Nothing Special   »   [go: up one dir, main page]

JPH06331898A - Objective lens - Google Patents

Objective lens

Info

Publication number
JPH06331898A
JPH06331898A JP5142513A JP14251393A JPH06331898A JP H06331898 A JPH06331898 A JP H06331898A JP 5142513 A JP5142513 A JP 5142513A JP 14251393 A JP14251393 A JP 14251393A JP H06331898 A JPH06331898 A JP H06331898A
Authority
JP
Japan
Prior art keywords
optical element
diffractive optical
lens
chromatic aberration
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5142513A
Other languages
Japanese (ja)
Other versions
JP3312057B2 (en
Inventor
Shingo Kashima
伸悟 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP14251393A priority Critical patent/JP3312057B2/en
Publication of JPH06331898A publication Critical patent/JPH06331898A/en
Priority to US08/704,237 priority patent/US5631779A/en
Application granted granted Critical
Publication of JP3312057B2 publication Critical patent/JP3312057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To provide the objective lens which has a high power and a high NA and has various aberrations, especially, the chromatic aberration corrected without using multiple cemented lenses or abnormal dispersion glass by including one diffraction type optical element and one cemented lens. CONSTITUTION:This objective lens includes at least one sheet of diffraction type optical element and one cemented lens. For the purpose of satisfactorily correcting the chromatic aberration, at least one sheet of diffraction type optical element satisfies conditions D1/D>0.8 and (hXf)/(LXI)>0.07 where D1 is the marginal luminous flux diameter to the position of the diffraction type optical element and D is the maximum marginal luminous flux diameter and (h) is the principal ray height on the surface of the diffraction type optical element and (f) is the focal length and I is the maximum image height on the specimen surface and L is the same focal length. Thus, the lens system is obtained, which has a high NA and a high power and has various aberrations, especially, the chromatic aberration satisfactorily corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、顕微鏡等の光学系に用
いられる対物レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective lens used in an optical system such as a microscope.

【0002】[0002]

【従来の技術】従来の対物レンズは、特に高倍率、高N
Aのものは、諸収差なかでも色収差を良好に補正するた
めに多数の接合レンズを必要とし又異常分散ガラスを用
いる必要があった。そのため高価にならざるを得ず、更
に硝材が限定される紫外線や赤外線で用いられる対物レ
ンズの場合設計が出来ないこともある。
2. Description of the Related Art Conventional objective lenses are particularly high in magnification and high in N.
In the case of A, a large number of cemented lenses were required to satisfactorily correct chromatic aberration among various aberrations, and it was necessary to use anomalous dispersion glass. Therefore, it is inevitably expensive, and it may not be possible to design an objective lens used with ultraviolet rays or infrared rays whose glass material is limited.

【0003】最近光学素子として回折型光学素子(DO
E)を用いた光学系が注目されている。この回折型光学
素子を用いた対物レンズで、本発明の対物レンズと類似
する従来例として、特開昭63−77003号、特開昭
63−155432号、特開昭59−33636号、特
開昭60−247611号、特開平2−1109号、特
開平4−361201号の各公報に記載されたもの等が
ある。
Recently, a diffractive optical element (DO
An optical system using E) is drawing attention. As an objective lens using this diffractive optical element, which is similar to the objective lens of the present invention, conventional examples are disclosed in JP-A-63-77003, JP-A-63-155432, and JP-A-59-33636. There are those described in JP-A-60-247611, JP-A-2-109, and JP-A-4-361201.

【0004】又前記の回折現象を利用した回折型光学素
子即ちディフラクチブ オプティクス エレメンツ[D
iffractive Optics Element
s(DOE)]は、オプトロニクス社発行の「光学デザ
イナーのための光学エレメント」第6,第7章、および
William C.Sweatt著『NEWMET
HODS OF DESIGNING HOLOGRA
PHIC OPTICAL ELEMENTS』(SP
IE.VOL.126,P46−53,1977)等に
記載されているが、その原理を簡単に述べると下記の通
りである。
Further, a diffractive optical element utilizing the above-mentioned diffraction phenomenon, that is, a diffractive optical element [D
ifractive Optics Element
s (DOE)] are published in Optronics, "Optical Elements for Optical Designers", Chapters 6 and 7, and William C. "Newmet" by Sweet
HODS OF DESIGNING HOLOGRA
PHIC OPTICAL ELEMENTS "(SP
IE. VOL. 126, P46-53, 1977) and the like, but the principle thereof is briefly described as follows.

【0005】通常の光学ガラスは、図16において次の
式で表わされるスネルの法則に従って屈折する。
A normal optical glass refracts according to Snell's law represented by the following equation in FIG.

【0006】 nsin θ=n’sin θ’ (1) ただし、nは入射側媒質の屈折率、n’は出射側媒質の
屈折率、θは光線の入射角、θ’は光線の出射角であ
る。
Nsin θ = n′sin θ ′ (1) where n is the refractive index of the incident side medium, n ′ is the refractive index of the exit side medium, θ is the incident angle of the light beam, and θ ′ is the outgoing angle of the light beam. is there.

【0007】一方、回折現象では、図17のように光は
次の式で表わす回折の法則にしたがって曲げられる。
On the other hand, in the diffraction phenomenon, light is bent according to the law of diffraction expressed by the following equation, as shown in FIG.

【0008】 nsin θ−n’sin θ’=mλ/d (2) ただしmは回折光の次数、λは波長、dは格子間隔であ
る。
Nsin θ−n′sin θ ′ = mλ / d (2) where m is the order of diffracted light, λ is the wavelength, and d is the lattice spacing.

【0009】上記の式(2)に従って光線を屈折させる
ようにした光学素子が回折型光学素子である。尚、図1
7では遮蔽部と透過部が間隔dで並設されたものを示し
たが、図18のように透明体の表面に断面鋸歯状の回折
面を設けてブレーズ化するか、図19のようにそのバイ
ナリー近似を行なうと高い回折効率を得ることが出来
る。
An optical element that refracts a light beam according to the above equation (2) is a diffractive optical element. Incidentally, FIG.
In FIG. 7, the shield part and the transmissive part are shown arranged side by side at a distance d. However, as shown in FIG. 18, a diffractive surface having a saw-toothed cross section is provided on the surface of the transparent body for blazing, or as shown in FIG. A high diffraction efficiency can be obtained by performing the binary approximation.

【0010】次に上記のような回折型光学素子を使用す
ることによる利点について説明する。
Next, advantages of using the above-mentioned diffractive optical element will be described.

【0011】屈折系の薄肉レンズの場合、次の式(3)
に示す関係が成立つ。
In the case of a refracting thin lens, the following equation (3) is used.
The relationship shown in is established.

【0012】 1/f=(n−1)(1/r1 −1/r2 ) (3) ただし、fは焦点距離、r1 ,r2 は夫々入射面と射出
面の曲率半径、nはレンズの屈折率である。
1 / f = (n−1) (1 / r 1 −1 / r 2 ) (3) where f is the focal length, r 1 and r 2 are the radii of curvature of the entrance and exit surfaces, and n Is the refractive index of the lens.

【0013】上記式(3)の両辺を波長λにて微分する
と下記のように式(4)が求まる。
Differentiating both sides of the above equation (3) with respect to the wavelength λ yields the following equation (4).

【0014】 df/dλ=−f(dn/dλ)/(n−1) Δf=−f{Δn/(n−1)} (4) ここで係数倍的効果を除くと、Δn/(n−1)が分散
特性を表わすことになるので、分散値νを次のように定
義出来る。
Df / dλ = −f (dn / dλ) / (n−1) Δf = −f {Δn / (n−1)} (4) Excluding the coefficient multiplication effect, Δn / (n Since -1) represents the dispersion characteristic, the dispersion value ν can be defined as follows.

【0015】 ν≡(n−1)/Δn (5) したがって可視域における分散特性(アッベ数νd )は
次のようになる。
Ν≡ (n−1) / Δn (5) Therefore, the dispersion characteristic (Abbe number ν d ) in the visible region is as follows.

【0016】 νd =(nd −1)/(nF −nC ) (6) 一方回折型光学素子の場合は、次の式が成立する。回折
型光学素子の焦点距離fは、入射する平行光の光線高h
のところでの格子間隔をdh とすると下記の式(7)の
ようになる。
Ν d = (n d −1) / (n F −n C ) (6) On the other hand, in the case of a diffractive optical element, the following equation holds. The focal length f of the diffractive optical element is the height h of the incident parallel light.
When the lattice spacing at is d h , the following equation (7) is obtained.

【0017】 f=h/(n’sin θ’)=(dh h)/(mλ) (7) 無収差の回折型光学素子の場合、dh hは一定であるの
で、f=C/λ(Cは定数)である。このf=C/λの
両辺をλで微分すると次のようにして式(8)が得られ
る。
F = h / (n′sin θ ′) = (d h h) / (mλ) (7) In the case of an aberration-free diffractive optical element, d h h is constant, so f = C / λ (C is a constant). Differentiating both sides of this f = C / λ by λ yields formula (8) as follows.

【0018】 df/dλ=−C/λ2 =−f/λ Δf=−f(Δλ/λ) (8) Δn/(n−1)=νであるので、式(4)と(8)と
からν=λ/Δλである。したがって、回折型光学素子
の可視域でのアッベ数νd は下記の通りである。
Df / dλ = −C / λ 2 = −f / λ Δf = −f (Δλ / λ) (8) Since Δn / (n−1) = ν, equations (4) and (8) Therefore, ν = λ / Δλ. Therefore, the Abbe number ν d in the visible range of the diffractive optical element is as follows.

【0019】 νd =λd /(λF −λC )=−3.453 (9) このように回折型光学素子は、非常に大きな負の分散特
性を持つ。通常のガラスの分散特性は、約20〜95で
あるので、回折型光学素子は非常に大きな逆分散特性を
持つことがわかる。また同様の計算により、回折型光学
素子は異常分散を持つことがわかる。
Ν d = λ d / (λ F −λ C ) = − 3.453 (9) As described above, the diffractive optical element has a very large negative dispersion characteristic. Since the dispersion characteristic of ordinary glass is about 20 to 95, it can be seen that the diffractive optical element has a very large inverse dispersion characteristic. In addition, similar calculations show that the diffractive optical element has anomalous dispersion.

【0020】前記従来例のうち、特開昭63−7700
3号、特開昭63−155432号、特開昭59−33
636号、特開昭60−247611号公報のレンズ系
は、いずれも光ディスクのピックアップレンズに関する
ものであり、回折型光学素子1〜2枚、又は、屈折型光
学素子(レンズ)1枚と回折型光学素子1枚よりなり、
基本的に光源は単色であり、回折型光学素子の色収差の
補正能力は利用されていない。
Among the above-mentioned conventional examples, JP-A-63-7700
3, JP-A-63-155432, and JP-A-59-33.
The lens system disclosed in Japanese Patent Laid-Open No. 636 and JP-A-60-247611 relates to a pickup lens of an optical disk, and includes one or two diffractive optical elements or one refractive optical element (lens) and a diffractive optical element. It consists of one optical element,
Basically, the light source is monochromatic, and the ability of the diffractive optical element to correct chromatic aberration is not utilized.

【0021】また、特開平2−1109号、特開平4−
361201号公報のレンズ系は、いずれもステッパー
等に用いられる撮影レンズに関するものであり、石英の
みで構成されており、接合レンズは用いていない。特に
前者の特開平2−1109号公報のレンズ系は、瞳位置
に回折型光学系を配置したことを特徴としており、後者
の特開平4−36201号公報のレンズ系は、回折型光
学素子の周辺部では中心部より高次の回折光を用いるこ
とを特徴としている。
Further, Japanese Patent Laid-Open No. 2-1109 and Japanese Patent Laid-Open No. 4-109.
The lens system disclosed in Japanese Patent No. 361201 relates to a photographing lens used for a stepper or the like, and is composed only of quartz and does not use a cemented lens. In particular, the former lens system of Japanese Patent Laid-Open No. 2-1109 is characterized in that a diffractive optical system is arranged at the pupil position, and the latter lens system of Japanese Patent Laid-Open No. 4-36201 is a diffractive optical element. The peripheral portion is characterized by using higher-order diffracted light than the central portion.

【0022】しかし、これらの従来例は、ピックアップ
レンズタイプでは、より複雑な構成を要する顕微鏡対物
レンズに対応できない。またステッパーレンズタイプ
は、低倍率の顕微鏡対物レンズには適用し得る可能性は
あるが、高倍率、高NAの顕微鏡対物レンズには適用出
来ない。つまり、対物レンズの色収差補正を回折型光学
素子のみで行なう場合、回折型光学素子のパワーを強く
しなければならず、回折型光学素子の最小ピッチが制作
不能なまで小さくなるためである。
However, in these conventional examples, the pickup lens type cannot support a microscope objective lens which requires a more complicated structure. The stepper lens type may be applicable to a low-magnification microscope objective lens, but cannot be applied to a high-magnification, high-NA microscope objective lens. That is, when the chromatic aberration of the objective lens is corrected only by the diffractive optical element, the power of the diffractive optical element must be increased, and the minimum pitch of the diffractive optical element becomes so small that it cannot be produced.

【0023】[0023]

【発明が解決しようとする課題】本発明は、高倍率、高
NAで、接合レンズや異常分散ガラスを多用することな
しに諸収差、特に色収差を補正した対物レンズを提供す
ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an objective lens which has a high magnification and a high NA and which corrects various aberrations, particularly chromatic aberrations, without using a lot of cemented lenses or anomalous dispersion glass. .

【0024】[0024]

【課題を解決するための手段】本発明の対物レンズは、
少なくとも1枚の回折型光学素子と、少なくとも一つの
接合レンズを含むことを特徴とするもので、少ない光学
素子で特殊なガラス材料を用いることなしに諸収差特に
色収差を良好に補正したものである。
The objective lens of the present invention comprises:
It is characterized in that it includes at least one diffractive optical element and at least one cemented lens, and various aberrations, especially chromatic aberration, are satisfactorily corrected without using a special glass material with a small number of optical elements. .

【0025】通常の対物レンズは、異なるアッベ数の硝
材よりなるレンズを接合した接合レンズを用いて色収差
を補正している。そして通常の硝材のアッベ数は20〜
95でいずれも正の値である。一方回折型光学素子のア
ッベ数は、前述のように負で小さい絶対値を有してい
る。そのためこの回折型光学素子と通常のガラスのレン
ズとを組み合わせれば、強力な色収差補正作用を持たせ
ることが出来る。
In a normal objective lens, chromatic aberration is corrected by using a cemented lens in which lenses made of glass materials having different Abbe numbers are cemented. And the Abbe number of ordinary glass materials is 20-
95 are all positive values. On the other hand, the Abbe number of the diffractive optical element has a negative and small absolute value as described above. Therefore, if this diffractive optical element is combined with an ordinary glass lens, a strong chromatic aberration correction action can be provided.

【0026】また、高級対物レンズでは色補正をアポク
ロマートにする必要があり、そのため異常分散硝子を多
用しなければならない。しかし、これらの硝子は価格が
高く、またその加工性も悪いものが多いため、これらの
対物レンズをより高価なものとしている。この問題も回
折型光学素子を用い、その大きな異常分散性を利用して
解決することができる。
Further, in a high-class objective lens, it is necessary to use apochromat for color correction, and therefore anomalous dispersion glass must be used frequently. However, since these glasses are expensive and often have poor workability, these objective lenses are made more expensive. This problem can also be solved by using a diffractive optical element and utilizing its large anomalous dispersion.

【0027】また、高NA・高倍率の対物レンズの色補
正を回折型光学素子だけで行うと、そのパワーが強くな
りすぎ最小ピッチが小さくなりすぎるが、少なくともひ
とつの接合レンズを用いることによって回折型光学素子
と色補正を分担させ、その最小ピッチを緩める事が出来
る。
When the color correction of the objective lens of high NA and high magnification is performed only by the diffractive optical element, its power becomes too strong and the minimum pitch becomes too small. However, by using at least one cemented lens, the diffracted light is diffracted. It is possible to share the color correction with the mold optical element and loosen the minimum pitch.

【0028】更に色収差を良好に補正するためには、次
の条件(1),(2)を満足することが望ましい。
In order to satisfactorily correct chromatic aberration, it is desirable to satisfy the following conditions (1) and (2).

