Nothing Special   »   [go: up one dir, main page]

JPH0631455B2 - Oxygen generating anode and its manufacturing method - Google Patents

Oxygen generating anode and its manufacturing method

Info

Publication number
JPH0631455B2
JPH0631455B2 JP1103002A JP10300289A JPH0631455B2 JP H0631455 B2 JPH0631455 B2 JP H0631455B2 JP 1103002 A JP1103002 A JP 1103002A JP 10300289 A JP10300289 A JP 10300289A JP H0631455 B2 JPH0631455 B2 JP H0631455B2
Authority
JP
Japan
Prior art keywords
oxide
coating layer
mol
titanium
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1103002A
Other languages
Japanese (ja)
Other versions
JPH02282490A (en
Inventor
晋吾 徳田
俊幸 池田
外志雄 村永
雅彦 大炭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP1103002A priority Critical patent/JPH0631455B2/en
Publication of JPH02282490A publication Critical patent/JPH02282490A/en
Publication of JPH0631455B2 publication Critical patent/JPH0631455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸素発生を伴う電解工程,特にスズ,亜鉛,ク
ロム等の電気メッキに使用される不溶性陽極に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an insoluble anode used for an electrolysis step involving oxygen generation, particularly for electroplating of tin, zinc, chromium or the like.

〔従来の技術と解決しようとする課題〕[Problems to be solved with conventional technology]

スズ,亜鉛,クロム等の連続帯状鋼板の電気メッキ用陽
極としては現在、鉛又は鉛合金が使用されているが、鉛
は比較的消耗が速く、メッキ液中に溶け出し、メッキ液
の汚染やメッキ皮膜の劣化等の問題があった。これに代
る陽極として白金メッキ陽極や白金箔クラッド陽極が検
討されているが、白金の消耗が大きく未だ解決されてい
ない。そのため消耗の少ない不溶性陽極が種々提案され
ている。
Lead or lead alloy is currently used as an anode for electroplating continuous strip steel such as tin, zinc, chromium, etc. However, lead is relatively quickly consumed, and lead dissolves in the plating solution, resulting in contamination of the plating solution. There was a problem such as deterioration of the plating film. Platinum-plated anodes and platinum foil clad anodes have been studied as alternative anodes, but the platinum consumption is large and has not been solved yet. Therefore, various insoluble anodes with less consumption have been proposed.

例えば特開昭59−38394号には導電性金属基体上
に、4価の原子価をとるチタン及びスズから選ばれた少
なくとも1種の金属酸化物と5価の原子価をとるタンタ
ル及びニオブから選ばれた少なくとも1種の金属酸化物
との混合酸化物よりなる中間被覆層を設けて導電性を付
与し、その上に電極活物質を被覆した電極が提案されて
いる。この中間被覆層は4価の金属と5価の金属が混在
しており、一般に知られている原子価制御原理に基づく
N型半導体となっていると考えられるが、まだ十分な電
気導電性が得られていない。
For example, in JP-A-59-38394, at least one metal oxide selected from titanium and tin having a valence of 4 and tantalum and niobium having a valence of 5 are formed on a conductive metal substrate. An electrode has been proposed in which an intermediate coating layer made of a mixed oxide with at least one selected metal oxide is provided to impart conductivity, and an electrode active material is coated on the intermediate coating layer. This intermediate coating layer contains a mixture of tetravalent metal and pentavalent metal, and is considered to be an N-type semiconductor based on the generally known valence control principle, but it still has sufficient electric conductivity. Not obtained.

