Nothing Special   »   [go: up one dir, main page]

JPH06319589A - Production of optically active delta-lactone - Google Patents

Production of optically active delta-lactone

Info

Publication number
JPH06319589A
JPH06319589A JP14416793A JP14416793A JPH06319589A JP H06319589 A JPH06319589 A JP H06319589A JP 14416793 A JP14416793 A JP 14416793A JP 14416793 A JP14416793 A JP 14416793A JP H06319589 A JPH06319589 A JP H06319589A
Authority
JP
Japan
Prior art keywords
lactone
lipase
optically active
racemic
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14416793A
Other languages
Japanese (ja)
Other versions
JP3493043B2 (en
Inventor
Jun Suzuki
潤 鈴木
Masayuki Kamata
昌之 鎌田
Hironori Nakamura
博則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soda Aromatic Co Ltd
Soda Koryo KK
Original Assignee
Soda Aromatic Co Ltd
Soda Koryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soda Aromatic Co Ltd, Soda Koryo KK filed Critical Soda Aromatic Co Ltd
Priority to JP14416793A priority Critical patent/JP3493043B2/en
Publication of JPH06319589A publication Critical patent/JPH06319589A/en
Application granted granted Critical
Publication of JP3493043B2 publication Critical patent/JP3493043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To provide inexpensive optically active lactones having excellent flavor as perfumery raw material and applicable as a preparation raw material for perfumery. CONSTITUTION:A racemic lactone available at any time at a low cost is used as an industrial raw material and treated with a lipase originated from microorganism to effect the optical resolution of the racemic lactone. The obtained hydroxycarboxylic acid is cyclized to industrially produce R and S optically active lactones useful as preparation raw materials arbitrarily miscible at the natural existing ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微生物が生産するリパ
ーゼによるラセミ体ラクトン類の光学分割方法に関する
ものである。さらに詳しく述べれば、本発明は香気的に
も優れ、任意に天然存在比に調合できる調合素材として
有用な光学活性δ−ラクトン類の製造法に関するもので
ある。
TECHNICAL FIELD The present invention relates to a method for optically resolving racemic lactones by lipase produced by microorganisms. More specifically, the present invention relates to a method for producing an optically active δ-lactone which is excellent in aroma and is useful as a compounding material which can be arbitrarily compounded in a natural abundance ratio.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来か
ら調合用素材としてのラクトン類はその特徴的な香気か
ら食品、香粧品を問わず多方面で使用されてきたが、そ
れらはラセミ体ラクトンであった。近年になり分析技術
も進歩したことから天然物中に存在するラクトンのR/
S比が明らかになってきた(“12th Intern
ational Congress of Flavo
urs Fragrances and Essent
ial Oils”,Viena,Oct.4−8,1
992)と同時に、消費者ニーズがより天然感のある香
りを求めるようになってきた。R体、S体でその香気特
性が異なっていることから、より天然感のある香りを創
り出すためには目的に応じ最も適したR/S比で調合す
ることが望まれる。
2. Description of the Related Art Conventionally, lactones as raw materials for compounding have been used in various fields for foods and cosmetics due to their characteristic aroma, but they are racemic lactones. Met. Due to recent advances in analytical technology, R / of lactones found in natural products
The S ratio has become clear ("12th Intern
national Congress of Flavo
urs Fragrances and Essent
ial Oils ", Vienna, Oct. 4-8, 1
992) At the same time, consumer needs have come to demand a more natural scent. Since the R-form and the S-form have different aroma characteristics, it is desired to mix them in the most suitable R / S ratio according to the purpose in order to create a more natural scent.