【0029】 (1) D1 /D>0.8 (2) (h×f)/(L×I)>0.07 ただし、D1 は回折型光学素子の位置でのマージナル光
束径、Dは最大のマージナル光束径、hは回折型光学素
子の面での主光線高、fは焦点距離、Iは標本面での最
大像高、Lは同焦距離である。
(1) D 1 /D>0.8 (2) (h × f) / (L × I)> 0.07 where D 1 is the marginal light beam diameter at the position of the diffractive optical element, and D Is the maximum marginal beam diameter, h is the chief ray height on the surface of the diffractive optical element, f is the focal length, I is the maximum image height on the sample surface, and L is the parfocal distance.

【0030】色収差は、大きく分けて軸上色収差と倍率
の色収差の2種類あり、前者は焦点位置の波長によるず
れで、後者は焦点距離(倍率)の波長によるずれであ
る。
There are roughly two types of chromatic aberration, axial chromatic aberration and chromatic aberration of magnification. The former is a shift due to the wavelength of the focal position and the latter is a shift due to the wavelength of the focal length (magnification).

【0031】これら色収差のうち、軸上色収差の補正を
行なう上で最も効果的な位置は、対物レンズにおいて
は、瞳位置であるが、正確に瞳位置である必要はなく、
この瞳の近傍で光束径(軸上マージナル光束径)の大き
な所が、軸上色収差を補正する上で効果的である。これ
を考慮して定めたのが前記条件(1)である。この条件
(1)において、下限の0.8以下になると他の屈折型
光学素子(レンズ)で発生する軸上色収差を回折型光学
素子で補正しきれなくなり、屈折型光学素子に多くの接
合レンズを用いなければならず又異常分散ガラスを必要
とし、回折型光学素子を用いたことによる効果が十分で
はなくなる。
Of these chromatic aberrations, the most effective position for correcting the axial chromatic aberration is the pupil position in the objective lens, but it does not have to be the exact pupil position.
A large luminous flux diameter (axial marginal luminous flux diameter) near the pupil is effective for correcting axial chromatic aberration. The condition (1) is defined in consideration of this. In this condition (1), if the lower limit of 0.8 or less is reached, axial chromatic aberration that occurs in other refractive optical elements (lenses) cannot be completely corrected by the diffractive optical element, and many cemented lenses are used in the refractive optical element. In addition, the anomalous dispersion glass is required, and the effect of using the diffractive optical element is not sufficient.

【0032】一方倍率の色収差を補正するのに最も効果
的な位置は、瞳位置ではなくそこから少し離れた主光線
がある程度の光線高を有する位置である。この倍率の色
収差を効果的に補正するための回折型光学素子の配置位
置を定めたのが条件(2)である。この条件(2)にお
いて下限の0.07を越えると倍率の色収差を十分補正
出来ず、屈折型光学素子に接合レンズを多く用いたり、
異常分散ガラスを用いる必要が生じ、回折型光学素子を
用いたことによる効果が十分得られない。尚条件(2)
においてf,L,Iはこの条件を正規化するためのもの
で、f/Iは主光線角のパラメーター、Lは光学系全体
の大きさのスケーリングのためのパラメーターである。
On the other hand, the most effective position for correcting the chromatic aberration of magnification is not the position of the pupil but the position where the chief ray slightly away from it has a certain ray height. The condition (2) defines the arrangement position of the diffractive optical element for effectively correcting the chromatic aberration of this magnification. If the lower limit of 0.07 is not satisfied in this condition (2), chromatic aberration of magnification cannot be sufficiently corrected, and many cemented lenses are used in the refractive optical element,
It is necessary to use the anomalous dispersion glass, and the effect obtained by using the diffractive optical element cannot be sufficiently obtained. Condition (2)
In, f, L, and I are for normalizing this condition, f / I is a parameter of the chief ray angle, and L is a parameter for scaling the size of the entire optical system.

【0033】以上述べたように、本発明の対物レンズに
おいては、その用途に応じて適切な回折型光学素子を前
記の条件(1),(2)を満足する位置に配置すること
が、特に色収差を一層良好に補正する上でより好まし
い。
As described above, in the objective lens of the present invention, it is particularly preferable to dispose a diffractive optical element suitable for the application at a position satisfying the above conditions (1) and (2). It is more preferable for better correcting chromatic aberration.

【0034】尚、レンズ系中に接合レンズと回折型光学
素子とを少なくとも1つずつ用いて色収差の補正を分担
させるためには、少なくとも一つの接合レンズの両レン
ズのアッベ数差Δνが下記条件(3)を満足することが
好ましい。
In order to share the correction of chromatic aberration by using at least one cemented lens and at least one diffractive optical element in the lens system, the Abbe number difference Δν between both lenses of at least one cemented lens must satisfy the following condition. It is preferable to satisfy (3).

【0035】(3) Δν>20 Δνがこの条件(3)の下限の20より小になると接合
レンズによる色収差の補正作用が不十分になり、回折型
光学素子の最小ピッチをあまり大きくできなくなる。
(3) When Δν> 20 Δν is smaller than the lower limit of 20 of the condition (3), the chromatic aberration correcting action of the cemented lens becomes insufficient, and the minimum pitch of the diffractive optical element cannot be increased too much.

【0036】更に回折型光学素子は、その格子間隔を任
意に設定し得ると云う製作上の特徴を有している。した
がって、回折型光学素子は、格子間隔を種々に変えるこ
とにより任意の非球面レンズと等価の作用を得ることが
でき、しかも変曲点が多数あってもよい等通常の非球面
レンズよりも設計の自由度が大であり、制作精度も良
い。その上非球面レンズでは補正出来ない色収差の補正
が可能である。又屈折率分布型レンズは、色収差の補正
が可能であるが、実際に制作可能な屈折率分布型レンズ
は限られており、又紫外線や赤外線には十分対応し得な
い。このように、回折型光学素子は、非球面レンズや屈
折率分布型レンズよりも優れた収差補正能力を有すると
共に製作上も有利である。したがって、本発明のよう
に、これを対物レンズに用いることによって、対物レン
ズの高性能化、コストの低減が可能であり、更に従来不
可能であった新しい対物レンズの設計等が可能になる。
Further, the diffractive optical element has a manufacturing feature that the lattice spacing can be set arbitrarily. Therefore, the diffractive optical element can obtain an action equivalent to that of an arbitrary aspherical lens by changing the lattice spacing in various ways, and moreover, the diffractive optical element may have a large number of inflection points, so that it can be designed more than an ordinary aspherical lens. The degree of freedom is great and the production accuracy is good. Moreover, it is possible to correct chromatic aberration that cannot be corrected by an aspherical lens. The gradient index lens can correct chromatic aberration, but the number of gradient index lenses that can be actually manufactured is limited, and it cannot sufficiently cope with ultraviolet rays and infrared rays. As described above, the diffractive optical element has an aberration correction capability superior to that of the aspherical lens or the gradient index lens, and is advantageous in manufacturing. Therefore, by using this as the objective lens as in the present invention, it is possible to improve the performance of the objective lens and reduce the cost, and to design a new objective lens which has been impossible in the past.

【0037】[0037]

【実施例】次に本発明の実施例について説明する。まず
本発明の実施例で用いる回折型光学素子について更に詳
細に述べる。後に示す実施例で用いられている回折型光
学素子(DOE)は既に述べた通りのものであるが、こ
のような回折型光学素子を含む光学系の設計法として、
ウルトラ−ハイ インデックス法(ultrahigh
index methods)と呼ばれるものが知ら
れている。これは、回折型光学素子を屈折率をきわめて
大きい仮想的なレンズ(ウルトラーハイインデックス
レンズ)に置き換えて設計する方法である。このことに
ついては、SPIE 126巻46−53頁(1977
年)に記載されているが図20を用いて簡単に説明す
る。図20において1はウルトラ−ハイ インデックス
レンズ、2は法線である。このウルトラ−ハイ インデ
ックス レンズにおいては、次の式(11)で表わされ
る関係が成立つ。
EXAMPLES Next, examples of the present invention will be described. First, the diffractive optical element used in the examples of the present invention will be described in more detail. The diffractive optical element (DOE) used in the examples described later is as described above, but as a method of designing an optical system including such a diffractive optical element,
Ultra-high index method (ultrahigh
What is called index methods) is known. This is a virtual lens with an extremely high refractive index (Ultra High Index).
It is a method of designing by replacing with a lens). Regarding this, SPIE 126, pp. 46-53 (1977).
Year) but will be briefly described with reference to FIG. In FIG. 20, 1 is an ultra-high index lens and 2 is a normal line. In this ultra-high index lens, the relationship expressed by the following equation (11) is established.

【0038】 (nU −1)dz /dh=nsin θ−n’sin θ’ (11) ただし、nU はウルトラ−ハイ インデックス レンズ
の屈折率、zはウルトラ−ハイ インデックス レンズ
の光軸方向の座標、hは光軸からの距離、n,n’はそ
れぞれ入射側媒質および射出側媒質の屈折率、θ,θ’
は光線の入射角および射出角である。尚後に示す実施例
のデーターではnU =1001又は10001としてい
る。
(N U −1) dz / dh = nsin θ−n′sin θ ′ (11) where n U is the refractive index of the ultra-high index lens and z is the optical axis direction of the ultra-high index lens. Coordinates, h is the distance from the optical axis, n and n'are the refractive indices of the incident side medium and the exit side medium, and θ and θ ', respectively.
Is the angle of incidence and the angle of exit of the ray. In the data of the examples shown below, n U = 1001 or 10001.

【0039】式(2)および(11)から次の式(1
2)が求まる。
From equations (2) and (11), the following equation (1
2) is obtained.

【0040】 (nU −1)dz/dh=mλ/d (12) 即ち、ウルトラ−ハイ インデックス レンズ(屈折率
が極めて大きい屈折型レンズ)の面形状と回折型光学素
子のピッチとの間には式(12)で与えられる等価関係
が成立し、この式を通じてウルトラ−ハイ インデック
ス 法で設計したデータから回折型光学素子のピッチを
定めることができるのである。
(N U −1) dz / dh = mλ / d (12) That is, between the surface shape of the ultra-high index lens (refractive lens having an extremely large refractive index) and the pitch of the diffractive optical element. Satisfies the equation (12), and the pitch of the diffractive optical element can be determined from the data designed by the ultra-high index method through this equation.

【0041】一般的な軸対称非球面は、下記のように表
わされる。
A general axisymmetric aspherical surface is expressed as follows.

【0042】 z=ch2 /[{1−c2 (k+1)h2 }1/2 ]+Ah4 +Bh6 +Ch8 +Dh10+・・・・ (13) ただし、zは光軸(像の方向を正)、hは面とz軸との
交点を原点としz軸に直交した座標軸のうちメリジオナ
ル方向の座標軸、cは基準面の曲率、kは円錐定数で
A,B,C,D・・・は夫々,4次,6次,8次,10
次,・・・の非球面係数である。
Z = ch 2 / [{1-c 2 (k + 1) h 2 } 1/2 ] + Ah 4 + Bh 6 + Ch 8 + Dh 10 + ... (13) where z is the optical axis (the direction of the image) Is positive), h is the coordinate axis in the meridional direction among the coordinate axes orthogonal to the z axis with the origin at the intersection of the surface and the z axis, c is the curvature of the reference surface, and k is the conic constant A, B, C, D ...・ 4th, 6th, 8th, 10th
Next is the aspherical coefficient of ...

【0043】式(12),(13)よりある光線高にお
ける上記非球面と等価の回折型光学素子のピッチdは、
次の式(14)で表わされる。 d=mλ/[(n−1){ch/(1−c2 (1+k)h21/2 +4Ah3+ 6Bh5 +8Ch7 +10Dh9 +・・・・}] (14) 尚以下の実施例では、非球面項として10次までである
が、12次,14次,・・・の非球面項を使用してもよ
い。
From equations (12) and (13), the pitch d of the diffractive optical element equivalent to the aspherical surface at a certain ray height is
It is expressed by the following equation (14). d = mλ / [(n- 1) {ch / (1-c 2 (1 + k) h 2) 1/2 + 4Ah 3 + 6Bh 5 + 8Ch 7 + 10Dh 9 + ····}] (14) Note that the following embodiments In the example, the aspherical terms are up to 10th order, but 12th, 14th, ... Aspherical terms may be used.

【0044】次に各実施例のデーターを示す。 実施例1 焦点距離=3.6mm ,NA=1.1(水浸) ,倍率=100 ,同
焦距離=45mm 標本面最大像高=0.05mm r0 =∞(物体面) d0 =0.17 n0 =1.521 ν0 =56.02 r1 =∞ d1 =0.12 n1 ,ν1 (水) r2 =∞ d2 =2.5814 n2 =1.596 ν2 =39.3 r3 =-2.0016 d3 =0.15 r4 =-6.6313 d4 =2.2727 n3 =1.678 ν3 =55.34 r5 =-4.4815 d5 =0.15 r6 =7.2872 d6 =3.7582 n4 =1.488 ν4 =70.21 r7 =-5.6995 d7 =1.0 n5 =1.678 ν5 =55.34 r8 =8.2626 d8 =3.3432 n6 =1.497 ν6 =81.14 r9 =-9.3735 d9 =0.15 r10=∞ d10=1.5 n7 =1.516 ν7 =64.14 r11=∞ d11=0 r12=-5.5443 ×106(DOE)d12=0.15 [nU=10001] r13=8.6431 d13=1.0 n8 =1.678 ν8 =55.34 r14=4.7497 d14=4.2904 n9 =1.497 ν9 =81.14 r15=-5.7355 d15=1.0 n10=1.596 ν10=39.29 r16=-55.2542 d16=0.15 r17=12.1862 d17=2.2382 n11=1.497 ν11=81.14 r18=-14.3804 d18=7.0 n12=1.596 ν12=39.29 r19=7.3769 d19=8.5761 r20=-2.9707 d20=2.0598 n13=1.678 ν13=55.34 r21=11.1831 d21=7.0 n13=1.596 ν14=39.3 r22=-7.1268 (DOE面) K=-1,A=0.282845×10-8,B=-0.695088 ×10-10 C=0.643649×10-11 ,D=-0.321846 ×10-121 /D=0.99,(h×f)/(L×I)=0.064 ,最
小ピッチ=130 μm
The data of each example are shown below. Example 1 Focal length = 3.6 mm, NA = 1.1 (water immersion), Magnification = 100, Parfocal distance = 45 mm Maximum image height of sample surface = 0.05 mm r 0 = ∞ (object surface) d 0 = 0.17 n 0 = 1.521 ν 0 = 56.02 r 1 = ∞ d 1 = 0.12 n 1 , ν 1 (water) r 2 = ∞ d 2 = 2.5814 n 2 = 1.596 ν 2 = 39.3 r 3 = -2.0016 d 3 = 0.15 r 4 = -6.6313 d 4 = 2.2727 n 3 = 1.678 ν 3 = 55.34 r 5 = -4.4815 d 5 = 0.15 r 6 = 7.2872 d 6 = 3.7582 n 4 = 1.488 ν 4 = 70.21 r 7 = -5.6995 d 7 = 1.0 n 5 = 1.678 ν 5 = 55.34 r 8 = 8.2626 d 8 = 3.3432 n 6 = 1.497 ν 6 = 81.14 r 9 = -9.3735 d 9 = 0.15 r 10 = ∞ d 10 = 1.5 n 7 = 1.516 ν 7 = 64.14 r 11 = ∞ d 11 = 0 r 12 = -5.5443 x 10 6 (DOE) d 12 = 0.15 [n U = 10001] r 13 = 8.6431 d 13 = 1.0 n 8 = 1.678 ν 8 = 55.34 r 14 = 4.7497 d 14 = 4.2904 n 9 = 1.497 ν 9 = 81.14 r 15 = -5.7355 d 15 = 1.0 n 10 = 1.596 ν 10 = 39.29 r 16 = -55.2542 d 16 = 0.15 r 17 = 12.1862 d 17 = 2.2382 n 11 = 1.497 ν 11 = 81.14 r 18 = -14.3804 d 18 = 7.0 n 12 = 1.596 ν 12 = 39.29 r 19 = 7.3769 d 19 = 8.5761 r 20 = -2.9707 d 20 = 2.0598 n 13 = 1.678 ν 13 = 55.34 r 21 = 1.11.1831 d 21 = 7.0 n 13 = 1.596 ν 14 = 39.3 r 22 = -7.1268 (DOE surface) K = -1, A = 0.282845 × 10 -8 , B = -0.695088 × 10 -10 C = 0.643649 × 10 -11 , D = -0.321846 × 10 -12 D 1 /D=0.99, (h × f) / (L × I) = 0.064, minimum pitch = 130 μm

【0045】実施例2 焦点距離=9mm ,NA=0.6(水浸) ,倍率=20,同焦距
離=45mm 標本面最大像高=0.25mm r0 =∞ d0 =0.17 n0 =1.521 ν0 =56.02 r1 =∞ d1 =0.12 n1 ,ν1 (水) r2 =∞ d2 =1.0 n2 =1.516 ν2 =64.15 r3 =∞ d3 =1.3056 r4 =-3.8226 d4 =1.5 n3 =1.744 ν3 =44.79 r5 =-96.9912 d5 =2.2154 n4 =1.755 ν4 =27.51 r6 =-5.4626 d6 =0.15 r7 =-19.8772 d7 =2.2181 n5 =1.487 ν5 =70.21 r8 =-6.7810 d8 =0.15 r9 =-8.6681 d9 =1.5 n6 =1.639 ν6 =34.48 r10=61.1760 d10=3.7076 n7 =1.487 ν7 =70.21 r11=-7.8096 d11=0.15 r12=58.3918 d12=3.5924 n8 =1.487 ν8 =70.21 r13=-9.6113 d13=1.5 n9 =1.749 ν9 =34.96 r14=-41.0966 d14=0.15 r15=19.2027 d15=1.5 n10=1.603 ν10=42.32 r16=11.9017 d16=3.6322 n11=1.487 ν11=70.21 r17=-76.0706 d17=0.15 r18=-800896.0617(DOE) d18=0 [nU=1001] r19=∞ d19=2.0 n12=1.516 ν12=64.15 r20=∞ d20=14.1927 r21=23.9945 d21=2.9486 n13=1.762 ν13=40.1 r22=-31.1050 d22=1.5 n13=1.487 ν14=70.21 r23=10.0681 (DOE面) K=-1,A=0.263441×10-8,B=-0.964788 ×10-11 C=-0.315285 ×10-13 ,D=-0.299622 ×10-151 /D=0.99,(h×f)/(L×I)=0.205 ,最
小ピッチ=87μm
Example 2 Focal length = 9 mm, NA = 0.6 (water immersion), Magnification = 20, Parfocal distance = 45 mm Maximum image height on sample plane = 0.25 mm r 0 = ∞ d 0 = 0.17 n 0 = 1.521 ν 0 = 56.02 r 1 = ∞ d 1 = 0.12 n 1 , ν 1 (water) r 2 = ∞ d 2 = 1.0 n 2 = 1.516 ν 2 = 64.15 r 3 = ∞ d 3 = 1.3056 r 4 = -3.8226 d 4 = 1.5 n 3 = 1.744 ν 3 = 44.79 r 5 = -96.9912 d 5 = 2.2154 n 4 = 1.755 ν 4 = 27.51 r 6 = -5.4626 d 6 = 0.15 r 7 = -19.8772 d 7 = 2.2181 n 5 = 1.487 ν 5 = 70.21 r 8 = -6.7810 d 8 = 0.15 r 9 = -8.6681 d 9 = 1.5 n 6 = 1.639 ν 6 = 34.48 r 10 = 61.1760 d 10 = 3.7076 n 7 = 1.487 ν 7 = 70.21 r 11 = -7.8096 d 11 = 0.15 r 12 = 58.3918 d 12 = 3.5924 n 8 = 1.487 ν 8 = 70.21 r 13 = -9.6113 d 13 = 1.5 n 9 = 1.749 ν 9 = 34.96 r 14 = -41.0966 d 14 = 0.15 r 15 = 19.2027 d 15 = 1.5 n 10 = 1.603 ν 10 = 42.32 r 16 = 11.9017 d 16 = 3.6322 n 11 = 1.487 ν 11 = 70.21 r 17 = -76.0706 d 17 = 0.15 r 18 = -800896.0617 (DOE) d 18 = 0 [n U = 1001] r 19 = ∞ d 19 = 2.0 n 12 = 1.516 ν 12 = 64.15 r 20 = ∞ d 20 = 14.1927 r 21 = 23.9945 d 21 = 2.9486 n 13 = 1.762 ν 13 = 40.1 r 22 = -31.1050 d 22 = 1.5 n 13 = 1.487 ν 14 = 70.21 r 23 = 10.0681 (DOE surface) K = -1, A = 0.263441 × 10 -8 , B = -0.964788 × 10 -11 C = -0.315285 × 10 -13 , D = -0.299622 × 10 -15 D 1 /D=0.99, (h × f) / ( L × I) = 0.205, minimum pitch = 87 μm

【0046】実施例3 焦点距離=3.6mm ,NA=0.75,倍率=50,同焦距離=
45mm 標本面最大像高=0.265mm r0 =∞ d0 =0.9498 r1 =-2.2690 d1 =4.0409 n1 =1.678 ν1 =55.34 r2 =-3.4762 d2 =0.1 r3 =16.9526 d3 =3.3974 n2 =1.487 ν2 =70.21 r4 =-9.1604 d4 =0.1 r5 =-28.7293 d5 =1.8 n3 =1.596 ν3 =39.29 r6 =6.5830 d6 =4.4396 n4 =1.487 ν4 =70.21 r7 =-15.6408 d7 =0.1 r8 =∞ d8 =1.0 n5 =1.516 ν5 =64.15 r9 =∞ d9 =0 r10=-5.7585 ×106(DOE)d10=0.1 [nU=10001] r11=20.2252 d11=3.6611 n6 =1.487 ν6 =70.21 r12=-10.5398 d12=1.8 n7 =1.596 ν7 =39.29 r13=10.7283 d13=3.4719 n8 =1.487 ν8 =70.21 r14=-28.0713 d14=9.5097 r15=24.5125 d15=3.5584 n9 =1.596 ν9 =39.21 r16=-8.897 d16=1.8 n10=1.498 ν10=65.03 r17=-18.2382 d17=4.0127 r18=-7.0308 d18=1.8 n11=1.498 ν11=65.03 r19=15.1697 (DOE面) K=-1,A=0.885874×10-9,B=-0.373681 ×10-10 C=0.171463×10-11 ,D=-0.455259 ×10-131 /D=0.98,(h×f)/(L×I)=0.071 ,最
小ピッチ=80 μm
Example 3 Focal length = 3.6 mm, NA = 0.75, Magnification = 50, Parfocal distance =
Maximum image height of 45 mm sample surface = 0.265 mm r 0 = ∞ d 0 = 0.9498 r 1 = -2.2690 d 1 = 4.0409 n 1 = 1.678 ν 1 = 55.34 r 2 = -3.4762 d 2 = 0.1 r 3 = 16.9526 d 3 = 3.3974 n 2 = 1.487 ν 2 = 70.21 r 4 = -9.1604 d 4 = 0.1 r 5 = -28.7293 d 5 = 1.8 n 3 = 1.596 ν 3 = 39.29 r 6 = 6.5830 d 6 = 4.4396 n 4 = 1.487 ν 4 = 70.21 r 7 = -15.6408 d 7 = 0.1 r 8 = ∞ d 8 = 1.0 n 5 = 1.516 ν 5 = 64.15 r 9 = ∞ d 9 = 0 r 10 = -5.7585 × 10 6 (DOE) d 10 = 0.1 [ n U = 10001] r 11 = 20.2252 d 11 = 3.6611 n 6 = 1.487 ν 6 = 70.21 r 12 = -10.5398 d 12 = 1.8 n 7 = 1.596 ν 7 = 39.29 r 13 = 10.7283 d 13 = 3.4719 n 8 = 1.487 ν 8 = 70.21 r 14 = -28.0713 d 14 = 9.5097 r 15 = 24.5125 d 15 = 3.5584 n 9 = 1.596 ν 9 = 39.21 r 16 = -8.897 d 16 = 1.8 n 10 = 1.498 ν 10 = 65.03 r 17 =- 18.2382 d 17 = 4.0127 r 18 = -7.0308 d 18 = 1.8 n 11 = 1.498 ν 11 = 65.03 r 19 = 15.1697 (DOE surface) K = -1, A = 0.885874 x 10 -9 , B = -0.373681 x 10 -10 C = 0.171463 x 10 -11 , D = -0.455259 x 10 -13 D 1 / D = 0.98 , (H × f) / (L × I) = 0.071, minimum pitch = 80 μm

【0047】実施例4 焦点距離=3.6mm ,NA=0.75,倍率=50,同焦距離=
45mm 標本面最大像高=0.265mm r0 =∞ d0 =0.9145 r1 =-2.6605 d1 =4.1491 n1 =1.678 ν1 =55.34 r2 =-3.3609 d2 =0.1 r3 =59.4216 d3 =3.9495 n2 =1.617 ν2 =62.8 r4 =-4.8439 d4 =1.8 n3 =1.596 ν3 =39.29 r5 =8.9186 d5 =4.4558 n4 =1.439 ν4 =94.96 r6 =-11.2459 d6 =0.1 r7 =∞ d7 =1.0 n5 =1.516 ν5 =64.15 r8 =∞ d8 =0 r9 =-7.2979 ×106(DOE)d9 =0.1 [nU=10001] r10=19.9999 d10=3.4234 n6 =1.439 ν6 =94.96 r11=-21.6675 d11=14.4364 r12=103.5371 d12=6.0 n7 =1.596 ν7 =39.29 r13=-11.7643 d13=3.0881 r14=-6.5185 d14=2.7072 n8 =1.498 ν8 =65.03 r15=17.4388 (DOE面) K=-1,A=0.136333×10-8,B=-0.205407 ×10-10 C=0.275330×10-12 ,D=-0.502831 ×10-141 /D=0.96,(h×f)/(L×I)=0.076 ,最
小ピッチ=157 μm
Example 4 Focal length = 3.6 mm, NA = 0.75, Magnification = 50, Parfocal distance =
Maximum image height of 45 mm specimen surface = 0.265 mm r 0 = ∞ d 0 = 0.9145 r 1 = -2.6605 d 1 = 4.1491 n 1 = 1.678 ν 1 = 55.34 r 2 = -3.3609 d 2 = 0.1 r 3 = 59.4216 d 3 = 3.9495 n 2 = 1.617 ν 2 = 62.8 r 4 = −4.8439 d 4 = 1.8 n 3 = 1.596 ν 3 = 39.29 r 5 = 8.9186 d 5 = 4.4558 n 4 = 1.439 ν 4 = 94.96 r 6 = -11.2459 d 6 = 0.1 r 7 = ∞ d 7 = 1.0 n 5 = 1.516 ν 5 = 64.15 r 8 = ∞ d 8 = 0 r 9 = -7.2979 × 10 6 (DOE) d 9 = 0.1 [n U = 10001] r 10 = 19.9999 d 10 = 3.4234 n 6 = 1.439 ν 6 = 94.96 r 11 = -21.6675 d 11 = 14.4364 r 12 = 103.5371 d 12 = 6.0 n 7 = 1.596 ν 7 = 39.29 r 13 = -11.7643 d 13 = 3.0881 r 14 = - 6.5185 d 14 = 2.7072 n 8 = 1.498 ν 8 = 65.03 r 15 = 17.4388 (DOE surface) K = -1, A = 0.136333 × 10 -8 , B = -0.205407 × 10 -10 C = 0.275330 × 10 -12 , D = -0.502831 × 10 -14 D 1 /D=0.96,(h×f)/(L×I)=0.076, minimum peak Ji = 157 μm

【0048】実施例5 焦点距離=36mm,NA=0.20,倍率=10,同焦距離=10
0mm 標本面最大像高=0.8mm r0 =∞ d0 =10.8729 r1 =-10.1528 d1 =7.0 SiO22 =-12.8207 d2 =0.2 r3 =1185.9548 d3 =7.0 SiO24 =-20.8861 d4 =9.6560 r5 =166976.3323(DOE)d5 =0 [nU=1001] r6 =∞ d6 =3.0 SiO27 =∞ d7 =36.8382 r8 =18.3786 d8 =5.2879 CaF29 =-14.5637 d9 =5.2019 SiO210=15.9489 d10=3.5421 r11=-9.8983 d11=6.6329 SiO212=-12.7649 d12=0.2 r13=-107.5879 d13=3.4872 SiO214=-38.6725 D1 /D=0.69,(h×f)/(L×I)=0.344 ,最
小ピッチ=8.9 μm ただし、r0,r1,r2・・・は各面の曲率半径、d0
1,d2・・・は各面間の間隔、n1,n2,・・・は各
レンズの屈折率、ν1,ν2,・・・は各レンズのアッベ
数である。
Example 5 Focal length = 36 mm, NA = 0.20, Magnification = 10, Parfocal distance = 10
0 mm Maximum image height on specimen surface = 0.8 mm r 0 = ∞ d 0 = 10.8729 r 1 = -10.1528 d 1 = 7.0 SiO 2 r 2 = -12.8207 d 2 = 0.2 r 3 = 1185.9548 d 3 = 7.0 SiO 2 r 4 = -20.8861 d 4 = 9.6560 r 5 = 166976.3323 (DOE) d 5 = 0 [n U = 1001] r 6 = ∞ d 6 = 3.0 SiO 2 r 7 = ∞ d 7 = 36.8382 r 8 = 18.3786 d 8 = 5.2879 CaF 2 r 9 = -14.5637 d 9 = 5.2019 SiO 2 r 10 = 15.9489 d 10 = 3.5421 r 11 = -9.8983 d 11 = 6.6329 SiO 2 r 12 = -12.7649 d 12 = 0.2 r 13 = -107.5879 d 13 = 3.4872 SiO 2 r 14 = -38.6725 D 1 /D=0.69, (h × f) / (L × I) = 0.344, minimum pitch = 8.9 μm, where r 0 , r 1 , r 2 ... Radius, d 0 ,
d 1 , d 2 ... Are the distances between the surfaces, n 1 , n 2 , ... Are the refractive indices of the lenses, and ν 1 , ν 2 , ... Are the Abbe numbers of the lenses.

【0049】上記データーにおいて、r0はいずれも物
体面である。又実施例1,2は水浸系対物レンズで
0,ν0はカバーガラス、n1,ν1は水であり、実施例
3〜5のd0は作動距離である。更にデーター中のDO
Eは回折型光学素子で、式(14)にて求められるビッ
チdの回折面が形成されている。
In the above data, r 0 is the object plane. Further, Examples 1 and 2 are water immersion objective lenses, n 0 and ν 0 are cover glasses, n 1 and ν 1 are water, and d 0 of Examples 3 to 5 is a working distance. Further DO in the data
Reference numeral E denotes a diffractive optical element, on which the diffractive surface of the bitch d obtained by the equation (14) is formed.

【0050】以上の実施例1は図1に、実施例2は図4
に、実施例3は図7に又実施例4は図10に示す通りの
構成である。これら実施例で用いている回折型光学素子
は非球面効果を持たせたものでこれによって球面収差、
コマ収差等も良好に補正している。又実施例5は図13
に示す構成で低NA、低倍率なので回折型光学素子に非
球面効果を持たせる必要はなく、回折型光学素子は色収
差のみを補正している。
The above first embodiment is shown in FIG. 1, and the second embodiment is shown in FIG.
In addition, the third embodiment has a configuration as shown in FIG. 7 and the fourth embodiment has a configuration as shown in FIG. The diffractive optical elements used in these examples are those having an aspherical effect, whereby spherical aberration,
The coma aberration etc. are corrected well. In addition, Example 5 is shown in FIG.
Since the structure shown in (1) has a low NA and a low magnification, it is not necessary to give the diffractive optical element an aspherical effect, and the diffractive optical element corrects only chromatic aberration.

【0051】実施例1は、近紫外から可視にわたって色
補正を行なった対物レンズで、主として軸上色収差の補
正のために光束径の大きい所に回折型光学素子を配置し
てある。実施例2は、近紫外から可視にわたって色補正
を行なった対物レンズで、軸上色収差、倍率の色収差を
1枚の回折型光学素子で補正するために光束径が大きく
かつ主光線高の高い位置に回折型光学素子を配置してい
る。実施例3は可視域で色補正を行なっている対物レン
ズであり、実施例4も、1枚の回折型光学素子で軸上色
収差、倍率色収差を補正している。更に実施例5は、回
折型光学素子により主として軸外色収差を補正し石英と
螢石とを接合したレンズで主として軸上色収差を補正し
ている。
Example 1 is an objective lens which has been color-corrected from near ultraviolet to visible, and a diffractive optical element is arranged mainly at a large light beam diameter for correction of axial chromatic aberration. Example 2 is an objective lens that has been color-corrected from near-ultraviolet to visible, and has a large beam diameter and a high chief ray height in order to correct axial chromatic aberration and lateral chromatic aberration with a single diffractive optical element. A diffractive optical element is arranged at. Example 3 is an objective lens that performs color correction in the visible range, and Example 4 also corrects axial chromatic aberration and lateral chromatic aberration with one diffractive optical element. Furthermore, in Example 5, the off-axis chromatic aberration is mainly corrected by the diffractive optical element, and the on-axis chromatic aberration is mainly corrected by the lens in which quartz and fluorite are cemented.

【0052】尚各実施例の断面図は、右側が物体側であ
る。また図1,4,7,10における符号Bは胴付位置
を示し、夫々レンズ最終面(図において最も左側の面)
より物体側に3.6,0.3526,0.6477,
1.2300である。実施例5の胴付位置はレンズ最終
面より像側に1.0808である。更に各実施例の収差
曲線図は、逆追跡により描いたものである。
In each of the sectional views of the embodiments, the right side is the object side. In addition, reference numeral B in FIGS. 1, 4, 7 and 10 indicates a body-attached position, and the lens final surface (the leftmost surface in the drawing), respectively.
More toward the object side, 3.6, 0.3526, 0.6477,
It is 1.2300. The position on the body of Example 5 is 1.0808 on the image side of the final lens surface. Further, the aberration curve diagrams of the respective examples are drawn by reverse tracing.

【0053】[0053]

【発明の効果】本発明の対物レンズは、回折型光学素子
を用いることによって高NA,高倍率で、諸収差特に色
収差を良好に補正したレンズ系である。
The objective lens of the present invention is a lens system having a high NA and a high magnification by using a diffractive optical element, and various aberrations, particularly chromatic aberration, are favorably corrected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の実施例1の球面収差,非点収差,歪曲
収差曲線図
FIG. 2 is a spherical aberration, astigmatism, and distortion aberration curve diagram of Example 1 of the present invention.

【図3】本発明の実施例1のコマ収差曲線図FIG. 3 is a coma aberration curve diagram of the first embodiment of the present invention.

【図4】本発明の実施例2の断面図FIG. 4 is a sectional view of a second embodiment of the present invention.

【図5】本発明の実施例2の球面収差,非点収差,歪曲
収差曲線図
FIG. 5 is a spherical aberration, astigmatism, and distortion aberration curve diagram of Example 2 of the present invention.

【図6】本発明の実施例2のコマ収差曲線図FIG. 6 is a coma aberration curve diagram of the second embodiment of the present invention.

【図7】本発明の実施例3の断面図FIG. 7 is a sectional view of a third embodiment of the present invention.

【図8】本発明の実施例3の球面収差,非点収差,歪曲
収差曲線図
FIG. 8 is a spherical aberration, astigmatism, and distortion aberration curve diagram of Example 3 of the present invention.

【図9】本発明の実施例3のコマ収差曲線図FIG. 9 is a coma aberration curve diagram of Example 3 of the present invention.

【図10】本発明の実施例4の断面図FIG. 10 is a sectional view of a fourth embodiment of the present invention.

【図11】本発明の実施例4の球面収差,非点収差,歪
曲収差曲線図
FIG. 11 is a curve diagram of spherical aberration, astigmatism, and distortion of Example 4 of the present invention.

【図12】本発明の実施例4のコマ収差曲線図FIG. 12 is a coma aberration curve diagram of Example 4 of the present invention.

【図13】本発明の実施例5の断面図FIG. 13 is a sectional view of a fifth embodiment of the present invention.

【図14】本発明の実施例5の球面収差,非点収差,歪
曲収差曲線図
FIG. 14 is a curve diagram of spherical aberration, astigmatism, and distortion of Example 5 of the present invention.

【図15】本発明の実施例5のコマ収差曲線図FIG. 15 is a coma aberration curve diagram of Example 5 of the present invention.

【図16】通常のガラスでの屈折状況を示す図FIG. 16 is a view showing a refraction state of ordinary glass.

【図17】回折現象による光の屈折状況を示す図FIG. 17 is a diagram showing a refraction state of light due to a diffraction phenomenon.

【図18】回折型光学素子のブレーズ化した状態での断
面図
FIG. 18 is a sectional view of a diffractive optical element in a blazed state.

【図19】回折型光学素子のバイナリー近似を行なった
ものの断面図
FIG. 19 is a sectional view of a diffractive optical element subjected to binary approximation.

【図20】ウルトラ−ハイ インデックス レンズにお
ける光の屈折状況を示す図
FIG. 20 is a diagram showing a refraction state of light in an ultra-high index lens.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年11月1日[Submission date] November 1, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】又前記の回折現象を利用した回折型光学素
子即ちディフラクティブ オプティカル エレメント
[Diffractive Optical Elem
ents(DOE)]は、オプトロニクス社発行の「光
学デザイナーのための光学エレメント」第6,第7章、
および William C.Sweatt著『NEW
METHODS OF DESIGNING HOL
OGRAPHIC OPTICAL ELEMENT
S』(SPIE.VOL.126,P46−53,19
77)等に記載されているが、その原理を簡単に述べる
と下記の通りである。
A diffractive optical element utilizing the above-mentioned diffraction phenomenon, that is, a diffractive optical element
[Diffractive Optical Elem
ents (DOE)] are published by Optronics in "Optical Elements for Optical Designers", Chapters 6 and 7,
And William C. "NEW" by Sweet
METHODS OF DESIGNING HOL
OGRAPHIC OPTICAL ELEMENT
S ”(SPIE. VOL. 126, P46-53, 19
77) and the like, the principle of which is briefly described as follows.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】 df/dλ=−f(dn/dλ)/(n−1) ∴ Δf=−f{Δn/(n−1)} (4) ここで係数倍的効果を除くと、Δn/(n−1)が分散
特性を表わすことになるので、分散値νを次のように定
義出来る。
Df / dλ = −f (dn / dλ) / (n−1) ∴Δf = −f {Δn / (n−1)} (4) Excluding the coefficient multiplication effect, Δn / ( Since n-1) represents the dispersion characteristic, the dispersion value ν can be defined as follows.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】 ν=λ/(λ−λ)=−3.453 (9) このように回折型光学素子は、非常に大きな負の分散特
性を持つ。通常のガラスの分散特性は、約20〜95で
あるので、回折型光学素子は非常に大きな逆分散特性を
持つことがわかる。また同様の計算により、回折型光学
素子は異常分散性を持つことがわかる。
Ν d = λ d / (λ F −λ C ) = − 3.453 (9) As described above, the diffractive optical element has a very large negative dispersion characteristic. Since the dispersion characteristic of ordinary glass is about 20 to 95, it can be seen that the diffractive optical element has a very large inverse dispersion characteristic. In addition, similar calculations show that the diffractive optical element has anomalous dispersion .

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】更に色収差を良好に補正するためには、次
条件(1),(2)の少なくとも一方を満足すること
が望ましい。
In order to further correct chromatic aberration, it is desirable to satisfy at least one of the following conditions (1) and (2) .

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】以上述べたように、本発明の対物レンズに
おいては、その用途に応じて適切な回折型光学素子を前
記の条件(1),(2)の少なくとも一方を満足する
置に配置することが、特に色収差を一層良好に補正する
上でより好ましい。
As described above, in the objective lens of the present invention, a diffractive optical element suitable for the intended use is required to satisfy at least one of the above conditions (1) and (2). It is more preferable to dispose it in a stationary position in order to satisfactorily correct chromatic aberration.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも1枚の回折型光学素子と、少な
くとも一つの接合レンズとを有することを特徴とする対
物レンズ。
1. An objective lens comprising at least one diffractive optical element and at least one cemented lens.
【請求項2】回折型光学素子の少なくとも1枚が次の条
件(1),(2)を満足する請求項1の対物レンズ。 (1) D1 /D>0.8 (2) (h×f)/(L×I)>0.07 ただし、D1 は回折型光学素子の位置でのマージナル光
束の径、Dは最大のマージナル光束径、hは回折型光学
素子の位置での主光線高、fは対物レンズの焦点距離、
Lは同焦点距離、Iは標本面での最大像高である。
2. The objective lens according to claim 1, wherein at least one of the diffractive optical elements satisfies the following conditions (1) and (2). (1) D 1 /D>0.8 (2) (h × f) / (L × I)> 0.07 where D 1 is the diameter of the marginal light beam at the position of the diffractive optical element, and D is the maximum. Marginal beam diameter, h is the chief ray height at the position of the diffractive optical element, f is the focal length of the objective lens,
L is the parfocal distance, and I is the maximum image height on the sample surface.
JP14251393A 1993-05-24 1993-05-24 Objective lens Expired - Fee Related JP3312057B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14251393A JP3312057B2 (en) 1993-05-24 1993-05-24 Objective lens
US08/704,237 US5631779A (en) 1993-05-24 1996-08-28 Objective lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14251393A JP3312057B2 (en) 1993-05-24 1993-05-24 Objective lens

Publications (2)

Publication Number Publication Date
JPH06331898A true JPH06331898A (en) 1994-12-02
JP3312057B2 JP3312057B2 (en) 2002-08-05

Family

ID=15317106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14251393A Expired - Fee Related JP3312057B2 (en) 1993-05-24 1993-05-24 Objective lens

Country Status (1)

Country Link
JP (1) JP3312057B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748372A (en) * 1995-04-17 1998-05-05 Olympus Optical Company Limited High numerical aperture and long working distance objective system using diffraction-type optical elements
US5886827A (en) * 1997-11-14 1999-03-23 Nikon Corporation Microscope objective lens with separated lens groups
JP2001324674A (en) * 2000-03-08 2001-11-22 Canon Inc Optical system and optical equipment
US6496310B2 (en) 2000-11-17 2002-12-17 Canon Kabushiki Kaisha Optical system and optical apparatus provided with the same
US6825979B2 (en) 2000-03-08 2004-11-30 Canon Kabushiki Kaisha Optical system having a diffractive optical element, and optical apparatus
JP2009198961A (en) * 2008-02-25 2009-09-03 Nikon Corp Objective lens
WO2009125778A1 (en) 2008-04-11 2009-10-15 株式会社ニコン Microscope objective lens
JP2009251554A (en) * 2008-04-11 2009-10-29 Nikon Corp Microscope objective lens
JP2010066445A (en) * 2008-09-10 2010-03-25 Nikon Corp Microscope objective lens
US9366850B2 (en) 2010-06-16 2016-06-14 Nikon Corporation Microscope objective lens
WO2019225063A1 (en) * 2018-05-25 2019-11-28 株式会社ニコン Objective lens, optical system, and microscope
CN113608335A (en) * 2021-08-12 2021-11-05 维沃移动通信(杭州)有限公司 Optical lens, optical module and electronic equipment
CN114236761A (en) * 2021-12-20 2022-03-25 福建福光股份有限公司 Quasi-linear dispersion objective lens for high-precision surface morphology detection
CN118759697A (en) * 2024-09-02 2024-10-11 宁波永新光学股份有限公司 A water immersion objective lens with a 20x large numerical aperture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2194412B1 (en) 2007-09-25 2019-05-01 Nikon Corporation Objective lens

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748372A (en) * 1995-04-17 1998-05-05 Olympus Optical Company Limited High numerical aperture and long working distance objective system using diffraction-type optical elements
US5886827A (en) * 1997-11-14 1999-03-23 Nikon Corporation Microscope objective lens with separated lens groups
JP2001324674A (en) * 2000-03-08 2001-11-22 Canon Inc Optical system and optical equipment
US6825979B2 (en) 2000-03-08 2004-11-30 Canon Kabushiki Kaisha Optical system having a diffractive optical element, and optical apparatus
US6496310B2 (en) 2000-11-17 2002-12-17 Canon Kabushiki Kaisha Optical system and optical apparatus provided with the same
US9030750B2 (en) 2008-02-25 2015-05-12 Nikon Corporation Objective lens
JP2009198961A (en) * 2008-02-25 2009-09-03 Nikon Corp Objective lens
WO2009107610A1 (en) 2008-02-25 2009-09-03 株式会社ニコン Objective lens
US9158102B2 (en) 2008-04-11 2015-10-13 Nikon Corporation Microscope objective lens including a first lens group with a positive refractive power, a second lens group, and a third lens group having a negative refractive power
EP3128355A1 (en) 2008-04-11 2017-02-08 Nikon Corporation Microscope objective lens
CN101999090A (en) * 2008-04-11 2011-03-30 株式会社尼康 Microscope objective lens
US8958154B2 (en) 2008-04-11 2015-02-17 Nikon Corporation Microscope objective lens including a diffractive optical element
JP2009251554A (en) * 2008-04-11 2009-10-29 Nikon Corp Microscope objective lens
US9134520B2 (en) 2008-04-11 2015-09-15 Nikon Corporation Microscope objective lens including a first lens group with a positive refractive power, a second lens group with a positive refractive power, and a third lens group having a negative refractive power
WO2009125778A1 (en) 2008-04-11 2009-10-15 株式会社ニコン Microscope objective lens
JP2010066445A (en) * 2008-09-10 2010-03-25 Nikon Corp Microscope objective lens
US9366850B2 (en) 2010-06-16 2016-06-14 Nikon Corporation Microscope objective lens
US9851546B2 (en) 2010-06-16 2017-12-26 Nikon Corporation Microscope objective lens
US10281703B2 (en) 2010-06-16 2019-05-07 Nikon Corporation Microscope objective lens
WO2019225063A1 (en) * 2018-05-25 2019-11-28 株式会社ニコン Objective lens, optical system, and microscope
CN113608335A (en) * 2021-08-12 2021-11-05 维沃移动通信(杭州)有限公司 Optical lens, optical module and electronic equipment
CN113608335B (en) * 2021-08-12 2022-12-20 维沃移动通信(杭州)有限公司 Optical lens, optical module and electronic equipment
CN114236761A (en) * 2021-12-20 2022-03-25 福建福光股份有限公司 Quasi-linear dispersion objective lens for high-precision surface morphology detection
CN118759697A (en) * 2024-09-02 2024-10-11 宁波永新光学股份有限公司 A water immersion objective lens with a 20x large numerical aperture

Also Published As

Publication number Publication date
JP3312057B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
JP3140111B2 (en) High magnification microscope objective
US5978159A (en) Hybrid photographic objective
US5748372A (en) High numerical aperture and long working distance objective system using diffraction-type optical elements
EP2264505A1 (en) Objective lens
JP3312057B2 (en) Objective lens
JPH11295598A (en) Zoom lens using diffraction optical element
JPH06160720A (en) Liquid immersion system microscope objective lens
JP3313163B2 (en) Microscope objective lens
US5631779A (en) Objective lens system
JPH0711630B2 (en) Microscope objective lens
JPH07281097A (en) Liquid immersion system microscope objective lens
US20050207021A1 (en) Immersion microscope objective lens
JPH1123968A (en) Zoom lens having diffraction surface
JPH07120671A (en) Wide angle lens
US4784478A (en) Microscope objective
US5949577A (en) Lens system including a diffractive optical element
JP5206085B2 (en) Microscope objective lens
JP3312061B2 (en) Microscope objective lens
US4027951A (en) Parfocal low-magnification microscope objective lens systems
JP3825817B2 (en) Objective lens
JP4097781B2 (en) Objective lens
US5808807A (en) Microscope objective lens with cemented biconvex triplet
JP3242451B2 (en) Microscope objective lens
JPH09197283A (en) Objective lens
JPH1138330A (en) Eyepiece

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees