して反応炉1に導入する
ルートからなる。排気ガス系列は、例えば排出バルブ7
を介して真空タンク8からトラップ9、排気ポンプ10
に通ずるルートからなっている。パルスCVI操作は、
反応炉1の収納スペースに被処理基材をセットし、原料
ガス導入系列および排気ガス系列を作動させながら供給
バルブ6と排気バルブ7を開閉制御することによってお
こなわれる。
FIG. 1 is an overall configuration diagram illustrating a pulse CVI device according to the present invention. A source gas introduction series and an exhaust gas series are connected to a reaction furnace 1. The raw material gas introduction line includes, for example, a reducing gas supply line 2 and a carrier gas supply line 3
Enters the raw material vaporizer 4 and is introduced as a raw material mixed gas from the reservoir tank 5 into the reaction furnace 1 via the supply valve 6. The exhaust gas series is, for example, an exhaust valve 7
From the vacuum tank 8 through the trap 9, exhaust pump 10
It consists of a route leading to. The pulse CVI operation is
This is performed by setting the substrate to be treated in the storage space of the reaction furnace 1 and controlling the opening and closing of the supply valve 6 and the exhaust valve 7 while operating the raw material gas introduction series and the exhaust gas series.

【0012】本発明の反応炉1は、図2の拡大断面図に
示したように端部に原料混合ガスを導入するためのガス
導入部11を備え、内部に被処理基材をセットするため
の収納スペース16を形成した反応チャンバー12と、こ
の反応チャンバー12の周辺を加熱するための発熱手段
13によって構成されている。ガス導入部11は、黒鉛
または金属材料によって形成することができるが、金属
材料で形成する場合には反応チャンバー12と接する部
位に水冷ジャケット14を介在させて金属部分の過熱劣
化を防止する。発熱手段13には棒状またはコイル状の
抵抗発熱体が用いられ、好ましくはその外面を断熱材1
5で被包する。反応炉1は全体の均一加熱を図るために
金属製の密閉容器に収納設置する構造に設計することも
できるが、従来技術のように反応チャンバー12の酸化
損傷を防止する目的で外面を密閉する必要はないから、
必須の構造的要件ではない。
As shown in the enlarged sectional view of FIG. 2, the reaction furnace 1 of the present invention is provided with a gas introducing portion 11 for introducing a raw material mixed gas at an end portion thereof, for setting a substrate to be treated therein. The reaction chamber 12 has a storage space 16 formed therein, and a heating means 13 for heating the periphery of the reaction chamber 12. The gas introduction part 11 can be formed of graphite or a metal material. However, when it is formed of a metal material, a water cooling jacket 14 is interposed at a portion in contact with the reaction chamber 12 to prevent deterioration of the metal portion due to overheating. A rod-shaped or coil-shaped resistance heating element is used for the heating means 13, and the outer surface thereof is preferably the heat insulating material 1.
Encapsulate with 5. The reaction furnace 1 may be designed so as to be housed and installed in a metal closed container in order to uniformly heat the whole, but the outer surface is closed for the purpose of preventing the oxidation damage of the reaction chamber 12 as in the prior art. I don't need it,
It is not a mandatory structural requirement.

【0013】反応チャンバー12に形成する収納スペー
ス16は、内部に板状の被処理基材17をセットした際
に上下に10mm程度の間隙ができ、その内容積が被処理
基材17の体積の10倍以内になるように設定すること
が好適である。したがって、板状の被処理基材17を用
いる際には、反応チャンバー12および収容スペース1
6を図3(斜視図)に示す形状に設計することが良好で
ある。
The storage space 16 formed in the reaction chamber 12 has a vertical gap of about 10 mm when the plate-shaped substrate 17 to be treated is set therein, and the internal volume thereof is equal to the volume of the substrate 17 to be treated. It is preferable to set it within 10 times. Therefore, when using the plate-shaped substrate to be treated 17, the reaction chamber 12 and the accommodation space 1
It is preferable to design 6 in the shape shown in FIG. 3 (perspective view).