【0003】光学活性を有するラクトンの一部は昆虫の
フェロモンとして以前より知られており有機化学的な合
成法が数多く試みられている(J.Org.Che
m.,44,2169,1979)。しかしながら反応
ステップが長かったり、何れも前駆体となるキラル化合
物の調製に困難を要するか、市販されていても高価なも
のとなっており、安価な調合素材を提供するには不向き
である。
Some of the optically active lactones have long been known as insect pheromones, and many organic chemical synthetic methods have been tried (J. Org. Che.
m. , 44, 2169, 1979). However, the reaction steps are long, and it is difficult to prepare a chiral compound as a precursor in each case, or it is expensive even if it is commercially available, which is not suitable for providing an inexpensive preparation material.

【0004】最近になりパン酵母を利用した不斉還元法
によりケト酸よりヒドロキシカルボン酸を調製する方法
が数多く紹介されている中で、ラクトンの合成法に応用
された例があるが(有機合成化学,49,37,199
1)、生成物に多量の酵母由来の香気成分が含まれ、調
合素材と利用するにはさらに精製工程が必要となる欠点
がある。また(R)−(+)しかできないなど問題があ
る。
Recently, many methods for preparing a hydroxycarboxylic acid from a keto acid by an asymmetric reduction method using baker's yeast have been introduced, and there is an example applied to a lactone synthesis method (organic synthesis). Chemistry, 49 , 37, 199
1) The product contains a large amount of yeast-derived aroma components, and there is a drawback that a further purification step is required in order to use it as a preparation material. Further, there is a problem that only (R)-(+) can be made.

【0005】ラセミ体ヒドロキシカルボン酸をリパーゼ
を用い環化し光学活性なラクトンを得る方法は酵素を利
用した方法の中で最も一般的な方法であるが、基質とな
るヒドロキシカルボン酸の調達や、基質に対する酵素の
使用量が多いなど問題がある(Tetrahedron
Lett.,28,3861,1987)。
The method of cyclizing a racemic hydroxycarboxylic acid with a lipase to obtain an optically active lactone is the most general method among the methods utilizing an enzyme. There is a problem such as a large amount of enzyme used for Tetrahedron
Lett. , 28, 3861, 1987).

【0006】ラセミ体ラクトンを動物起源の酵素により
分割する方法が紹介されているが、S体のみ調製可能で
あり、R体の調製ができない(Tetrahedron
Lett.,29,1915,1988)。
A method for resolving racemic lactone with an enzyme of animal origin has been introduced, but only the S-form can be prepared, and the R-form cannot be prepared (Tetrahedron).
Lett. , 29, 1915, 1988).

【0007】本発明は、上述のような実情に鑑みなされ
たものであり、その目的は、香料素材として香気的に優
れ、調合素材として応用できる安価な光学活性ラクトン
類の製造法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing an inexpensive optically active lactone which is excellent in aroma as a perfume material and can be applied as a compounding material. It is in.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに鋭意研究の結果、常時入手可能で、安価なラセミ体
ラクトンを工業原料として用い、微生物起源のリパーゼ
を作用させることによりラセミ体混合物を光学分割し、
任意に天然存在比に調合できる有用な調合素材として両
R体、S体光学活性ラクトン類を工業的に製造し得るこ
とを見出し、本発明に到ったものである。
[Means for Solving the Problems] As a result of earnest research to achieve the above object, a racemic mixture was prepared by using a racemic lactone, which is always available and inexpensive, as an industrial raw material and allowed to act on lipase of microbial origin. Optical division,
The present invention has been found out that both R-form and S-form optically active lactones can be industrially produced as a useful compounding material which can be arbitrarily compounded in a natural abundance ratio.

【0009】即ち本発明は一般式(I)That is, the present invention has the general formula (I)

【0010】[0010]

【化3】 [Chemical 3]

【0011】(式中、Rは炭素数3〜7の飽和直鎖アル
キル基である)で表されるラセミ体ラクトンに、微生物
起源の不斉加水分解能を有するリパーゼを作用させ、得
られたヒドロキシカルボン酸を脱水環化することを特徴
とする一般式(II)
Hydroxy obtained by reacting a racemic lactone represented by the formula (wherein R is a saturated linear alkyl group having 3 to 7 carbon atoms) with a lipase having an asymmetric hydrolysis ability of microbial origin. General formula (II) characterized by cyclodehydrating a carboxylic acid

【0012】[0012]

【化4】 [Chemical 4]

【0013】(式中、Rは炭素数3〜7の飽和直鎖アル
キル基であり、*を付した炭素原子は光学活性な炭素原
子である)で表される光学活性δ−ラクトンの製造法で
ある。
A method for producing an optically active δ-lactone represented by the formula (wherein R is a saturated linear alkyl group having 3 to 7 carbon atoms, and a carbon atom with * is an optically active carbon atom). Is.

【0014】本発明で用いるラセミ体ラクトンは一般式
(I)で表されるものであればいずれの使用も可能であ
る。本発明ではこれらラセミ体ラクトンに微生物起源の
リパーゼを作用させR体、S体のうちいずれか一方を優
先的に不斉加水分解させる。次いで反応液より未反応ラ
クトンと生成したヒドロキシカルボン酸を分離・採取す
ることにより光学分割することができる。次いでヒドロ
キシカルボン酸を常法に従い脱水環化反応させて目的物
である式(II)の光学活性ラクトンを得る。
Any racemic lactone used in the present invention can be used as long as it is represented by the general formula (I). In the present invention, a lipase of microbial origin is allowed to act on these racemic lactones to preferentially asymmetrically hydrolyze either the R form or the S form. Then, the unreacted lactone and the produced hydroxycarboxylic acid can be separated and collected from the reaction solution for optical resolution. Then, the hydroxycarboxylic acid is subjected to a dehydration cyclization reaction according to a conventional method to obtain the objective optically active lactone of the formula (II).

【0015】尚上記反応で得られた未反応ラクトンに前
記反応で使用したリパーゼとは光学基質選択性の異なる
リパーゼを作用させることにより光学活性の異なるヒド
ロキシカルボン酸を得ることができる。この操作を繰り
返すことによりラセミ体ラクトンから同時にR体、S体
をより効果よく採取することができる。
By reacting the unreacted lactone obtained in the above reaction with a lipase different in optical substrate selectivity from the lipase used in the above reaction, hydroxycarboxylic acids having different optical activities can be obtained. By repeating this operation, the R-form and S-form can be collected more effectively from the racemic lactone at the same time.

【0016】本発明で用いるリパーゼは微生物起源の不
斉加水分解能を有するものであればよく、一般的に市販
されているシュードモナス属、キャンディダ属、ペニシ
リウム属、アスペルギルス属、ムコール属、リゾープス
属、ジオトリカム属等の微生物起源のリパーゼから適宜
選択しうるが、δ−ラクトンに対して高い光学基質選択
性を有しているシュードモナス属、アスペルギルス属の
微生物が生産するリパーゼが特に好ましい。
The lipase used in the present invention may be any one having asymmetric hydrolyzing ability of microbial origin, and generally commercially available Pseudomonas, Candida, Penicillium, Aspergillus, Mucor, Rhizopus, The lipase produced by a microorganism of the genus Pseudomonas or Aspergillus, which has a high optical substrate selectivity for δ-lactone, can be appropriately selected from lipases derived from microorganisms such as the genus Geotricam.

【0017】本発明において好ましく用いられる市販の
リパーゼの例を挙げると次のようなものがある。
Examples of commercially available lipases preferably used in the present invention are as follows.

【0018】[0018]

【表1】 [Table 1]

【0019】これらリバーゼはそれ自体を用いてもまた
固定化して用いてもよい。
These ribases may be used by themselves or may be immobilized.

【0020】本発明の不斉加水分解は一般的な酵素反応
条件に準じて行いうる。以下に反応条件を例示的に説明
する。
The asymmetric hydrolysis of the present invention can be carried out according to general enzymatic reaction conditions. The reaction conditions will be described below as an example.

【0021】まず選択した酵素を一般的に用いられる燐
酸系緩衝液(0.1M、PH7.0)に溶解する。この
酵素溶液にラセミ体ラクトンを混合することにより反応
が行われる。基質と緩衝液の割合は1:10〜1:30
(重量比)、特に1:20(重量比)が好ましい。基質
と酵素量の割合は、酵素量が多い方が収率、分割率が向
上するが、酵素が比較的高価なことから1:2〜10:
1(重量比)程度、特に1:1〜3:1程度が好まし
い。このとき、生成したヒドロキシカルボン酸を沈澱さ
せる目的でCa塩や、酵素反応を促進する目的でBSA
など添加してもよい。
First, the selected enzyme is dissolved in a commonly used phosphate buffer (0.1 M, PH 7.0). The reaction is carried out by mixing racemic lactone with this enzyme solution. The ratio of substrate to buffer is 1:10 to 1:30
(Weight ratio), particularly 1:20 (weight ratio) is preferable. Regarding the ratio between the substrate and the enzyme amount, the yield and resolution are improved when the enzyme amount is large, but since the enzyme is relatively expensive, it is 1: 2 to 10 :.
It is preferably about 1 (weight ratio), particularly about 1: 1 to 3: 1. At this time, Ca salt for the purpose of precipitating the generated hydroxycarboxylic acid and BSA for the purpose of promoting the enzymatic reaction.
Etc. may be added.

【0022】反応温度は光学分割率を考慮し一般的な至
適温度より低い温度が好ましく、0〜10℃が特に好ま
しい。反応率は通常5〜50%に設定するが、光学分割
率を高めるためには5〜20%が望ましい。反応時間
は、5〜100時間であるが、反応温度、酵素の種類、
酵素濃度、基質濃度、反応率を変化させることにより短
縮も可能である。
Considering the optical resolution, the reaction temperature is preferably lower than a general optimum temperature, particularly preferably 0 to 10 ° C. The reaction rate is usually set to 5 to 50%, but 5 to 20% is desirable in order to increase the optical resolution. The reaction time is 5 to 100 hours, but the reaction temperature, the type of enzyme,
It can also be shortened by changing the enzyme concentration, substrate concentration, and reaction rate.

【0023】この様にしてラセミ体ラクトンの加水分解
反応により光学分割を行った後適宜の手段で酵素反応を
停止し、加水分解生成物と未反応ラクトンを分離する。
酵素反応を停止させる方法の一例としてはセライト、ラ
ジオライト等の濾過助剤を添加する方法がある。この濾
液のpHを7.5〜11.0、好ましくは8.0〜8.
5に調製した後、未反応のラクトンをこの濾液より有機
溶剤で抽出する。このとき使用する有機溶剤としてはペ
ンタン、ヘキサン、ヘプタンなど比較的極性の低い溶剤
が好ましい。
In this way, after the optical resolution by the hydrolysis reaction of the racemic lactone, the enzymatic reaction is stopped by an appropriate means to separate the hydrolysis product and the unreacted lactone.
An example of a method of stopping the enzymatic reaction is a method of adding a filter aid such as Celite or Radiolite. The pH of this filtrate is 7.5-11.0, preferably 8.0-8.
After adjusting to 5, unreacted lactone is extracted from this filtrate with an organic solvent. As the organic solvent used at this time, a solvent having a relatively low polarity such as pentane, hexane or heptane is preferable.

【0024】分離した有機溶剤画分は常法により、水洗
・乾燥・濃縮を行い、未反応ラクトンを回収することが
できる。この未反応ラクトンは次の酵素反応に使用する
ことができる。ヒドロキシカルボン酸を含有する濾液は
そのpHを通常0.0〜4.0、より好ましくは2.0
〜3.0に調整しジエチルエーテル、トルエンなど比較
的極姓の高い有機溶剤で抽出する。分離した有機層は同
様に水洗・乾燥・濃縮操作を行いヒドロキシカルボン酸
濃縮物を得る。
The separated organic solvent fraction can be washed with water, dried and concentrated by a conventional method to recover unreacted lactone. This unreacted lactone can be used in the next enzymatic reaction. The pH of the filtrate containing hydroxycarboxylic acid is usually 0.0 to 4.0, more preferably 2.0.
Adjust to ~ 3.0 and extract with a relatively high-quality organic solvent such as diethyl ether or toluene. The separated organic layer is similarly washed with water, dried and concentrated to obtain a hydroxycarboxylic acid concentrate.