また特公昭51−19429号には導電性基体と電極活
性物質被覆の中間層に白金−イリジウム合金やコバル
ト,マンガン,パラジウム,鉛,白金の酸化物からなる
酸素不浸透層を設けて、その上に電解液に対して耐食性
を有する固溶体型の外部被覆からなる電極が提案されて
いる。これによれば中間層の触媒はそれ自体酸素発生に
対して触媒活性であり、また、固溶体型の外部被覆(実
施例より判断すると酸化ルテニウムと酸化チタンとの固
溶体)はそれ以上に触媒活性がある。しかし中間層のう
ち、コバルト,マンガン,パラジウム,鉛,白金の酸化
物は硫酸酸性溶液中では比較的消耗が激しい。また酸化
ルテニウムと酸化チタンとの固溶体も硫酸酸性溶液中で
耐久性に乏しく、工業的に使用することは困難である。
In Japanese Patent Publication No. 51-19429, an oxygen impermeable layer made of a platinum-iridium alloy or an oxide of cobalt, manganese, palladium, lead or platinum is provided on the intermediate layer between the conductive substrate and the electrode active material coating, and further on that. In addition, an electrode composed of a solid solution type outer coating having corrosion resistance to an electrolytic solution has been proposed. According to this, the catalyst of the intermediate layer is itself catalytically active for oxygen generation, and the solid solution type outer coating (a solid solution of ruthenium oxide and titanium oxide as judged from the examples) has more catalytic activity. is there. However, among the intermediate layers, cobalt, manganese, palladium, lead, and platinum oxides are relatively exhausted in a sulfuric acid acidic solution. Further, a solid solution of ruthenium oxide and titanium oxide also has poor durability in a sulfuric acid acidic solution, and is difficult to industrially use.

また特開昭59−150091号には特開昭59−38
394号の中間被覆層に白金を分散させた電極が提案さ
れている。すなわち半導体中間層のキャリア濃度に限界
があるため、さらに導電性を付与するものであるが、白
金自体は電解液,特に硫酸酸性液中における電解時に少
しずつ溶け、長期間使用するには限界がある。
Further, JP-A-59-150091 discloses JP-A-59-38.
No. 394, an electrode in which platinum is dispersed in an intermediate coating layer is proposed. That is, since the carrier concentration of the semiconductor intermediate layer is limited, it imparts further conductivity, but platinum itself gradually dissolves during electrolysis in an electrolytic solution, especially a sulfuric acid acidic solution, and there is a limit for long-term use. is there.

特開昭60−184691号には導電性金属基体と電極
活物質との中間層に、チタン及びスズから選ばれた金属
の酸化物と、アルミニウム,カリウム,鉄,コバルト,
ニッケル及びタリウムから選ばれた少なくとも1種の金
属の酸化物との混合酸化物中に白金を分散した中間層が
提案されている。この中間層は4価の金属と2価又は3
価の金属との混合酸化物中に白金を分散したものであ
り、この酸化物は原子価制御原理に基づいてP型半導体
となり、良好な電導性を有するうえに、分散した白金に
より高い電子電導度を付与するものと考えられていた。
しかし白金自体は硫酸酸性電解液中で徐々に溶解し、電
解中は溶解が加速されるので十分な寿命が期待できな
い。
JP-A-60-184691 discloses that an intermediate layer between a conductive metal substrate and an electrode active material is provided with an oxide of a metal selected from titanium and tin, aluminum, potassium, iron, cobalt,
An intermediate layer has been proposed in which platinum is dispersed in a mixed oxide with an oxide of at least one metal selected from nickel and thallium. This intermediate layer is composed of a tetravalent metal and a divalent or trivalent metal.
Platinum is dispersed in a mixed oxide with a valent metal, and this oxide becomes a P-type semiconductor based on the valence control principle, has good conductivity, and has a high electron conductivity due to the dispersed platinum. It was considered to add degrees.
However, platinum itself gradually dissolves in a sulfuric acid acidic electrolyte solution, and dissolution is accelerated during electrolysis, so a sufficient life cannot be expected.

特開昭62−174394号には導電性基体上に電気メ
ッキ法により多孔質白金層を設け、その上に熱分解によ
り酸化ルテニウム,酸化パラジウム及び酸化イリジウム
から選ばれた少なくとも1種の酸化物層を設けた電極で
白金メッキ層と酸化物層とをくり返し形成させたものが
提案されている。この場合も電解時、硫酸酸性電解液に
対して白金多孔質層が徐々に溶解する問題が解決されて
いない。
In JP-A-62-174394, a porous platinum layer is provided on a conductive substrate by electroplating, and at least one oxide layer selected from ruthenium oxide, palladium oxide and iridium oxide by thermal decomposition is provided thereon. It is proposed that the platinum-plated layer and the oxide layer are repeatedly formed in the electrode provided with. In this case as well, the problem that the platinum porous layer gradually dissolves in the sulfuric acid acidic electrolyte during electrolysis has not been solved.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者らは硫酸酸性電解液中で使用する不溶性陽極に
おいて、酸素不浸透な中間層に耐食性を付与し、かつ導
電性を高め、表面層に酸素発生触媒活性を付与しガス発
生に対する機械的損傷を防ぎ得る長寿命の電極を開発し
たものである。
In the insoluble anode used in the sulfuric acid acidic electrolyte, the present inventors impart corrosion resistance to the oxygen-impermeable intermediate layer and enhance conductivity, and impart oxygen generating catalytic activity to the surface layer to provide mechanical resistance to gas generation. We have developed a long-life electrode that can prevent damage.

すなわち本発明は導電性金属基体上に a)チタン,タンタル,スズ,ニオブ,ジルコニウムか
ら選ばれた少なくとも1種の金属酸化物85〜95モル%と
酸化パラジウム5〜15モル%との混合酸化物よりなる中
間被覆層及び該中間被覆層上にb)チタン,タンタル,
スズ,ニオブ,ジルコニウムから選ばれた少なくとも1
種の金属の酸化物20〜70モル%と酸化イリジウム30〜80
モル%との混合酸化物よりなる酸素発生触媒能を有する
表面被覆層を形成したことを特徴とする酸素発生陽極と
その製法である。
That is, the present invention provides a mixed oxide of a) 85 to 95 mol% of at least one metal oxide selected from titanium, tantalum, tin, niobium and zirconium and 5 to 15 mol% of palladium oxide on a conductive metal substrate. An intermediate coating layer comprising b) titanium, tantalum,
At least 1 selected from tin, niobium, and zirconium
20-70 mol% of oxides of certain metals and 30-80 of iridium oxide
An oxygen-evolving anode and a method for producing the same are characterized in that a surface coating layer having an oxygen-evolving catalytic ability composed of a mixed oxide with mol% is formed.

本発明に使用される導電性基体にはチタン,タンタル,
ニオブ,ジルコニウム及びこれらの合金等の不働性皮膜
を形成する材料が挙げられる。通常は経済性,電気的機
械的性質や加工性等の点からチタン及び/又はその合金
が使用される。電極の形状としては板状,棒状,エキス
パンド状,多孔板状等種々の形状をとりうる。
The conductive substrate used in the present invention includes titanium, tantalum,
Materials that form a passive film such as niobium, zirconium and alloys thereof can be mentioned. Usually, titanium and / or its alloys are used in terms of economic efficiency, electromechanical properties, workability, and the like. The electrode may have various shapes such as a plate shape, a rod shape, an expanded shape, and a perforated plate shape.

中間被覆層はチタン,タンタル,スズ,ニオブ,ジルコ
ニウムの1種以上の酸化物85〜95モル%と酸化パラジウ
ム5〜15モル%とよりなる混合酸化物層であり、酸化パ
ラジウム含有量が5%モル未満では電気導伝性が小さ
く、中間被覆層が抵抗体となって電解中電圧が上昇する
ので好ましくない。15モル%を越えると酸素発生触媒能
が強く表われて酸素不浸透性の機能が損われるので電極
の寿命が短くなる。これは中間被覆層の上に表面被覆層
を形成しても完全にピンホールの無い皮膜は造れないた
め、電解液が浸透して中間被覆層自体で酸素発生を行う
ことが可能となり、そこで発生した酸素の基体表面への
透過が生ずることによる。酸化パラジウムの含有量を15
モル%以下に保つことにより中間被覆層の酸素過電圧を
0.90V(50℃,10%HSO,20A/dm2)以上とす
ることができる中間被覆層に酸化パラジウムを入れず
に、チタン,タンタル,スズ,ニオブ,ジルコニウムの
1種以上の酸化物層皮膜を形成した場合、加速電解試験
の寿命はむしろ短くなる。その原因は判然としないがこ
の場合、中間被覆層は酸素透過に対して十分に防止でき
るとしても、基体と中間被覆層間の電位障壁が高くな
り、そのために電解寿命試験で早く電圧が上昇するもの
と考えられる。
The intermediate coating layer is a mixed oxide layer composed of 85 to 95 mol% of one or more oxides of titanium, tantalum, tin, niobium, and zirconium and 5 to 15 mol% of palladium oxide, and has a palladium oxide content of 5%. If it is less than the molar amount, the electric conductivity is small and the intermediate coating layer functions as a resistor to increase the voltage during electrolysis, which is not preferable. If it exceeds 15 mol%, the catalytic activity of oxygen generation is strongly exhibited and the oxygen impermeable function is impaired, so that the life of the electrode is shortened. This is because even if a surface coating layer is formed on the intermediate coating layer, a film without pinholes cannot be completely formed, so that the electrolytic solution can permeate and oxygen can be generated in the intermediate coating layer itself. This is because the permeation of the generated oxygen to the surface of the substrate occurs. Palladium oxide content 15
Oxygen overvoltage of the intermediate coating layer
Oxidation of one or more of titanium, tantalum, tin, niobium and zirconium without adding palladium oxide to the intermediate coating layer which can be 0.90 V (50 ° C., 10% H 2 SO 4 , 20 A / dm 2 ) or more. When a physical layer film is formed, the life of the accelerated electrolysis test is rather shortened. Although the cause is not clear, in this case, even if the intermediate coating layer can sufficiently prevent oxygen permeation, the potential barrier between the substrate and the intermediate coating layer becomes high, and therefore the voltage rises quickly in the electrolytic life test. it is conceivable that.

表面被覆層はチタン,タンタル,スズ,ニオブ,ジルコ
ニウムの1種以上の酸化物20〜70モル%と酸化イリジウ
ム30〜80モル%よりなる混合酸化物層よりなり、酸化イ
リジウムが30モル%未満では酸素発生の触媒能が劣化
し、80モル%を越えると皮膜の密着性が損われる。
The surface coating layer is a mixed oxide layer consisting of 20 to 70 mol% of one or more oxides of titanium, tantalum, tin, niobium, and zirconium and 30 to 80 mol% of iridium oxide. The catalytic ability of oxygen generation deteriorates, and when it exceeds 80 mol%, the adhesion of the film is impaired.

表面被覆層の酸素過電圧は0.35〜0.50V(50℃,10%H
SO,20〜100A/dm2)であり、この酸素過電圧が
低いため、酸素発生は表面被覆層のみで生じ、中間被覆
層は電気導電体としてのみ作用する。
Oxygen overvoltage of the surface coating layer is 0.35-0.50V (50 ℃, 10% H
2 SO 4 , 20-100 A / dm 2 ), and due to the low oxygen overvoltage, oxygen generation occurs only in the surface coating layer, and the intermediate coating layer acts only as an electric conductor.

本発明電極の被覆層の形状は次のようにして行われる。The coating layer of the electrode of the present invention is shaped as follows.

導電性金属基体の表面を酸処理,ブラスト処理等の方法
でエッチングを行って粗面化させ、塩化チタン,塩化タ
ンタル,塩化第1スズ,塩化ニオブ,オキシ塩化ジルコ
ニウム及び塩化パラジウム等の金属塩をエチルアルコー
ル,ブチルアルコール等の溶媒に溶かして所定組成の混
合溶液をつくり、ハケ塗り,ロール塗り,スプレー法,
浸漬法等の手段で塗布する。塗布後溶媒を蒸発させるた
めに100〜150℃で数10分間乾燥し、空気又は酸素雰囲気
の電気炉中で300〜700℃にて10〜20分間熱分解処理を行
う。熱処理温度が300℃未満では熱分解が完全に起ら
ず、700℃を越えると金属基体の酸化が進行して基体が
損傷する。中間被覆層の酸素透過防止能力を持たすため
には、その被覆量は3.0g/m2以上がよくそれ以下では
効果が少ない。
The surface of the conductive metal substrate is subjected to etching by a method such as acid treatment or blast treatment to roughen the surface, and metal salts such as titanium chloride, tantalum chloride, stannous chloride, niobium chloride, zirconium oxychloride and palladium chloride are added. Dissolve in a solvent such as ethyl alcohol or butyl alcohol to make a mixed solution of a predetermined composition, and then apply by brush, roll, spray method,
Apply by a method such as a dipping method. After application, the coating is dried at 100 to 150 ° C for several tens of minutes to evaporate the solvent, and then subjected to thermal decomposition treatment at 300 to 700 ° C for 10 to 20 minutes in an electric furnace in an air or oxygen atmosphere. If the heat treatment temperature is less than 300 ° C, thermal decomposition does not completely occur, and if it exceeds 700 ° C, oxidation of the metal substrate proceeds and the substrate is damaged. In order to have the oxygen permeation preventive ability of the intermediate coating layer, the coating amount is preferably 3.0 g / m 2 or more, and the effect is small when it is less than that.

表面被覆層は塩化イリジウム酸と塩化チタン,ブチルチ
タネート,塩化タンタル,塩化ニオブ,オキシ塩化ジル
コニウム,塩化第1スズ等の金属塩をエチルアルコー
ル,ブチルアルコール等の溶媒に溶かして所定組成の混
合溶液をつくり、中間層と同様の方法により被覆する。
被覆層の触媒量は金属イリジウム換算で10g/m2以上で
あれば酸素発生に対する触媒能,寿命ともに良好とな
る。
The surface coating layer is prepared by dissolving a metal salt of iridium chloride and titanium chloride, butyl titanate, tantalum chloride, niobium chloride, zirconium oxychloride, stannous chloride or the like in a solvent such as ethyl alcohol or butyl alcohol to prepare a mixed solution having a predetermined composition. The coating is carried out in the same manner as the intermediate layer.
When the amount of catalyst in the coating layer is 10 g / m 2 or more in terms of metal iridium, both the catalytic ability for oxygen generation and the life are good.

以下実施例により本発明を詳述する。例中の組成%は特
記のない限りいずれもモル基準である。
The present invention will be described in detail below with reference to examples. All compositional percentages in the examples are on a molar basis unless otherwise specified.

実施例1 比較例1,2 市販チタン板(1×10×0.1cm)をアセトン脱脂後10重
量%熱蓚酸溶液中でエッチング処理を行いその表面下に
下記組成の溶液を塗布した。
Example 1 Comparative Examples 1 and 2 Commercially available titanium plates (1 × 10 × 0.1 cm) were degreased with acetone and then etched in a 10 wt% hot oxalic acid solution to apply a solution having the following composition below the surface thereof.

TaC 2.0g ブチルチタネート 3.9g PdC 0.5g 濃HC 1.0m n−ブチルアルコール 20m これを120℃で20分間乾燥し、その後500℃の電気炉内で
10分間焼成することによりTa30%,TiO60
%,PdO10%の混合酸化物よりなる皮膜を得た。この
操作を4回繰り返して3.0g/m2の中間被覆層を得た。
次にこの中間被覆層上に下記組成の溶液を塗布した。
TaC 5 2.0g Butyl titanate 3.9g PdC 2 0.5g Concentrated HC 1.0m n-Butyl alcohol 20m This is dried at 120 ° C for 20 minutes and then in an electric furnace at 500 ° C.
By firing for 10 minutes, Ta 2 O 5 30%, TiO 2 60
%, PdO 10% mixed oxide film was obtained. This operation was repeated 4 times to obtain an intermediate coating layer of 3.0 g / m 2 .
Next, a solution having the following composition was applied onto this intermediate coating layer.

TaC 0.47g HIrC・6HO 1.0g 濃HC 1.0m n−ブチルアルコール 15m これを120℃で20分間乾燥し、その後500℃の電気炉内で
10分間焼成することによりTa40%,IrO60
%の混合酸化物よりなる皮膜を得た。この操作は10回く
り返して10.0g/m2の表面被覆層を得た。
TaC 5 0.47g H 2 IrC 6 · 6H 2 O 1.0g of concentrated HC 1.0 m n-butyl alcohol 15m which was dried at 120 ° C. 20 min, in an electric furnace of subsequent 500 ° C.
By firing for 10 minutes, Ta 2 O 5 40%, IrO 2 60
% Of mixed oxide was obtained. This operation was repeated 10 times to obtain a surface coating layer of 10.0 g / m 2 .

この電極を50℃,100g/の硫酸溶液中に陽極として
用い、白金線を陰極として極間距離約4cm,電流密度20
0A/dm2にて加速電解試験を行った。初期電圧は8Vで
あり、徐々に上昇するが320時間経過後、急激に約10V
まで上昇した。この時間を電極の寿命とする。一方比較
として、表面被覆層塗布液にTaCを入れない以外
は同様に作製した陽極,及び中間被覆層を省略した以外
は同様に作製した陽極を使用して、上記と同条件で加速
電解試験を行ったところ、電極の寿命はそれぞれ110時
間と35時間であった。
This electrode was used as an anode in 100g / sulfuric acid solution at 50 ° C, a platinum wire was used as the cathode, and the distance between the electrodes was about 4 cm and the current density was
An accelerated electrolysis test was performed at 0 A / dm 2 . The initial voltage is 8V, and it gradually rises, but after 320 hours, it rapidly increases to about 10V.
Rose to. This time is the life of the electrode. On the other hand, as a comparison, an accelerated electrolysis test was conducted under the same conditions as above using an anode prepared in the same manner except that TaC 5 was not added to the coating liquid for the surface coating layer, and an anode prepared in the same manner except that the intermediate coating layer was omitted. The electrode life was 110 hours and 35 hours, respectively.

実施例2〜4 比較例3,4 実施例1の表面被覆層(10回塗布,10.0g/m2)は同様
にして中間被覆層(4回塗布,3.0g/m2)の組成比を
第1表の如く変化させた以外は、実施例1と同様にして
陽極を作製した。これを実施例1と同様の条件で加速電
解試験を行った結果を第1表に併記する。
Examples 2 to 4 Comparative Examples 3 and 4 The surface coating layer (10 times coating, 10.0 g / m 2 ) of Example 1 was similarly adjusted to the composition ratio of the intermediate coating layer (4 times coating, 3.0 g / m 2 ). An anode was produced in the same manner as in Example 1 except that the anode was changed as shown in Table 1. The results of an accelerated electrolysis test conducted under the same conditions as in Example 1 are also shown in Table 1.

以上のように、中間被覆層のPdO含有量が3%,20%
の場合は電極の寿命が短く、中間被覆層を入れた効果が
でていない。
As described above, the PdO content of the intermediate coating layer is 3%, 20%
In the case of 1, the life of the electrode was short and the effect of including the intermediate coating layer was not obtained.

実施例5〜8 比較例5,6 中間被覆層は実施例1と同様にし、表面被覆層(10塗
布,10.0g/m2)の組成比を第2表の如く変化させた以
外は実施例1と同様にして陽極を作製した。これを実施
例1と同様の条件で加速電解試験を行った結果を第2表
に併記する。
Examples 5 to 8 Comparative Examples 5 and 6 The intermediate coating layer was the same as in Example 1 except that the composition ratio of the surface coating layer (10 coatings, 10.0 g / m 2 ) was changed as shown in Table 2. An anode was prepared in the same manner as in 1. The results of an accelerated electrolysis test conducted under the same conditions as in Example 1 are also shown in Table 2.

以上のように表面被覆層のIrO含有量は30%以上が
よく、また90%以上になると寿命が短くなる。
As described above, the IrO 2 content of the surface coating layer is preferably 30% or more, and when it is 90% or more, the life is shortened.

実施例9〜12 比較例7〜10 実施例1と同様の方法で中間被覆層(4回塗布,3.0g
/m2)及び表面被覆層(10回塗布,10.0g/m2)の組成
物質を第3表に示されるように変えて陽極を作製し、実
施例1と同様の条件で加速電解試験を行った。その結果
を第3表に併記する。
Examples 9 to 12 Comparative Examples 7 to 10 Intermediate coating layer (4 times coating, 3.0 g)
/ M 2 ) and the surface coating layer (10 times coating, 10.0 g / m 2 ) were changed as shown in Table 3 to prepare an anode, and an accelerated electrolysis test was conducted under the same conditions as in Example 1. went. The results are also shown in Table 3.

以上のようにPdOを含有する中間被覆層を設けた本発
明電極はPdOを含まない中間被覆層を設けた電極に比
べ、耐久性が優れていることが判る。
As described above, it can be seen that the electrode of the present invention provided with the intermediate coating layer containing PdO is superior in durability to the electrode provided with the intermediate coating layer containing no PdO.

〔発明の効果〕〔The invention's effect〕

本発明陽極は中間被覆層として酸素透過防止能を有する
酸化パラジウムとチタン,タンタル,スズ,ジルコニウ
ム,ニオブの酸化物の1種以上との混合酸化物層を設
け、表面被覆層として酸素発生に対して触媒活性であ
り、かつ硫酸溶液中での電解による溶解がほとんどない
酸化イリジウムと上記チタン以下金属の酸化物の1種以
上との混合酸化物層を設けてなるので、耐久性のある酸
素発生陽極として有用である。
The anode of the present invention is provided with a mixed oxide layer of palladium oxide having oxygen permeation preventing ability and one or more kinds of oxides of titanium, tantalum, tin, zirconium and niobium as an intermediate coating layer, and as a surface coating layer against oxygen generation. Since a mixed oxide layer of iridium oxide that is catalytically active and hardly dissolved by electrolysis in a sulfuric acid solution and one or more kinds of oxides of the following titanium or lower metals is provided, durable oxygen generation is achieved. It is useful as an anode.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】導電性金属基体上にa)チタン,タンタ
ル,スズ,ニオブ,ジルコニウムから選ばれた少なくと
も1種の金属の酸化物85〜95モル%と酸化パラジウム5
〜15モル%との混合酸化物よりなる中間被覆層及び該中
間被覆層上にb)チタン,タンタル,スズ,ニオブ,ジ
ルコニウムから選ばれた少なくとも1種の金属の酸化物
20〜70モル%と酸化イリジウム30〜80モル%との混合酸
化物よりなる酸素発生触媒能を有する表面被覆層を形成
したことを特徴とする酸素発生陽極。
1. A) on a conductive metal substrate, a) 85 to 95 mol% of an oxide of at least one metal selected from titanium, tantalum, tin, niobium and zirconium and palladium oxide 5.
To 15 mol% mixed oxide, and b) at least one metal oxide selected from titanium, tantalum, tin, niobium, and zirconium on the intermediate coating layer.
An oxygen generating anode comprising a surface coating layer having an oxygen generating catalytic ability formed of a mixed oxide of 20 to 70 mol% and iridium oxide of 30 to 80 mol%.
【請求項2】導電性金属基体がチタン,タンタル,ニオ
ブ,ジルコニウムから選ばれた金属又はこれらの合金で
ある請求項1記載の陽極。
2. The anode according to claim 1, wherein the conductive metal substrate is a metal selected from titanium, tantalum, niobium, zirconium or an alloy thereof.
【請求項3】導電性金属基体にチタン,タンタル,ス
ズ,ニオブ,ジルコニウムから選ばれた少なくとも1種
の金属塩とパラジウムの金属塩とを含む溶液を塗布し、
酸化性雰囲気中で加熱処理してチタン,タンタル,ス
ズ,ニオブから選ばれた少なくとも1種の金属酸化物85
〜95モル%と酸化パラジウム5〜15モル%との混合酸化
物よりなる中間被覆層を形成し、次いで上記と同様の方
法でチタン,タンタル,スズ,ニオブ,ジルコニウムか
ら選ばれた少なくとも1種の金属酸化物20〜70モル%と
酸化イリジウム30〜80モル%との混合酸化物よりなる表
面被覆層とを形成することを特徴とする酸素発生用陽極
の製法。
3. A conductive metal substrate is coated with a solution containing at least one metal salt selected from titanium, tantalum, tin, niobium and zirconium and a metal salt of palladium,
At least one metal oxide selected from titanium, tantalum, tin, and niobium by heat treatment in an oxidizing atmosphere 85
-95 mol% and 5-15 mol% of palladium oxide are mixed to form an intermediate coating layer, and at least one selected from titanium, tantalum, tin, niobium, and zirconium is formed in the same manner as above. A method for producing an oxygen generating anode, which comprises forming a surface coating layer made of a mixed oxide of 20 to 70 mol% of metal oxide and 30 to 80 mol% of iridium oxide.
【請求項4】酸化性雰囲気中での加熱処理温度が300〜7
00℃である請求項3に記載の方法。
4. The heat treatment temperature in an oxidizing atmosphere is 300 to 7
The method according to claim 3, wherein the method is 00 ° C.
JP1103002A 1989-04-21 1989-04-21 Oxygen generating anode and its manufacturing method Expired - Lifetime JPH0631455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1103002A JPH0631455B2 (en) 1989-04-21 1989-04-21 Oxygen generating anode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1103002A JPH0631455B2 (en) 1989-04-21 1989-04-21 Oxygen generating anode and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH02282490A JPH02282490A (en) 1990-11-20
JPH0631455B2 true JPH0631455B2 (en) 1994-04-27

Family

ID=14342462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1103002A Expired - Lifetime JPH0631455B2 (en) 1989-04-21 1989-04-21 Oxygen generating anode and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0631455B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3212334B2 (en) * 1991-11-28 2001-09-25 ペルメレック電極株式会社 Electrode substrate for electrolysis, electrode for electrolysis, and methods for producing them
KR102305658B1 (en) * 2019-08-07 2021-09-29 서울대학교산학협력단 Electrode structures for electrochemical reaction, and systems including the same
CN114272920B (en) * 2021-11-22 2023-10-03 广东省科学院资源利用与稀土开发研究所 Composite oxide coating electrode for degrading organic pollutants and preparation method thereof
CN115025776A (en) * 2022-06-02 2022-09-09 中国船舶重工集团公司第七二五研究所 Palladium oxide modified titanium-based metal oxide electrode and preparation method thereof

Also Published As

Publication number Publication date
JPH02282490A (en) 1990-11-20

Similar Documents

Publication Publication Date Title
US5098546A (en) Oxygen-generating electrode
US4554176A (en) Durable electrode for electrolysis and process for production thereof
US7247229B2 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
US4331528A (en) Coated metal electrode with improved barrier layer
US4484999A (en) Electrolytic electrodes having high durability
US4584084A (en) Durable electrode for electrolysis and process for production thereof
JP2596807B2 (en) Anode for oxygen generation and its production method
JP2931812B1 (en) Electrode for electrolysis and method for producing the same
EP0027051B1 (en) Coated metal electrode with improved barrier layer and methods of manufacture and use thereof
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
JP2768904B2 (en) Oxygen generating electrode
JP2596821B2 (en) Anode for oxygen generation
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JPH0631455B2 (en) Oxygen generating anode and its manufacturing method
EP0359876B1 (en) Oxygen-generating electrode and method for the preparation thereof
JPH0499294A (en) Oxygen generating anode and its production
JPH0689470B2 (en) Fabrication of oxygen evolution anode consisting of film-forming metal substrate and catalytic oxide coating containing ruthenium
JPH0631454B2 (en) Oxygen generating anode and its manufacturing method
JPS6134519B2 (en)
JP3658823B2 (en) Electrode for electrolysis and method for producing the same
JP5309813B2 (en) Oxygen generating electrode
JP4193390B2 (en) Oxygen generating electrode
JPS6125789B2 (en)
JPH05230682A (en) Electrolytic electrode
JPS62240780A (en) Anode for electrolysis