【0014】本発明の主要な構成的特徴は、上記の装置
構成において反応チャンバー12をガス不透過性の炭化
珪素被覆18を施した黒鉛材19により形成したところ
にある。黒鉛材の表面に炭化珪素被覆18を形成するに
は、黒鉛材19を予め反応チャンバー形状に加工して常
圧に保持された密閉反応容器内に設置し、加熱しながら
系内にハロゲン化有機珪素化合物を水素ガスに同伴させ
ながら充填して気相接触させるCVD法が適用される。
ハロゲン化有機珪素化合物としては、例えばトリクロロ
メチルシラン(CH3SiCl3)、トリクロロフェニルシラン(C
6H5SiCl3) 、ジクロロメチルシラン(CH3SiHCl2) 、ジク
ロロジメチルシラン〔(CH3)2SiCl2 〕、クロロトリメチ
ルシラン〔(CH3)3SiCl〕等が用いられ、加熱温度は90
0〜1100℃に設定される。この条件で、黒鉛材19
の全表面にアモルファス質もしくは微細多結晶質を呈す
る緻密な炭化珪素被覆18が層形成される。
The main structural feature of the present invention resides in that the reaction chamber 12 is formed of a graphite material 19 coated with a gas-impermeable silicon carbide coating 18 in the above apparatus structure. In order to form the silicon carbide coating 18 on the surface of the graphite material, the graphite material 19 is preliminarily processed into the shape of a reaction chamber and placed in a closed reaction container kept at atmospheric pressure, and the halogenated organic material is heated in the system while being heated. A CVD method is used in which a silicon compound is filled with hydrogen gas while being entrained and brought into gas phase contact.
Examples of the halogenated organosilicon compound include trichloromethylsilane (CH 3 SiCl 3 ), trichlorophenylsilane (C
6 H 5 SiCl 3 ), dichloromethylsilane (CH 3 SiHCl 2 ), dichlorodimethylsilane [(CH 3 ) 2 SiCl 2 ], chlorotrimethylsilane [(CH 3 ) 3 SiCl], etc. are used, and the heating temperature is 90
It is set to 0 to 1100 ° C. Under this condition, the graphite material 19
A dense silicon carbide coating 18 having an amorphous or fine polycrystalline structure is formed on the entire surface of the layer.

【0015】特に好ましい反応チャンバーの材質は、基
材となる黒鉛材に熱膨張係数が3.5〜4.5×10-6
/℃の等方性黒鉛材を用い、その表面にCVD法により
膜厚20μm 以上の炭化珪素被膜を形成して気体透過度
を0.001×10-3cm/s(N2gas)以下の材質に転化さ
せたものであり、この材質形成により反応チャンバーの
肉厚が20mm程度であっても効率的なパルスCVI操作
をおこなうことが可能となる。
A particularly preferable material for the reaction chamber is a graphite material as a base material having a coefficient of thermal expansion of 3.5 to 4.5 × 10 −6.
/ ° C. isotropic graphite material is used, and a silicon carbide film having a thickness of 20 μm or more is formed on the surface thereof by a CVD method to have a gas permeability of 0.001 × 10 −3 cm / s (N 2 gas) or less. The material is converted into a material, and by forming this material, an efficient pulse CVI operation can be performed even if the thickness of the reaction chamber is about 20 mm.

【0016】[0016]

【作用】本発明のパルスCVI装置は、反応チャンバー
が優れた耐熱性、耐蝕性、耐酸化性および耐熱衝撃性を
備え、かつ高度のガス不透過性を有する炭化珪素被覆黒
鉛材により形成されているから、長期間安定した耐久寿
命を発揮されるうえ、反応チャンバーの肉厚を20mm程
度にしても系内の減圧度を極めて低く保持することがで
きる。したがって、1000℃を越える温度域において
急激な昇降加熱および減増圧のサイクルを適用する苛酷
なパルスCVI操作を円滑に進行させることが保証され
る。
In the pulse CVI apparatus of the present invention, the reaction chamber is made of a silicon carbide coated graphite material having excellent heat resistance, corrosion resistance, oxidation resistance and thermal shock resistance, and having a high gas impermeability. Therefore, in addition to exhibiting a stable durable life for a long period of time, the degree of reduced pressure in the system can be kept extremely low even if the thickness of the reaction chamber is about 20 mm. Therefore, it is ensured that the severe pulse CVI operation that applies the cycle of rapid heating and lowering and depressurization in the temperature range exceeding 1000 ° C. smoothly proceeds.

【0017】また、反応チャンバーの基材となる黒鉛材
は極めて易加工性であるため、炭化珪素被覆前に予め加
工しておくことにより被処理基材の収納スペースを所望
の形状寸法に設計することができ、収納スペースの内容
積を効率的なパルスCVI操作に好適な被処理基材の1
0倍以内に形成することが容易となる。更に、反応チャ
ンバー自体が十分な耐酸化性を備えているから、必ずし
も反応炉の全体を金属製の密閉系容器内に収納設置する
構造とする必要はなく、装置構造のコンパクト化を図る
ことができる。
Further, since the graphite material as the base material of the reaction chamber is extremely easy to process, the storage space of the base material to be treated is designed to have a desired shape and size by preprocessing it before coating with silicon carbide. The inside volume of the storage space is one of the substrates to be processed which is suitable for efficient pulse CVI operation.
It becomes easy to form within 0 times. Furthermore, since the reaction chamber itself has sufficient oxidation resistance, it is not always necessary to have a structure in which the entire reaction furnace is housed and installed in a metal closed system container, and it is possible to make the apparatus structure compact. it can.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples.

【0019】実施例 熱膨張係数3.5〜4.5×10-6/℃の等方性黒鉛材
を予め肉厚が20mmで収納スペースの寸法が幅350m
m、高さ30mm、奥行350mmの断面矩形状になるよう
に加工し、これをCVD反応容器にセットして1000
℃に加熱しながら系内にトリクロロメチルシラン(CH3Si
Cl3)とH2 の混合反応ガス(モル比5:100)を導入
して全表面に膜厚20μm の炭化珪素被膜を形成した。
炭化珪素被覆後の黒鉛材は気体透過度が0.001×1
-3cm/s(N2gas)であり、高度のガス不透過性を示し
た。
EXAMPLE An isotropic graphite material having a coefficient of thermal expansion of 3.5 to 4.5 × 10 −6 / ° C. has a wall thickness of 20 mm and a storage space has a width of 350 m.
It is processed to have a rectangular cross section with m, height 30 mm, and depth 350 mm, and this is set in a CVD reaction vessel to 1000
Trichloromethylsilane (CH 3 Si
A mixed reaction gas of Cl 3 ) and H 2 (molar ratio 5: 100) was introduced to form a silicon carbide film having a film thickness of 20 μm on the entire surface.
The graphite material coated with silicon carbide has a gas permeability of 0.001 × 1.
It was 0 −3 cm / s (N 2 gas) and showed a high gas impermeability.

【0020】このようにして炭化珪素被覆を施した黒鉛
材からなる反応チャンバーを用い、図2に示す構造の反
応炉を作製した。反応炉は反応チャンバー12の上下面
に発熱手段13として複数本の炭化珪素発熱体を配置
し、その周りを断熱材15で被包した。電源部にはサー
ミスタを使用した。またガス導入部11はステンレス製
とし、反応チャンバー12との間に環状の水冷ジャケッ
ト14を介設した。この反応炉を図1に示すように原料
ガス導入系列および排気ガス系列に接続してパルスCV
I装置を構成した。
A reaction furnace having a structure shown in FIG. 2 was prepared using the reaction chamber made of the graphite material coated with silicon carbide in this manner. In the reaction furnace, a plurality of silicon carbide heating elements were arranged as heating means 13 on the upper and lower surfaces of the reaction chamber 12, and the surroundings were covered with a heat insulating material 15. A thermistor was used for the power supply. The gas introduction part 11 was made of stainless steel, and an annular water cooling jacket 14 was provided between the gas introduction part 11 and the reaction chamber 12. This reactor is connected to a source gas introduction series and an exhaust gas series as shown in FIG.
I device was configured.

【0021】上記のパルスCVI装置を用いて収納スペ
ース16に一辺が300mmで厚さが10mmの黒鉛板基材
をセットし、1000℃に昇温したのち2時間保持し
た。ついで、黒鉛板基材に対し次のパルスCVI条件で
炭化珪素の被覆形成をおこなった。まず、真空タンク8
により反応チャンバー内を2Torr以下に減圧し、直ちに
トリクロロメチルシラン(CH3SiCl3)とH2 の混合ガス(C
H3SiCl3/H2モル比0.05)を720Torrになるように導入
し保持した。原料ガス流量は10l/min とし、1パルス
時間を20秒に設定して1000パルスのCVI操作を
継続した。
A graphite plate substrate having a side of 300 mm and a thickness of 10 mm was set in the storage space 16 using the above-mentioned pulse CVI device, heated to 1000 ° C. and then held for 2 hours. Then, the graphite plate base material was coated with silicon carbide under the following pulse CVI conditions. First, vacuum tank 8
The reaction chamber was reduced to below 2Torr by immediately trichloromethyl silane (CH 3 SiCl 3) and a mixed gas of H 2 (C
A H 3 SiCl 3 / H 2 molar ratio of 0.05) was introduced and maintained at 720 Torr. The raw material gas flow rate was 10 l / min, the 1 pulse time was set to 20 seconds, and the CVI operation of 1000 pulses was continued.

【0022】その結果、黒鉛板面に膜厚5μm の均質で
耐剥離性の良好な炭化珪素被膜が形成された。前記のパ
ルスCVI操作を50回に亘って反復したが、反応チャ
ンバーに材質酸化や亀裂、破損、変形等の異常現象は全
く認められなかった。
As a result, a uniform silicon carbide coating film having a thickness of 5 μm and having good peel resistance was formed on the surface of the graphite plate. The above-mentioned pulse CVI operation was repeated 50 times, but no abnormal phenomena such as material oxidation, cracking, breakage, and deformation were observed in the reaction chamber.

【0023】比較例 組織内部にフェノール樹脂を含浸して炭化処理した気孔
率15%以下、気体透過度0.01×10-3cm/s(N2ga
s)の黒鉛材を加工して実施例と同一寸法の反応チャンバ
ーを作製した。この反応チャンバーで実施例と同様に反
応炉を形成し、反応炉全体をアルゴンガス導入機構を備
えたステンレス製の密閉容器に収納設置した。このよう
な構造のパルスCVI装置を用い、実施例と同一条件で
パルスCVI操作をおこなったところ、黒鉛板面に正常
な炭化珪素膜の形成が認められなかった。ついで、同様
の黒鉛材による肉厚100mmの反応チャンバーによる反
応炉を用い、同一条件でパルスCVI操作をおこなった
ところ、実施例と同組織の炭化珪素被膜が形成された。
Comparative Example Porosity of 15% or less obtained by impregnating a tissue with a phenol resin and carbonizing, gas permeability of 0.01 × 10 −3 cm / s (N 2 ga
The graphite material of s) was processed to prepare a reaction chamber having the same size as that of the example. A reaction furnace was formed in this reaction chamber in the same manner as in the example, and the entire reaction furnace was housed and installed in a closed stainless steel container equipped with an argon gas introduction mechanism. When a pulsed CVI device having such a structure was used and a pulsed CVI operation was performed under the same conditions as in the examples, no normal formation of a silicon carbide film was observed on the graphite plate surface. Next, when a pulse CVI operation was performed under the same conditions using a reactor having a reaction chamber with a wall thickness of 100 mm made of the same graphite material, a silicon carbide coating having the same structure as that of the example was formed.

【0024】[0024]

【発明の効果】以上のとおり、本発明によれば反応チャ
ンバーの材質をガス不透過性の炭化珪素被覆黒鉛材で構
成することにより極めて効率的にパルスCVI処理をお
こなうことができ、かつ長期間安定した耐久性を発揮す
るコンパクト構造のパルスCVI装置が提供される。し
たがって、本装置を用いることにより、炭素質系やセラ
ミックス系などの多孔質基材に同質もしくは異種物質を
充填・被覆するパルスCVI操作を工業的に実施するこ
とが可能となる。
As described above, according to the present invention, by using a gas-impermeable silicon carbide-coated graphite material as the material of the reaction chamber, it is possible to perform the pulse CVI treatment extremely efficiently and for a long period of time. A compact structure pulse CVI device that exhibits stable durability is provided. Therefore, by using this apparatus, it becomes possible to industrially carry out the pulse CVI operation of filling and coating a porous substrate such as a carbonaceous type or a ceramic type with the same or different substances.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るパルスCVI装置を例示した全体
構成図である。
FIG. 1 is an overall configuration diagram illustrating a pulse CVI device according to the present invention.

【図2】本発明による反応炉を示した拡大断面図であ
る。
FIG. 2 is an enlarged sectional view showing a reaction furnace according to the present invention.

【図3】図2の反応チャンバー部分を示した斜視図であ
る。
3 is a perspective view showing a reaction chamber portion of FIG. 2. FIG.

【符号の説明】[Explanation of symbols]

1 反応炉 2 還元ガス供給ライン 3 キャリアガス供給ライン 4 原料気化器 5 リザーバータンク 6 供給バルブ 7 排気バルブ 8 真空タンク 9 トラップ 10 排気ポンプ 11 ガス導入部 12 反応チャンバー 13 発熱手段 14 水冷ジャケット 15 反応チャンバー 16 収納スペース 17 被処理基材 18 炭化珪素被覆 19 黒鉛材 1 Reactor 2 Reducing Gas Supply Line 3 Carrier Gas Supply Line 4 Raw Material Vaporizer 5 Reservoir Tank 6 Supply Valve 7 Exhaust Valve 8 Vacuum Tank 9 Trap 10 Exhaust Pump 11 Gas Inlet 12 Reaction Chamber 13 Exothermic Means 14 Water Cooling Jacket 15 Reaction Chamber 16 Storage space 17 Base material 18 Silicon carbide coating 19 Graphite material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 端部にガス導入部を備え、内部に被処理
基材をセットするための収容スペースを形成した反応チ
ャンバーと該反応チャンバーの周辺を加熱するための発
熱手段とからなる反応炉を、原料ガス導入系列および排
気ガス系列に接続する装置構成において、前記反応チャ
ンバーをガス不透過性の炭化珪素被覆を施した黒鉛材に
より形成してなることを特徴とするパルスCVI装置。
1. A reaction furnace comprising a reaction chamber having a gas introduction portion at an end thereof and having a storage space for setting a substrate to be treated therein, and a heat generating means for heating the periphery of the reaction chamber. In a device configuration for connecting a source gas introduction system and an exhaust gas system, wherein the reaction chamber is formed of a graphite material coated with a gas impermeable silicon carbide.
【請求項2】 不透過性の炭化珪素被覆を施した黒鉛材
が、熱膨張係数3.5〜4.5×10-6/℃の等方性黒
鉛材の表面にCVD法を用いて膜厚20μm以上の炭化
珪素被膜を形成した気体透過度0.001×10-3cm/
s(N2gas)以下の材質を備える請求項1記載のパルスCV
I装置。
2. A graphite material coated with an impermeable silicon carbide is formed on the surface of an isotropic graphite material having a thermal expansion coefficient of 3.5 to 4.5 × 10 −6 / ° C. by a CVD method. Gas permeability of 0.001 × 10 -3 cm / with a silicon carbide coating with a thickness of 20 μm or more
The pulse CV according to claim 1, comprising a material of s (N 2 gas) or less.
I device.
JP16023393A 1993-06-03 1993-06-03 Pulse cvi device Pending JPH06345569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16023393A JPH06345569A (en) 1993-06-03 1993-06-03 Pulse cvi device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16023393A JPH06345569A (en) 1993-06-03 1993-06-03 Pulse cvi device

Publications (1)

Publication Number Publication Date
JPH06345569A true JPH06345569A (en) 1994-12-20

Family

ID=15710589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16023393A Pending JPH06345569A (en) 1993-06-03 1993-06-03 Pulse cvi device

Country Status (1)

Country Link
JP (1) JPH06345569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11642724B2 (en) * 2015-11-04 2023-05-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Die and piston of an SPS apparatus, SPS apparatus comprising same, and method of sintering, densification or assembly in an oxidising atmosphere using said apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11642724B2 (en) * 2015-11-04 2023-05-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Die and piston of an SPS apparatus, SPS apparatus comprising same, and method of sintering, densification or assembly in an oxidising atmosphere using said apparatus
US11833588B2 (en) * 2015-11-04 2023-12-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Die and piston of an SPS apparatus, SPS apparatus comprising same, and method of sintering, densification or assembly in an oxidizing atmosphere using said apparatus

Similar Documents

Publication Publication Date Title
TWI555888B (en) Fluidized-bed reactor and process for preparing granular polycrystalline silicon
US9493873B2 (en) Method for preparing a coating for protecting a part against oxidation
CA1103104A (en) Process for applying a protective layer to shaped carbon bodies
JP2006124832A (en) Vapor phase growth system and vapor phase growth method
JPH0240033B2 (en)
CN108103478A (en) A kind of preparation method of porous carbide coating
AU3799393A (en) Molybdenum enhanced low-temperature deposition of crystalline silicon nitride
Patibandla et al. Chemical vapor deposition of boron nitride
EP0529593B1 (en) A glass carbon coated graphite chuck for use in producing polycrystalline silicon
JP2002003285A (en) SiC-COATED GRAPHITE MATERIAL AND ITS MANUFACTURING METHOD
JPH06345569A (en) Pulse cvi device
JPH0657433A (en) Pulse cvi device
JP2006131451A (en) Crucible for drawing-up single crystal and its manufacturing method
KR100285168B1 (en) Manufacturing method of carbide, boride or nitride coated fuel using high temperature and high pressure combustion synthesis
CN108892539A (en) A kind of graphite material and preparation method thereof with SiC coating
JPS63166789A (en) Graphite crucible used in pulling up device for silicon single crystal and production thereof
JPH01249679A (en) Graphite-silicon carbide composite body and production thereof
JP3553744B2 (en) Manufacturing method of laminated member
JPH1067584A (en) Reaction vessel
JPH1135391A (en) Silicon carbide-coated susceptor
JP2920842B2 (en) Method for producing silicon carbide heating element
JPH05306169A (en) Production of carbon material
JPH05124864A (en) Production of high purity silicon carbide body
JPH05124863A (en) Production of high purity silicon carbide body
JPH0676357U (en) Reaction chamber of pulse CVI device