【0025】ヒドロキシカルボン酸からラクトンへの変
換は一般的に用いられている脱水環化反応が応用でき
る。たとえば通常の酸触媒の存在下、有機溶媒中で加熱
することにより容易に脱水反応が起こり環化する。一例
をあげれば、ヒドロキシカルボン酸に対し0.5%相当
のパラトルエンスルホン酸(PTS)を添加しトルエン
中で共沸脱水操作を行いヒドロキシカルボン酸の環化反
応を行い、反応終了後、有機層を5%重曹水で洗浄した
後、常法の水洗・乾燥・濃縮操作によりトルエンを除去
し目的物である光学活性を有するラクトンを得ることが
できる。さらに必要に応じ精留法、カラムクロマト法な
ど簡便な精製操作により精製を行うことも好ましい。
For the conversion of hydroxycarboxylic acid to lactone, a generally used dehydration cyclization reaction can be applied. For example, by heating in an organic solvent in the presence of an ordinary acid catalyst, a dehydration reaction easily occurs and cyclization occurs. As an example, 0.5% of paratoluenesulfonic acid (PTS) is added to hydroxycarboxylic acid, and azeotropic dehydration operation is performed in toluene to perform cyclization reaction of hydroxycarboxylic acid. After the layer is washed with 5% aqueous sodium hydrogen carbonate, toluene is removed by conventional washing, drying and concentrating operations to obtain the desired optically active lactone. Further, if necessary, it is also preferable to carry out purification by a simple purification operation such as a rectification method or a column chromatography method.

【0026】[0026]

【実施例】以下、本発明を実施例により詳述するが、本
発明がこれらに限定されるものでないことはいうまでも
ない。
EXAMPLES The present invention will be described in detail below with reference to Examples, but it goes without saying that the present invention is not limited thereto.

【0027】実施例1 0.1M燐酸系緩衝液200mlを0℃に冷却しシュー
ドモナス属リパーゼ、リパーゼP(長瀬生化学工業)
5.0gを懸濁させた後、ラセミ体δ−デカラクトン1
0gを加え、100rpmで振盪しながら48時間反応
させた。反応終了後、ラジオライト#2000を加え、
吸引濾過により濾液を得た。この濾液のpHを8.0に
調整した後、ヘキサンで抽出した。このヘキサンを5%
重曹水で洗浄、洗浄液は濾液部と混合し次処理に供し
た。有機層は水洗・乾燥後、減圧下でヘキサンを留去
し、未反応δ−ラクトン7.98gを回収した。キラル
カラムを付したGC(Chiraldex G−TA,
0.25mm×10m)測定からR:S=45:55で
あった。上記の洗浄液と混合した濾液部のpHを2.0
に調整しジエチルエーテルで反応生成物であるヒドロキ
シカルボン酸を抽出した。このエーテル層より常法通り
回収操作を行った結果、δ−ヒドロキシデカン酸0.7
0gを得た。0.5%相当(3.5mg)のPTS触媒
を加え、トルエンを溶媒として共沸脱水操作を行い上記
ヒドロキシカルボン酸の環化反応を行った。トルエン層
は水洗・乾燥後、減圧によりトルエンを留去し、該δ−
デカラクトン0.67gを得た。GC測定の結果R:S
=89.7:10.3で光学純度79.4%であった。
Example 1 200 ml of 0.1 M phosphate buffer was cooled to 0 ° C., and Pseudomonas lipase, Lipase P (Nagase Seikagaku Corporation)
After suspending 5.0 g, racemic δ-decalactone 1
0 g was added, and the reaction was carried out for 48 hours while shaking at 100 rpm. After the reaction, add Radiolight # 2000,
The filtrate was obtained by suction filtration. The pH of this filtrate was adjusted to 8.0 and then extracted with hexane. 5% of this hexane
The solution was washed with aqueous sodium hydrogen carbonate, and the washing solution was mixed with the filtrate portion and subjected to the next treatment. The organic layer was washed with water and dried, and then hexane was distilled off under reduced pressure to recover 7.98 g of unreacted δ-lactone. GC equipped with a chiral column (Chiraldex G-TA,
It was R: S = 45: 55 from the measurement of 0.25 mm × 10 m. The pH of the filtrate portion mixed with the above washing solution was adjusted to 2.0.
After that, the reaction product hydroxycarboxylic acid was extracted with diethyl ether. As a result of performing a recovery operation from this ether layer in a usual manner, δ-hydroxydecanoic acid 0.7
0 g was obtained. 0.5% (3.5 mg) of PTS catalyst was added, and azeotropic dehydration operation was performed using toluene as a solvent to carry out the cyclization reaction of the hydroxycarboxylic acid. The toluene layer was washed with water and dried, and then toluene was distilled off under reduced pressure to obtain the δ-
0.67 g of decalactone was obtained. Result of GC measurement R: S
= 89.7: 10.3, the optical purity was 79.4%.

【0028】実施例2 実施例1で得られた未反応δ−デカラクトン(R:S=
45:55)7.98gを用い、0.1M燐酸系緩衝液
160ml中、0℃にてアスペルギルス属リパーゼ、リ
パーゼAP4(天野製薬)4.0gにより反応を行い、
同様の操作の結果、未反応ラクトン5.25g(R:S
=55:45)、及び該δ−デカラクトン0.95g
(R:S=8.5:91.5、光学純度 83.0%e
e)が得られた。
Example 2 The unreacted δ-decalactone obtained in Example 1 (R: S =
45:55) 7.98 g was used to perform a reaction with 4.0 g of Aspergillus lipase and lipase AP4 (Amano Pharmaceutical Co., Ltd.) in 160 ml of 0.1 M phosphate buffer at 0 ° C.
As a result of the same operation, 5.25 g of unreacted lactone (R: S
= 55:45) and 0.95 g of the δ-decalactone.
(R: S = 8.5: 91.5, optical purity 83.0% e
e) was obtained.

【0029】尚、実施例2で用いた未反応回収ラクトン
(R:S=45:55)の代わりにラセミ体δ−デカラ
クトン(8g)を基質とし、アスペルギルス属リパーゼ
を作用させた結果、収量は0.72gとなり基質に対す
る収率は落ちた。従って、光学純度のかたよった原料を
基質として用いた方が効率的に反応が進む。
As a result of using Aspergillus genus lipase with racemic δ-decalactone (8 g) as a substrate instead of the unreacted recovered lactone (R: S = 45: 55) used in Example 2, the yield was The yield with respect to the substrate was 0.72 g, which was low. Therefore, the reaction proceeds more efficiently when a raw material having a high optical purity is used as a substrate.

【0030】実施例3 実施例1で用いた基質であるラセミ体δ−デカラクトン
をラセミ体δ−ドデカラクトンに代え同様の操作を行っ
た。光学純度R:S=90.0:10.0、R:S=
8.8:91.2のδ−ドデカラクトンをそれぞれ得る
ことができた。
Example 3 The same operation was carried out by substituting the racemic δ-decalactone as the substrate used in Example 1 for the racemic δ-dodecalactone. Optical purity R: S = 90.0: 10.0, R: S =
It was possible to obtain 8.8: 91.2 of δ-dodecalactone, respectively.

【0031】実施例4 実施例1で用いた基質であるラセミ体δ−デカラクトン
をラセミ体δ−オクタラクトンに代え同様の操作を行
い、ほぼ同様の結果が得られた。
Example 4 Substantially similar results were obtained by replacing the racemic δ-decalactone, which is the substrate used in Example 1, with the racemic δ-octalactone.

【0032】比較例1 実施例1で使用したシュードモナス属リパーゼをムコー
ル属リパーゼに代え同様の操作を行い反応物0.70g
を得たが光学分割は全くされていなかった。
Comparative Example 1 0.70 g of a reaction product was prepared in the same manner as in Example 1, except that the Pseudomonas lipase used in Example 1 was replaced with a Mucor lipase.
However, optical resolution was not performed at all.

【0033】[0033]

【発明の効果】δ−ラクトンに対し、光学基質選択性の
異なるリバーゼを使用することにより両R体、S体光学
活性δ−ラクトンを製造することができ、任意に天然存
在比に調合できる調合素材として利用できる効果があ
る。
EFFECTS OF THE INVENTION Both R-form and S-form optically active δ-lactone can be produced by using a riboase having different optical substrate selectivity with respect to δ-lactone. There is an effect that can be used as a material.

【0034】さらに、本発明では光学基質選択性の異な
る2種のリバーゼを光学活性のかたよった回収未反応ラ
クトンに順次繰り返し作用させることにより効率よく、
両R体、S体δ−光学活性ラクトンを製造できるという
効果がある。
Further, in the present invention, two kinds of revertases having different optical substrate selectivity are sequentially and repeatedly acted on the recovered unreacted lactone having an optically active form to efficiently
Both R-form and S-form δ-optically active lactone can be produced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:66) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C12R 1:66)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I) 【化1】 (式中、Rは炭素数3〜7の飽和直鎖アルキル基であ
る)で表されるラセミ体ラクトンに、微生物起源の不斉
加水分解能を有するリパーゼを作用させ、得られたヒド
ロキシカルボン酸を脱水環化することを特徴とする一般
式(II) 【化2】 (式中、Rは炭素数3〜7の飽和直鎖アルキル基であ
り、*を付した炭素原子は光学活性な炭素原子である)
で表される光学活性δ−ラクトンの製造法。
1. A compound represented by the general formula (I): (In the formula, R is a saturated straight chain alkyl group having 3 to 7 carbon atoms) A racemic lactone represented by the formula (3) is caused to act on a lipase having asymmetric hydrolyzing ability of microbial origin to give the resulting hydroxycarboxylic acid. General formula (II) characterized by dehydration cyclization (In the formula, R is a saturated linear alkyl group having 3 to 7 carbon atoms, and the carbon atom with * is an optically active carbon atom.)
A method for producing an optically active δ-lactone represented by:
【請求項2】 使用する微生物起源のリパーゼがシュー
ドモナス属(Pseudomonas属)およびアスペ
ルギルス属(Aspergillus属)起源のリパー
ゼである請求項1記載の光学活性δ−ラクトンの製造
法。
2. The method for producing an optically active δ-lactone according to claim 1, wherein the lipase of microbial origin used is a lipase of Pseudomonas genus and Aspergillus genus.
【請求項3】 光学基質選択性の異なるシュードモナス
属起源のリパーゼおよびアスペルギルス属起源のリパー
ゼのうち何れか一方の光学基質選択性を有すリパーゼを
ラセミ体ラクトンに作用させR体、S体何れか一方の反
応生成物を得ると共に、この操作により回収された未反
応ラクトンをさらに前反応で使用したリパーゼとは光学
基質選択性の異なるリパーゼにより順次光学分割を行わ
しめることを特徴とする請求項1記載の光学活性ラクト
ンの製造法。
3. A racemic lactone is reacted with a lipase having an optical substrate selectivity of one of a lipase of Pseudomonas origin and a lipase of Aspergillus origin, which have different optical substrate selectivity, and either R-form or S-form. The one reaction product is obtained, and the unreacted lactone recovered by this operation is further subjected to sequential optical resolution by a lipase having an optical substrate selectivity different from that of the lipase used in the previous reaction. A method for producing the optically active lactone described.
JP14416793A 1993-05-12 1993-05-12 Method for producing optically active δ-lactone Expired - Fee Related JP3493043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14416793A JP3493043B2 (en) 1993-05-12 1993-05-12 Method for producing optically active δ-lactone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14416793A JP3493043B2 (en) 1993-05-12 1993-05-12 Method for producing optically active δ-lactone

Publications (2)

Publication Number Publication Date
JPH06319589A true JPH06319589A (en) 1994-11-22
JP3493043B2 JP3493043B2 (en) 2004-02-03

Family

ID=15355763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14416793A Expired - Fee Related JP3493043B2 (en) 1993-05-12 1993-05-12 Method for producing optically active δ-lactone

Country Status (1)

Country Link
JP (1) JP3493043B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011063A (en) * 1999-04-30 2001-01-16 Soda Aromatic Co Ltd Production of optically active gamma-lactone
WO2004106320A1 (en) * 2003-05-28 2004-12-09 Zeon Corporation Process for producing optically active lactone
JP2010285449A (en) * 1999-04-30 2010-12-24 Soda Aromatic Co Ltd PROCESS FOR PRODUCING OPTICALLY ACTIVE gamma-LACTONE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011063A (en) * 1999-04-30 2001-01-16 Soda Aromatic Co Ltd Production of optically active gamma-lactone
JP2010285449A (en) * 1999-04-30 2010-12-24 Soda Aromatic Co Ltd PROCESS FOR PRODUCING OPTICALLY ACTIVE gamma-LACTONE
WO2004106320A1 (en) * 2003-05-28 2004-12-09 Zeon Corporation Process for producing optically active lactone

Also Published As

Publication number Publication date
JP3493043B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
EP0149674B1 (en) Process for biochemical optical resulution of cyclopentenolone derivative
JP3010497B2 (en) Method for producing optically active α-hydroxyesters
JP3493043B2 (en) Method for producing optically active δ-lactone
JPH0260599A (en) Enzymolysis method
JPS5847495A (en) Biochemical optical resolution of cyclopentenolone derivative
JP4843812B2 (en) Method for optical resolution of racemic α-substituted heterocyclic carboxylic acids using enzymes
JP3732535B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
WO2001092554A1 (en) Method for preparing an r- or s-form of alpha-substituted heterocyclic carboxylic acid and a counter enantiomeric form of alpha-substituted heterocyclic carboxylic acid ester thereto using enzyme
JP3705046B2 (en) Preparation of optically active 4-halogeno-1,3-butanediol and its derivatives by microorganisms
JPH0532035B2 (en)
EP1167534A2 (en) Process for the preparation of optically active 1,2-diols by cultivating microorganisms
JP3970898B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
JP3095539B2 (en) Process for producing optically active α, β-epoxycarboxylic acid and its ester
JP2639651B2 (en) Process for producing optically active carboxylic acid and its enantiomer ester
JP4069742B2 (en) Optical resolution of carboxylic acid esters by microorganisms
JP3741758B2 (en) Process for producing optically active glycerol derivatives
JP4834208B2 (en) Method for producing (2S, 3R) -2,3-epoxybutyric acid ester
JP3659123B2 (en) Method for optical resolution of 4-halogeno-3-alkanoyloxybutyronitrile
JP3007461B2 (en) Method for producing optically active 2-cyclohexenylacetic acid and its ester
JPH09191892A (en) Production of sulfur-containing optically active alcohol
JPH06319572A (en) Production of halide compound
JP2000093191A (en) Production of optically active compound
JPH0811076B2 (en) Process for producing optically active cyclopentenones
JP2004141094A (en) Method for producing optically active 2,3-epoxy-3-cyclohexylpropionic acid and its esters
JPH10127299A (en) Optically active glycidic ester and production of optically active glycidic ester

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees