Nothing Special   »   [go: up one dir, main page]

JPH06302418A - Bond-type permanent magnet and its manufacture - Google Patents

Bond-type permanent magnet and its manufacture

Info

Publication number
JPH06302418A
JPH06302418A JP5304209A JP30420993A JPH06302418A JP H06302418 A JPH06302418 A JP H06302418A JP 5304209 A JP5304209 A JP 5304209A JP 30420993 A JP30420993 A JP 30420993A JP H06302418 A JPH06302418 A JP H06302418A
Authority
JP
Japan
Prior art keywords
magnet powder
magnet
resin
bond
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5304209A
Other languages
Japanese (ja)
Inventor
Hideki Matsunaga
秀樹 松永
Masakazu Okita
雅一 大北
Akio Kitagawa
晃朗 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Proterial Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumitomo Special Metals Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5304209A priority Critical patent/JPH06302418A/en
Publication of JPH06302418A publication Critical patent/JPH06302418A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve magnetic characteristic, mechanical strength and corrosion resistance by manufacturing a bond-type permanent magnet through compression molding by using raw magnet powder whose entire surface is uniformly coated with thermosetting resin for bonding in advance. CONSTITUTION:A surface of magnet powder is uniformly coated with thermosetting resin by coating rare earth/iron magnet powder consisting of rare earth/iron magnet powder of an average diameter of 300mum or below or two kinds of mixtures of average grain diameters of 63mum or less and 150 to 300mum by using a low viscosity liquid-like composition wherein thermosetting resin is dissolved in organic solvent. Thereafter, the acquired resin coated magnet powder is filled up in a die and molded by compression, and a bond-type permanent magnet is manufactured by heating and setting the molded item. Thereby, it is possible to acquire a bond-type permanent magnet whose magnetic characteristic, mechanical strength, heat resistance and corrosion resistance are good, and its manufacturing method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気特性、機械的強
度、耐熱性および耐食性(耐酸化性)に優れたボンド型
永久磁石およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bond type permanent magnet excellent in magnetic properties, mechanical strength, heat resistance and corrosion resistance (oxidation resistance), and a method for producing the same.

【0002】[0002]

【従来の技術】ボンド型永久磁石は、ハードフェライト
やR−Fe−B (Rは少なくとも1種の希土類元素) なる
組成を持つ希土類・鉄系磁石などの磁石粉末を、エポキ
シ樹脂、フェノール樹脂、ポリエステル樹脂などの熱硬
化性樹脂中に均一に分散させて樹脂で結合することによ
り、成形を容易にした磁石であり、一般家庭の各種電気
製品から大型コンピューターの周辺端末機器まで広く応
用されている。
2. Description of the Related Art Bonded permanent magnets are made of hard ferrite or R-Fe-B (R is at least one kind of rare earth element) magnet powder such as rare earth / iron based magnet powder, which is made of epoxy resin, phenol resin, A magnet that is easily molded by being uniformly dispersed in a thermosetting resin such as polyester resin and bonded with the resin. It is widely applied to various household electric appliances and peripheral terminals of large computers. .

【0003】従来の焼結型のフェライト系および希土類
・鉄系永久磁石に比べて、ボンド型永久磁石は、磁性を
発現しない樹脂分を含むため磁気特性は多少劣るが、焼
結による収縮がないので、高い寸法精度で種々の形状の
磁石を製造できるという特徴がある。そのため、スピン
ドルモーター、ステッピングモーター等の小型モーター
に近年多く用いられている。
Compared with the conventional sintered permanent magnets and rare earth / iron permanent magnets, the bond permanent magnets have resin properties that do not exhibit magnetism and thus have a slightly inferior magnetic property, but do not shrink due to sintering. Therefore, there is a feature that magnets of various shapes can be manufactured with high dimensional accuracy. Therefore, it has been widely used in recent years in small motors such as spindle motors and stepping motors.

【0004】ボンド型永久磁石の製造は、一般に、原料
磁石粉末と液体状態の熱硬化性樹脂(必要に応じて硬化
剤などの添加剤を含有する) とを混合し、得られた樹脂
被覆された磁石粉末を、必要であれば粉砕した後、金型
に充填してプレス機で圧縮成形することにより所望の形
状に賦形し、加熱して被覆樹脂を硬化させることにより
行われる。
[0004] Generally, a bond-type permanent magnet is manufactured by mixing raw magnet powder with a thermosetting resin in a liquid state (containing additives such as a curing agent if necessary), and coating the obtained resin. If necessary, the magnet powder is crushed, then filled in a mold and compression-molded by a press to give a desired shape, and the coating resin is cured by heating.

【0005】圧縮成形は、射出成形に比べて工程が多少
複雑でコストが高いという欠点はあるが、磁石粉末の充
填率を上げる (樹脂割合を低くする) ことが可能で、優
れた磁気特性を得ることができる。しかし、近年の電気
・電子製品の小型化、高性能化の進展は目ざましく、そ
れに対応して、ボンド型磁石のさらなる磁気特性の向上
が望まれている。そのためには、用いる磁石粉末の磁
気特性を向上させるか、単位体積中の磁石粉末の充填
量を多くする必要がある。
The compression molding has a drawback that the process is a little complicated and the cost is higher than that of the injection molding. However, it is possible to increase the filling rate of the magnet powder (reduce the resin ratio) and to obtain excellent magnetic characteristics. Obtainable. However, the recent progress in miniaturization and high performance of electric and electronic products is remarkable, and in response to this, further improvement in the magnetic characteristics of the bonded magnet is desired. For that purpose, it is necessary to improve the magnetic properties of the magnet powder to be used or to increase the filling amount of the magnet powder in a unit volume.

【0006】の磁気特性の向上手段として、Sm-Co 系
や希土類・鉄系 (例、Nd-Fe-B系)の希土類磁石粉末に
ついて、どの方向に磁化しても同じ磁気特性が発現する
等方性磁石粉末に比べて、特定方向に磁気特性が向上し
た異方性磁石が開発されている。この異方性磁石は、あ
る決まった特定方向 (磁化容易方向) にのみ磁気特性が
高いので、磁石体の内部において各磁石粉末の磁化容易
軸が同一方向に揃っている (配向している) ことが、磁
気特性の向上を得る条件となる。
As a means for improving the magnetic characteristics of Sm-Co type and rare earth / iron type (eg Nd-Fe-B type) rare earth magnet powders, the same magnetic characteristics are exhibited regardless of the direction of magnetization. Anisotropic magnets having improved magnetic properties in a specific direction have been developed as compared with anisotropic magnet powders. This anisotropic magnet has high magnetic properties only in a certain specific direction (direction of easy magnetization), so the easy axes of magnetization of each magnet powder are aligned in the same direction (orientated) inside the magnet body. That is the condition for improving the magnetic characteristics.

【0007】この配向は、一般に、成形時に磁場を印加
して、各異方性磁石粉末をその磁化容易軸が磁場方向を
向くように回転させることにより行われる。従って、ボ
ンド型永久磁石の場合には、成形時に個々の磁石粉末が
容易に回転する (即ち、粉末表面の摩擦抵抗が低くな
る) ような工夫が不可欠である。
This orientation is generally performed by applying a magnetic field at the time of molding and rotating each anisotropic magnet powder so that its easy axis of magnetization is oriented in the magnetic field direction. Therefore, in the case of a bond-type permanent magnet, it is essential to devise such that individual magnet powders easily rotate during molding (that is, the frictional resistance of the powder surface decreases).

【0008】一方、の単位体積中の磁石粉末の充填量
を多くするには、樹脂割合を減らすか、または圧縮成形
で作製する成形体の空隙を少なくすることが必要とな
る。しかし、ボンド型永久磁石の成形性、機械的強度を
考慮すると、樹脂割合を少なくすることには限界がある
ため、必要最低限の樹脂割合のもとで、成形体の空隙を
減少させて磁石粉末の充填率を向上させる方法が検討さ
れてきた。
On the other hand, in order to increase the filling amount of the magnet powder in the unit volume of 1, it is necessary to reduce the resin ratio or to reduce the voids of the molded body produced by compression molding. However, considering the formability and mechanical strength of the bond-type permanent magnet, there is a limit to the reduction of the resin ratio. Therefore, the voids of the molded body should be reduced with the minimum required resin ratio. Methods for improving the powder filling rate have been investigated.

【0009】例えば、特開昭60−207302号公報には、11
ton/cm2以上の高い圧力で圧縮成形することにより、磁
石粉末の充填率を向上させるボンド型永久磁石の製造法
が示されている。
For example, in Japanese Patent Laid-Open No. 60-207302, 11
A method for producing a bond-type permanent magnet that improves the packing ratio of magnet powder by compression molding at a high pressure of ton / cm 2 or higher is disclosed.

【0010】しかし、高圧での圧縮成形では高価な大型
のプレス機が必要となる上、高圧によるパンチやダイの
摩耗・損傷が著しくなるという問題もある。また、パン
チなどの強度の点から、プレス圧力をさらに上げること
は困難であり、圧力を従来以上に高くすることなく、磁
石粉末の充填率を上げる方法が望ましい。
However, the compression molding at high pressure requires an expensive large press machine, and there is a problem that the punch and the die are significantly worn and damaged due to the high pressure. Further, it is difficult to further increase the pressing pressure from the viewpoint of the strength of punches and the like, and a method of increasing the filling rate of the magnet powder without increasing the pressure higher than in the past is desirable.

【0011】希土類・鉄系磁石は、酸素と結合し易い希
土類金属と鉄が主体となるため、空気中において酸化さ
れ易く、そのまま熱硬化性樹脂と混合して成形しても所
定の磁気特性を発揮しえず、また磁気特性の安定化が困
難であることが経験されてきた。これには製造工程での
外気による磁石粉末の酸化の影響が関与しているものと
推測される。また、特に高温で使用した場合には磁気特
性の劣化が顕著であった。
Since the rare earth / iron-based magnet is mainly composed of a rare earth metal which easily binds to oxygen and iron, it is easily oxidized in the air, and even if it is directly mixed with a thermosetting resin, it has a predetermined magnetic characteristic. It has been experienced that it could not be exhibited and that it was difficult to stabilize the magnetic properties. It is presumed that this is due to the influence of the oxidation of the magnet powder by the outside air in the manufacturing process. Further, the deterioration of the magnetic properties was remarkable especially when used at high temperature.

【0012】このような磁石粉末の酸化防止と摩擦低減
による充填率および配向度の向上を図るために、潤滑剤
やシラン系カップリング剤で磁石粉末表面を被覆する
か、或いはこれらを熱硬化性樹脂成分に混入しておく処
理方法がこれまでにいくつか提案されている。
In order to prevent the oxidation of the magnet powder and improve the filling rate and the degree of orientation by reducing friction, the surface of the magnet powder is coated with a lubricant or a silane coupling agent, or these are thermosettable. Several treatment methods have been proposed so far, which are mixed with the resin component.

【0013】例えば、特開昭60−220920号公報では、磁
石粉末の表面に潤滑剤のコーティングを行い、圧縮成形
時の磁石粉末相互間および磁石粉末と結合樹脂間の摩擦
を低減させ、ボンド型磁石の密度 (磁石粉末の充填度)
と配向度を向上させ、磁気特性の向上を図っている。こ
の方法で得られたボンド型永久磁石は、潤滑剤を用いな
い場合と比較して、磁気特性は優れているものの、磁石
粉末と樹脂との密着性が低下するため、機械的強度およ
び耐食性が低下するという問題がある。
For example, in JP-A-60-220920, the surface of the magnet powder is coated with a lubricant to reduce the friction between the magnet powders during compression molding and between the magnet powder and the binding resin, thereby improving the bond type. Magnet density (filling degree of magnet powder)
And the degree of orientation is improved to improve the magnetic properties. The bond-type permanent magnet obtained by this method has excellent magnetic properties as compared with the case where a lubricant is not used, but since the adhesion between the magnet powder and the resin decreases, the mechanical strength and corrosion resistance are low. There is a problem of decrease.

【0014】特開昭62−264602号公報には、エポキシ樹
脂にシラン系カップリング剤を1〜15重量%混合した
後、このエポキシ樹脂を、予め表面に潤滑剤をコーティ
ングした希土類磁石粉末に加えて混練し、圧縮成形する
方法が開示されている。エポキシ樹脂中にシラン系カッ
プリング剤を混在させることにより、樹脂と潤滑剤との
濡れ性が改善される結果、磁気特性が向上するが、シラ
ン系カップリング剤による磁石粉末の表面処理では機械
的強度と耐食性の向上は見込めない。
In JP-A-62-264602, an epoxy resin is mixed with a silane coupling agent in an amount of 1 to 15% by weight, and then the epoxy resin is added to a rare earth magnet powder whose surface is previously coated with a lubricant. A method of kneading and kneading and compression molding is disclosed. By mixing the silane coupling agent in the epoxy resin, the wettability between the resin and the lubricant is improved, and as a result, the magnetic properties are improved.However, the surface treatment of the magnet powder with the silane coupling agent is mechanical. No improvement in strength and corrosion resistance can be expected.

【0015】特開平3−74810 号公報には、表面にシラ
ン系カップリング剤の被覆を施した希土類・鉄系磁石粉
末と、硬化剤および潤滑剤を添加混合したエポキシ樹脂
との混合物を、圧縮成形後、加熱硬化させる方法が開示
されている。この方法によれば、空気中での希土類・鉄
系磁石粉末の酸化を抑制し、高温においてもこの作用が
持続することから、耐熱性をある程度付与することがで
きる。また、結合剤のエポキシ樹脂中に潤滑剤が添加混
合されているため、成形時に磁石粉末相互間および磁石
粉末とエポキシ樹脂との間の摩擦が低減され、成形性の
向上および磁気特性の向上が可能となる。しかし、シラ
ン系カップリング剤等による磁粉表面処理だけでは機械
的強度の向上は芳しくなく、耐食性の向上も不十分であ
る。
In Japanese Patent Laid-Open No. 3-74810, a mixture of a rare earth / iron-based magnet powder whose surface is coated with a silane coupling agent and an epoxy resin mixed with a curing agent and a lubricant is compressed. A method of heat curing after molding is disclosed. According to this method, the oxidation of the rare earth / iron-based magnet powder in the air is suppressed, and this action continues even at high temperatures, so that heat resistance can be imparted to some extent. In addition, since a lubricant is added and mixed in the epoxy resin of the binder, friction between the magnet powders during molding and between the magnet powder and the epoxy resin is reduced, improving moldability and magnetic properties. It will be possible. However, only the magnetic powder surface treatment with a silane coupling agent or the like does not sufficiently improve the mechanical strength, and the corrosion resistance is not sufficiently improved.

【0016】[0016]

【発明が解決しようとする課題】本発明は、上記従来技
術に存在する問題点が解消された、即ち、磁気特性、機
械的強度、耐熱性および耐食性(耐酸化性)に優れたボ
ンド型永久磁石とその製造方法を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention has solved the problems existing in the above-mentioned prior art, that is, a bond type permanent magnet excellent in magnetic properties, mechanical strength, heat resistance and corrosion resistance (oxidation resistance). It is an object to provide a magnet and a method for manufacturing the magnet.

【0017】[0017]

【課題を解決するための手段】本発明者らは、かかる課
題を解決すべく、圧縮成形原料となる樹脂被覆された磁
石粉末および圧縮成形されたボンド型磁石表面の顕微鏡
観察等によるミクロ観察と同時に、強度試験を行った後
のボンド型磁石の破断面の顕微鏡観察等によるミクロ観
察を行った。その結果、次のような知見を得て本発明を
完成した。
In order to solve such a problem, the present inventors have conducted a microscopic observation such as a microscope observation of a resin-coated magnet powder as a compression molding raw material and a surface of a compression molded bond type magnet. At the same time, the fracture surface of the bond magnet after the strength test was microscopically observed by, for example, a microscope. As a result, the following knowledge was obtained and the present invention was completed.

【0018】原料磁石粉末における樹脂被覆の厚みが均
一性が、圧縮成形で得られたボンド型永久磁石の磁気特
性、機械的強度、耐熱性および耐食性に大きく影響す
る。つまり、全ての磁石粉末の表面が樹脂で均一な厚み
に被覆されていると、磁気特性、機械的強度、耐熱性お
よび耐食性に優れたボンド型永久磁石を得ることができ
る。磁石粉末の表面を樹脂で均一に被覆するには、熱硬
化性樹脂を従来のように磁石粉末と粘度の高いままで混
練するのではなく、例えば有機溶媒に溶解・希釈して低
粘度の液状で磁石粉末と混合することが必要となる。
The uniformity of the thickness of the resin coating in the raw magnet powder has a great influence on the magnetic properties, mechanical strength, heat resistance and corrosion resistance of the bond-type permanent magnet obtained by compression molding. That is, when the surfaces of all the magnet powders are coated with the resin in a uniform thickness, it is possible to obtain a bond-type permanent magnet excellent in magnetic characteristics, mechanical strength, heat resistance and corrosion resistance. To uniformly coat the surface of the magnet powder with the resin, do not knead the thermosetting resin with the magnet powder while keeping the viscosity high as in the past, for example, dissolve and dilute in an organic solvent to obtain a low-viscosity liquid. It is necessary to mix with magnet powder at.

【0019】ここに、本発明の要旨とするところは、磁
石粉末が熱硬化性樹脂で結合されたボンド型永久磁石で
あって、表面が予め熱硬化性樹脂層で均一に被覆された
磁石粉末の加圧成形体の加熱・硬化により得られたボン
ド型永久磁石である。
Here, the gist of the present invention is a bond-type permanent magnet in which magnet powder is bonded with a thermosetting resin, the surface of which is uniformly coated with a thermosetting resin layer. Is a bond-type permanent magnet obtained by heating and curing the pressure-molded body.

【0020】ここで、「均一に被覆された」とは、各磁
石粉末の全表面がほぼ一様な厚みで被覆されていること
を意味し、このような均一被覆は、熱硬化性樹脂を低粘
度の液状で磁石粉末と混合することにより達成すること
ができる。ただし、これと同等の均一被覆が達成されて
いればよく、本発明のボンド型磁石において、原料磁石
粉末の樹脂被覆手段は低粘度液状樹脂による被覆に限定
されるものでない。なお、磁石粉末の均一被覆状態は電
子顕微鏡で樹脂被覆した磁石粉末粉末を観察することに
より確認できる。
Here, "uniformly coated" means that the entire surface of each magnet powder is coated with a substantially uniform thickness, and such a uniform coating includes a thermosetting resin. It can be achieved by mixing with a magnet powder in a low viscosity liquid. However, it suffices that a uniform coating equivalent to this is achieved, and in the bonded magnet of the present invention, the resin coating means for the raw material magnet powder is not limited to coating with a low-viscosity liquid resin. The uniformly coated state of the magnet powder can be confirmed by observing the resin-coated magnet powder powder with an electron microscope.

【0021】即ち、従来技術のように、磁石粉末を予め
シラン系カップリング剤または潤滑剤で被覆しておくの
ではなく、結合樹脂である熱硬化性樹脂によって予め均
一に被覆しておくことが本発明の特徴である。
That is, the magnet powder is not previously coated with the silane coupling agent or the lubricant as in the prior art, but is uniformly coated with the thermosetting resin as the binding resin in advance. This is a feature of the present invention.

【0022】本発明の好適態様によれば、前記磁石粉末
が、平均粒径 300μm以下の希土類・鉄系磁石粉末で
あるか、或いは平均粒径63μm以下の希土類・鉄系磁
石粉末と平均粒径 150〜 300μmの希土類・鉄系磁石粉
末との混合物からなる。
According to a preferred embodiment of the present invention, the magnet powder is a rare earth / iron-based magnet powder having an average particle size of 300 μm or less, or a rare earth / iron-based magnet powder and an average particle size of 63 μm or less. It consists of a mixture of 150-300 μm rare earth / iron-based magnet powder.

【0023】磁石粉末を被覆する熱硬化性樹脂層の厚み
は、均一な被覆を達成するために、0.3〜5μmの範囲
内とすればよい。
The thickness of the thermosetting resin layer that coats the magnet powder may be in the range of 0.3 to 5 μm in order to achieve uniform coating.

【0024】別の側面からは、本発明は、磁石粉末を低
粘度液状の熱硬化性樹脂組成物と混合して磁石粉末の表
面を熱硬化性樹脂層で均一に被覆し、得られた樹脂被覆
磁石粉末を金型に充填して圧縮成形し、成形体を加熱・
硬化させることを特徴とする、ボンド型永久磁石の製造
方法である。
From another aspect, the present invention provides a resin obtained by mixing magnet powder with a low-viscosity liquid thermosetting resin composition and uniformly coating the surface of the magnet powder with a thermosetting resin layer. Fill the mold with the coated magnet powder, press-mold and heat the compact.
A method for producing a bond-type permanent magnet, which is characterized by curing.

【0025】圧縮成形は常温で行ってもよいが、磁石粉
末を被覆している熱硬化性樹脂の軟化温度と硬化温度の
間の温度に加温して行うと、磁石粉末の充填率がさらに
高まり、磁気特性が一層向上する。
The compression molding may be carried out at room temperature, but if it is carried out by heating to a temperature between the softening temperature and the hardening temperature of the thermosetting resin coating the magnet powder, the filling rate of the magnet powder will be further increased. And the magnetic characteristics are further improved.

【0026】[0026]

【作用】本発明で使用する磁石粉末としては、Nd、Pr、
Ce、Dy、Tbなどの希土類元素とFeとBとを主成分とす
る、R−Fe−B (Rは少なくとも1種の希土類元素) で
表される希土類・鉄系磁石の粉末のほか、希土類・コバ
ルト系磁石粉末、鉄の酸化物を主成分とするハードフェ
ライトの粉末などが挙げられる。R−Fe−B系磁石の代
表例はNd−Fe−B系磁石であり、希土類・コバルト系磁
石の代表例はSm−Co系磁石である。好ましい磁石粉
末は、磁気特性に優れ、しかも希土類・コバルト系より
安価な、希土類・鉄系磁石粉末である。
[Function] The magnet powder used in the present invention includes Nd, Pr,
Rare earth / iron-based magnet powder represented by R-Fe-B (R is at least one rare earth element) containing Ce, Dy, Tb, and other rare earth elements and Fe and B as main components, as well as rare earth elements -Cobalt-based magnet powder, hard ferrite powder containing iron oxide as a main component, and the like. A typical example of the R-Fe-B system magnet is an Nd-Fe-B system magnet, and a typical example of the rare earth / cobalt system magnet is an Sm-Co system magnet. A preferred magnet powder is a rare earth / iron-based magnet powder that has excellent magnetic properties and is cheaper than the rare earth / cobalt-based magnet powder.

【0027】原料磁石粉末の平均粒径は、樹脂による均
一被覆を確保するために、 300μm以下とすることが好
ましい。原料磁石粉末の平均粒径が 300μmを超える
と、熱硬化性樹脂を低粘度液状で被覆しても、磁石粉末
に樹脂が一様に付着せず、被覆の偏りが起こるので、被
覆の均一性が低下する。また、このように粗大な磁石粉
末では、圧縮成形後の磁石粉末間の空隙が大きくなり、
粉末間の樹脂結合が不十分となってボンド型磁石の機械
的強度が低下する。
The average particle size of the raw magnet powder is preferably 300 μm or less in order to ensure uniform coating with the resin. If the average particle size of the raw magnet powder exceeds 300 μm, even if the thermosetting resin is coated with a low-viscosity liquid, the resin does not adhere evenly to the magnet powder and the coating is unevenly distributed. Is reduced. Further, in such a coarse magnet powder, the gap between the magnet powders after compression molding becomes large,
The resin bond between the powders becomes insufficient and the mechanical strength of the bonded magnet decreases.

【0028】また、原料磁石粉末として、平均粒径の小
さい粉末と平均粒径の大きい粉末の2種類を混合して使
用することもできる。この混合粉末として好ましいの
は、平均粒径63μm以下の希土類・鉄系磁石粉末と、平
均粒径 150〜 300μmの希土類・鉄系磁石粉末との混合
物である。このような混合粉末を用いると、大きい粉末
の空隙間に小さい粉末が入りこむため、必要最低限の樹
脂量のもとで、磁石粉末の充填率を向上させることがで
き、磁気特性が改善される。
Further, as the raw material magnet powder, two kinds of powder having a small average particle diameter and powder having a large average particle diameter can be mixed and used. This mixed powder is preferably a mixture of rare earth / iron-based magnet powder having an average particle size of 63 μm or less and rare earth / iron-based magnet powder having an average particle size of 150 to 300 μm. When such a mixed powder is used, a small powder enters between the voids of a large powder, so that the filling rate of the magnet powder can be improved and the magnetic characteristics are improved under the necessary minimum resin amount. .

【0029】磁石粉末の平均粒径の下限については、希
土類・鉄系および希土類・コバルト系などの希土類系磁
石粉末では、平均粒径が20μm以上であることが望まし
い。平均粒径が20μmより小さくなると、保磁力、磁石
のヒステリシス曲線の角型性等の磁気特性の劣化が見ら
れ、さらに比表面積が大きくなりすぎて耐食性の面から
も問題が生じるからである。ただし、ハードフェライト
磁石粉末の場合には、通常、平均粒径が10μm以下であ
るので、このような制限を受けない。
With respect to the lower limit of the average particle size of the magnet powder, it is desirable that the average particle size of the rare earth magnet powder such as rare earth / iron magnet and rare earth magnet / cobalt magnet is 20 μm or more. When the average particle diameter is smaller than 20 μm, the magnetic properties such as coercive force and squareness of the hysteresis curve of the magnet are deteriorated, and the specific surface area becomes too large, which causes a problem in terms of corrosion resistance. However, in the case of hard ferrite magnet powder, since the average particle diameter is usually 10 μm or less, such a limitation is not imposed.

【0030】本発明において、磁石粉末を被覆する結合
樹脂としては熱硬化性樹脂を使用する。熱硬化性樹脂の
種類は特に制限されないが、例えば、エポキシ樹脂、フ
ェノール樹脂、ポリエステル樹脂などが挙げられる。好
ましい熱硬化性樹脂はエポキシ樹脂である。熱硬化性樹
脂は、必要に応じて硬化剤(架橋剤)と一緒に使用す
る。
In the present invention, a thermosetting resin is used as the binding resin for coating the magnet powder. The type of thermosetting resin is not particularly limited, but examples thereof include epoxy resin, phenol resin, and polyester resin. A preferred thermosetting resin is an epoxy resin. The thermosetting resin is used together with a curing agent (crosslinking agent) as needed.

【0031】本発明では、原料の磁石粉末の表面を熱硬
化性樹脂層で予め均一に被覆しておく。この均一厚みの
樹脂被覆は、結合樹脂(熱硬化性樹脂)を、低粘度液状
(例、適当な有機溶媒に溶解して低粘度の樹脂溶液) の
形態で磁石粉末と混合することにより達成される。被覆
に用いる低粘度液状の樹脂とは、溶液に限定されるもの
ではなく、エマルジョン、懸濁液などの状態であっても
よい。樹脂液の粘度は、好ましくは25℃で5000 cps以
下、より好ましくは1000 cps以下、特に好ましくは100
cps 以下とする。
In the present invention, the surface of the raw material magnet powder is uniformly coated with the thermosetting resin layer in advance. This uniform resin coating is a low-viscosity liquid binder resin (thermosetting resin).
It is achieved by mixing with magnet powder in the form of (for example, a resin solution having a low viscosity by dissolving in a suitable organic solvent). The low-viscosity liquid resin used for coating is not limited to a solution, and may be an emulsion, suspension or the like. The viscosity of the resin liquid is preferably 5000 cps or less at 25 ° C, more preferably 1000 cps or less, and particularly preferably 100.
cps or less.

【0032】樹脂の溶解または分散に用いる溶媒は、水
を用いると、前記のように耐食性低下の原因となりうる
ことから、有機溶媒を使用する方が好ましい。有機溶媒
の種類は、使用する熱可塑性樹脂種に応じて選択すれば
よい。例えば、エポキシ樹脂に対しては、メチルエチル
ケトン、シクロヘキサノンなどのケトン類や、エーテル
類などが使用できる。
When water is used as the solvent used for dissolving or dispersing the resin, it is preferable to use an organic solvent because it may cause a decrease in corrosion resistance as described above. The type of organic solvent may be selected according to the type of thermoplastic resin used. For example, for epoxy resins, ketones such as methyl ethyl ketone and cyclohexanone, and ethers can be used.

【0033】使用する樹脂液には、所望によりシラン系
カップリング剤、潤滑剤などの添加剤を少量配合するこ
ともできる。また、前述した従来技術のように、磁石粉
末を予めシラン系カップリング剤または潤滑剤で表面処
理しておくこともできる。
If desired, a small amount of additives such as silane coupling agents and lubricants can be added to the resin liquid used. Further, the magnetic powder may be surface-treated in advance with a silane coupling agent or a lubricant as in the above-mentioned conventional technique.

【0034】磁石粉末の熱硬化性樹脂による被覆は、磁
石粉末と所定量の低粘度液状の熱硬化性樹脂とを容器内
で混合し、溶媒を必要であれば加熱して蒸発させること
により行うことができる。もちろん、これと同等な均一
被覆が可能であれば、他の被覆方法により磁石粉末を熱
硬化性樹脂で被覆してもよい。
The coating of the magnet powder with the thermosetting resin is carried out by mixing the magnet powder with a predetermined amount of a low-viscosity liquid thermosetting resin in a container and heating the solvent if necessary to evaporate it. be able to. Of course, if uniform coating equivalent to this is possible, the magnet powder may be coated with a thermosetting resin by another coating method.

【0035】磁石粉末に対する熱硬化性樹脂の配合量は
1〜20重量%の範囲内とするのが好ましい。樹脂の配合
量が1重量%未満では、成形されたボンド型磁石内の磁
石粉末の結合が不十分となり、成形性が悪く、かつ機械
的強度が低下する。一方、樹脂の配合量が20重量%を越
えると、磁石粉末の充填率が小さくなり、所定の高磁気
特性を発揮できなくなる。
The compounding amount of the thermosetting resin with respect to the magnet powder is preferably in the range of 1 to 20% by weight. If the amount of the resin compounded is less than 1% by weight, the bonding of the magnet powder in the molded bond-type magnet becomes insufficient, the moldability becomes poor, and the mechanical strength decreases. On the other hand, if the compounding amount of the resin exceeds 20% by weight, the filling rate of the magnet powder becomes small, and it becomes impossible to exhibit the predetermined high magnetic characteristics.

【0036】本発明においては、原料磁石粉末を予め結
合樹脂で均一に被覆しておくことにより、磁石粉末の滑
りが良くなる (粉末相互間の摩擦が低減する) 結果、金
型充填時の磁石粉末の流動性が向上し、充填密度が増大
する。また、圧縮成形時の磁石粉末相互間および磁石粉
末と結合樹脂間の摩擦も低減するため、ボンド型永久磁
石の磁石粉末の充填率が増大し、均一に存在する樹脂に
より粉末の空隙が良好に充填される。さらに、磁石粉末
の表面全体が予め樹脂被覆されているため、製造工程中
の磁石粉末の酸化が起こりにくく、得られたボンド型磁
石内でも各磁石粉末は完全に樹脂で被覆されていて外気
から保護される。また、異方性の磁石粉末の場合には、
磁石粉末が低摩擦で滑りがよいので、圧縮成形時に磁石
粉末の磁化容易軸を揃えるための回転が容易に起こり、
配向度の高い成形体を得ることができる。以上の結果、
磁気特性、機械的強度、耐熱性および耐食性のいずれも
が向上するものと推測される。
In the present invention, by uniformly coating the raw material magnet powder with the binding resin in advance, the slippage of the magnet powder is improved (friction between the powder particles is reduced). The fluidity of the powder is improved and the packing density is increased. In addition, since the friction between the magnet powders during compression molding and between the magnet powders and the binding resin is also reduced, the filling rate of the magnet powder of the bond type permanent magnet is increased, and the voids of the powder are improved due to the uniformly existing resin. Is filled. Furthermore, since the entire surface of the magnet powder is pre-coated with resin, oxidation of the magnet powder during the manufacturing process does not easily occur, and even in the obtained bond-type magnet, each magnet powder is completely covered with resin and is protected from the outside air. Be protected. In the case of anisotropic magnet powder,
Since the magnet powder has low friction and good slippage, rotation for aligning the easy axis of magnetization of the magnet powder easily occurs during compression molding,
A molded product having a high degree of orientation can be obtained. As a result of the above,
It is presumed that magnetic properties, mechanical strength, heat resistance and corrosion resistance are all improved.

【0037】原料磁石粉末を被覆する熱硬化性樹脂層の
厚みは、 0.3〜5μmの範囲内、特に 0.4〜2μmの範
囲内が好ましい。樹脂被覆層の厚みが0.3 μmより薄い
と、磁石粉末の周囲全てを一様に被覆できず、前述した
樹脂被覆の効果を十分に得ることができない。一方、磁
石粉末の樹脂被覆層の厚みが5μmを超えると、得られ
るボンド型磁石の樹脂量が多すぎ、磁石粉末の配合率が
小さくなる結果、所定の高磁気特性を発揮することが困
難となる。
The thickness of the thermosetting resin layer coating the raw material magnet powder is preferably in the range of 0.3 to 5 μm, particularly preferably 0.4 to 2 μm. If the thickness of the resin coating layer is less than 0.3 μm, the entire circumference of the magnet powder cannot be uniformly coated, and the effect of the resin coating described above cannot be sufficiently obtained. On the other hand, when the thickness of the resin coating layer of the magnet powder exceeds 5 μm, the resin amount of the obtained bond-type magnet is too large, and the compounding ratio of the magnet powder becomes small. As a result, it is difficult to exhibit predetermined high magnetic characteristics. Become.

【0038】磁石粉末の単位重量当たりの全表面積は粉
末の平均粒径に依存し、平均粒径の大きい磁石粉末の方
が、単位重量当たりの表面積が小さくなる。その結果、
原料磁石粉末に対する熱硬化性樹脂の割合が重量%で一
定であると、平均粒径の大きい磁石粉末の方が、粉末の
全表面積が小さいために、個々の磁石粉末の樹脂被覆層
の厚みは大きくなる。
The total surface area per unit weight of the magnet powder depends on the average particle diameter of the powder, and the larger the average particle diameter of the magnet powder, the smaller the surface area per unit weight. as a result,
When the ratio of the thermosetting resin to the raw material magnet powder is constant in weight%, the magnet powder having a larger average particle size has a smaller total surface area, and therefore the thickness of the resin coating layer of each magnet powder is smaller. growing.

【0039】従って、樹脂被覆厚みを所定の一定の厚み
とするには、結合剤である熱硬化性樹脂の配合量を原料
磁石粉末の粒径に応じて変化させる必要があり、原料磁
石粉末の平均粒径が小さいほど、多量の結合樹脂を使用
しなければならない。即ち、0.3〜5μmの範囲内とい
う好ましい樹脂被覆層の厚みを得るには、磁石粉末に対
する樹脂の配合量を1〜20重量%の範囲内において粉末
の平均粒径に応じて適切に選択する必要がある。
Therefore, in order to make the resin coating thickness a predetermined constant thickness, it is necessary to change the compounding amount of the thermosetting resin as the binder according to the particle diameter of the raw material magnet powder. The smaller the average particle size, the more binder resin must be used. That is, in order to obtain the preferable thickness of the resin coating layer within the range of 0.3 to 5 μm, the compounding amount of the resin with respect to the magnet powder must be appropriately selected within the range of 1 to 20% by weight according to the average particle size of the powder. There is.

【0040】この観点から検討した結果、例えば、原料
磁石粉末が平均粒径30μmの場合には結合樹脂の配合量
は3〜20重量%の範囲が、平均粒径100 μmでは2〜10
重量%の範囲が、平均粒径200 μmでは1〜8重量%の
範囲が、平均粒径300 μmでは1〜6重量%の範囲がそ
れぞれ好ましい。それにより、 0.3〜5μmの範囲内の
好ましい厚みの樹脂被覆層を磁石粉末表面に形成するこ
とができる。
As a result of examination from this viewpoint, for example, when the raw magnet powder has an average particle diameter of 30 μm, the compounding amount of the binder resin is in the range of 3 to 20% by weight, and when the average particle diameter of 100 μm is 2 to 10%.
The weight% range is preferably 1 to 8% by weight when the average particle size is 200 μm, and the range is 1 to 6% by weight when the average particle size is 300 μm. Thereby, the resin coating layer having a preferable thickness within the range of 0.3 to 5 μm can be formed on the surface of the magnet powder.

【0041】また、前述したように平均粒径の異なる2
種類の原料磁石粉末を用いる場合には、両方の粉末を混
合した後で熱硬化性樹脂による被覆を行うと、結合樹脂
が均一に被覆していない磁石粉末が存在することがあ
る。これは、粒径の小さい方の磁石粉末には樹脂がよく
分散し、均一に樹脂被覆が行われるが、平均粒径が大き
い磁石粉末の表面では結合樹脂の分散が充分に行われ
ず、樹脂の付着の偏りが起こり易いためではないかと推
測される。
Further, as described above, 2 having different average particle diameters are used.
When two kinds of raw material magnet powders are used, when both powders are mixed and then coated with a thermosetting resin, there are cases where the binder resin is not uniformly coated with the magnet powder. This is because the resin is well dispersed in the magnet powder with the smaller particle diameter and the resin is uniformly coated, but the binder resin is not sufficiently dispersed on the surface of the magnet powder with the large average particle diameter, It is speculated that this may be due to uneven adhesion.

【0042】従って、原料磁石粉末が平均粒径の異なる
2種類の粉末の混合物(好ましくは平均粒径63μm以下
の粉末と平均粒径 150〜300 μmの粉末との混合物)で
ある場合には、2種類の磁石粉末を混合前に別々に熱硬
化性樹脂層で均一に被覆しておくことが望ましい。この
場合、前述したように、樹脂被覆層の厚みが同一となる
ように、平均粒径の大きい磁石粉末に対する樹脂の配合
量は、平均粒径の小さい磁石粉末に対する樹脂の配合量
より少なくする。両者の磁石粉末の樹脂被覆層の厚みが
異なり、一方の樹脂被覆層の厚みが 0.3〜5μmの範囲
を外れると、得られたボンド型永久磁石中における磁石
粉末の分布が均一とならず、磁気特性が低下することが
ある。
Therefore, when the raw magnet powder is a mixture of two kinds of powders having different average particle diameters (preferably a mixture of powders having an average particle diameter of 63 μm or less and powders having an average particle diameter of 150 to 300 μm), It is desirable that the two kinds of magnet powders are separately and uniformly coated with the thermosetting resin layer before mixing. In this case, as described above, the compounding amount of the resin with respect to the magnet powder having a large average particle size is smaller than that of the magnet powder having a small average particle size so that the resin coating layer has the same thickness. If the thickness of the resin coating layer of both magnet powders is different and the thickness of one resin coating layer deviates from the range of 0.3 to 5 μm, the distribution of the magnet powder in the obtained bond-type permanent magnet will not be uniform, and The characteristics may deteriorate.

【0043】熱硬化性樹脂で被覆された磁石粉末は、金
型に充填し、圧縮成形した後、成形体を加熱・硬化させ
ることによりボンド型永久磁石を製造することができ
る。圧縮成形は常法により行えばよい。圧縮成形のプレ
ス圧は2〜10 ton/cm2の範囲内が適当である。
The magnet powder coated with the thermosetting resin is filled in a mold, compression-molded, and then the molded body is heated and cured to produce a bond-type permanent magnet. The compression molding may be performed by a conventional method. The pressing pressure for compression molding is appropriately in the range of 2 to 10 ton / cm 2 .

【0044】原料磁石粉末が異方性のものである場合に
は、当業者には周知のように、金型の周囲から磁場を印
加して圧縮成形を磁場中で行うことにより、個々の磁石
粉末の磁化容易方向が同方向に揃った (即ち、配向し
た) 成形体を得ることができる。本発明では、磁石粉末
が均一な厚みの熱硬化性樹脂で被覆されていて、磁石粉
末間の摩擦が低減しているため、磁場の作用下での磁石
粉末の回転が容易に起こり、配向度の高い成形体を得る
ことができる。その結果、得られたボンド型磁石の磁気
特性が高くなる。
When the raw material magnet powder is anisotropic, it is well known to those skilled in the art that a magnetic field is applied from the periphery of the die to perform compression molding in the magnetic field, thereby producing individual magnets. It is possible to obtain a molded product in which the easy magnetization direction of the powder is aligned in the same direction (that is, oriented). In the present invention, the magnet powder is coated with a thermosetting resin having a uniform thickness, and the friction between the magnet powders is reduced. Therefore, rotation of the magnet powder under the action of a magnetic field easily occurs, and the degree of orientation is increased. It is possible to obtain a molded product having a high quality. As a result, the magnetic properties of the obtained bonded magnet are improved.

【0045】圧縮成形温度は常温でもよいが、圧縮成形
を熱硬化性樹脂の軟化温度と硬化温度の間の温度で行う
と、圧縮成形中の磁石粉末相互間および磁石粉末と結合
樹脂との間の摩擦が低減し、磁石粉末の充填率と配向度
が向上し、空隙の少ない密度が増大したボンド型磁石が
得られる。その結果、異方性および等方性のいずれの磁
石粉末の場合でも、磁気特性が向上すると共に、機械的
強度、耐熱性および耐食性も一層改善される。そのため
には、使用する金型を軟化温度と硬化温度の間の温度に
加温しておき、この加温された金型を用いて磁石粉末の
圧縮成形を行えばよい。
The compression molding temperature may be room temperature, but if the compression molding is carried out at a temperature between the softening temperature and the curing temperature of the thermosetting resin, the magnet powders are compressed and the magnet powders are bonded to the binder resin. Friction is reduced, the packing ratio and orientation degree of the magnet powder are improved, and a bonded magnet having few voids and an increased density is obtained. As a result, magnetic properties are improved and mechanical strength, heat resistance and corrosion resistance are further improved in both cases of anisotropic and isotropic magnet powders. For that purpose, the die to be used may be heated to a temperature between the softening temperature and the curing temperature, and the heated die may be used for compression molding of the magnet powder.

【0046】脱型後、得られた成形体を、樹脂被覆に用
いた熱硬化性樹脂の硬化温度より高温に加熱して樹脂を
硬化させると、本発明のボンド型永久磁石が得られる。
この硬化のための加熱条件は、熱硬化性樹脂と硬化剤の
種類に応じて適当に選択すればよい。
After demolding, the molded body obtained is heated to a temperature higher than the curing temperature of the thermosetting resin used for coating the resin to cure the resin, whereby the bond-type permanent magnet of the present invention is obtained.
The heating conditions for this curing may be appropriately selected depending on the types of thermosetting resin and curing agent.

【0047】[0047]

【実施例】原料磁石粉末 本実施例で用いた原料磁石粉末は次のようにして作製し
たものである。原子分率で13%のNd、12%のCo、1%の
Ga、6%のB、残部がFeのNd−Fe−B合金を 970〜1170
Kの水素ガス中に保持して、Nd水素化物、Fe2B、Feに分
解した。次に、この温度領域で水素圧を下げ、Nd水素化
物から水素を解離させ、微細なNd2Fe14B結晶体の磁石粉
末を調製した。得られた磁石粉末をさらに粉砕して表1
に示す所定の平均粒径を有する磁石粉末を得た。
[Examples] Raw magnet powder The raw magnet powder used in this example is manufactured as follows. Atomic fraction of 13% Nd, 12% Co, 1%
Ga, 6% B, balance Fe: Nd-Fe-B alloy 970-1170
It was kept in the hydrogen gas of K and decomposed into Nd hydride, Fe 2 B and Fe. Next, the hydrogen pressure was lowered in this temperature range to dissociate the hydrogen from the Nd hydride to prepare a fine Nd 2 Fe 14 B crystalline magnet powder. The obtained magnet powder was further pulverized and Table 1
A magnet powder having a predetermined average particle size shown in was obtained.

【0048】熱硬化性樹脂組成物(エポキシ樹脂液) 常温で固体のクレゾールノボラック系エポキシ樹脂32重
量%と硬化剤3重量%とを有機溶媒のメチルエチルケト
ン65重量%に溶解し、25℃での粘度が5cps の低粘度液
状のエポキシ樹脂液を得た。
Thermosetting resin composition (epoxy resin liquid) A cresol novolac type epoxy resin 32% by weight and a curing agent 3% by weight which are solid at room temperature are dissolved in 65% by weight of an organic solvent of methyl ethyl ketone to obtain a viscosity at 25 ° C. A low-viscosity liquid epoxy resin solution having a viscosity of 5 cps was obtained.

【0049】樹脂被覆 磁石粉末の被覆は、磁石粉末とエポキシ樹脂液とを、表
1に示す配合割合 (磁石粉末に対する樹脂固形分〔エポ
キシ樹脂+硬化剤〕の重量%) となるように混合し、室
温でメチルエチルケトンを蒸発させた後、乳鉢で粉砕し
て、圧縮成形用の樹脂被覆磁石粉末を得た。
To coat the resin-coated magnet powder, the magnet powder and the epoxy resin liquid were mixed so as to have the compounding ratio shown in Table 1 (% by weight of resin solids [epoxy resin + curing agent] relative to the magnet powder). After evaporating methyl ethyl ketone at room temperature, it was crushed in a mortar to obtain a resin-coated magnet powder for compression molding.

【0050】圧縮成形 上記の樹脂被覆磁石粉末を、金型に充填した後、磁場(1
0 kOe)の印加下に圧力6ton/cm2 で圧縮成形した。実施
例8を除いて、圧縮成形は常温で行った。脱型後、Arガ
ス中で150 ℃60分間の加熱により磁石粉末を被覆してい
るエポキシ樹脂を硬化させ、長さ100 mm、幅10 mm 、厚
さ5mmの短冊型形状と10 mm 立方の立方形状のボンド型
永久磁石を得た。
Compression molding After filling the resin-coated magnet powder described above in a mold , a magnetic field (1
It was compression-molded at a pressure of 6 ton / cm 2 under the application of 0 kOe). Except for Example 8, compression molding was performed at room temperature. After demolding, the epoxy resin coating the magnet powder is cured by heating at 150 ° C for 60 minutes in Ar gas to give a strip shape with a length of 100 mm, a width of 10 mm and a thickness of 5 mm and a cubic shape of 10 mm cubic. A shaped bond-type permanent magnet was obtained.

【0051】上記のようにして得たボンド型永久磁石の
特性を、(1) 磁気特性測定、(2) 曲げ強度試験、(3) 耐
湿試験により評価した。評価方法は以下のようである。
The properties of the bond type permanent magnet obtained as described above were evaluated by (1) magnetic property measurement, (2) bending strength test, and (3) moisture resistance test. The evaluation method is as follows.

【0052】(1) 磁気特性測定 10 mm 立方のボンド型永久磁石を用い、BHトレーサーに
より残留磁束密度(Br)、保磁力(iHc) ならび
に最大エネルギー積(BHmax) を測定した。
(1) Measurement of magnetic properties Using a bond type permanent magnet of 10 mm cubic, the residual magnetic flux density (Br), coercive force (iHc) and maximum energy product (BHmax) were measured by a BH tracer.

【0053】(2) 曲げ強度試験 100 mm×10mm×5mmのボンド型永久磁石を用いて、JIS
K7203 の硬質プラスチックの曲げ試験方法に準じて行っ
た。支点間距離は75mm、試験速度は2mm/分で行い、結
果より曲げ破壊強度を算出した。
(2) Bending strength test Using a bond type permanent magnet of 100 mm × 10 mm × 5 mm, JIS
The test was performed according to the bending test method for hard plastics of K7203. The distance between fulcrums was 75 mm, the test speed was 2 mm / min, and the bending fracture strength was calculated from the results.

【0054】(3) 耐湿試験 10 mm 立方のボンド型永久磁石を80℃に予熱した後、温
度80℃、相対湿度90%の雰囲気内に24時間放置した。24
時間後の試験片表面の錆発生状況を目視により観察し、
錆発生数を計数して、次の基準で評価した。 ○:錆発生なし、△:錆発生数3〜5個/cm2、×:錆発
生数6〜12個/cm2
(3) Humidity resistance test A 10 mm cubic bond type permanent magnet was preheated to 80 ° C. and then left in an atmosphere of a temperature of 80 ° C. and a relative humidity of 90% for 24 hours. twenty four
Visually observe the rust occurrence on the surface of the test piece after a while,
The number of rust occurrences was counted and evaluated according to the following criteria. ◯: No rust generation, Δ: Rust generation number 3 to 5 / cm 2 , X: Rust generation number 6 to 12 / cm 2 .

【0055】実施例1〜5 表1に示したような各種の平均粒径のNd−Fe−B系磁石
粉末Aとエポキシ樹脂液とを表1の割合で混合し、樹脂
被覆磁石粉末を得た。こうして得た樹脂被覆磁石粉末を
上記条件で圧縮成形し、ボンド型永久磁石を得た。
Examples 1 to 5 Nd-Fe-B magnet powder A having various average particle diameters as shown in Table 1 and an epoxy resin solution were mixed at a ratio shown in Table 1 to obtain resin-coated magnet powder. It was The resin-coated magnet powder thus obtained was compression-molded under the above conditions to obtain a bond-type permanent magnet.

【0056】実施例6〜7 表1に示した平均粒径の異なる2種類のNd−Fe−B系磁
石粉末AおよびBを、混合前にそれぞれエポキシ樹脂液
と表1の割合で混合し、2種類の樹脂被覆磁石粉末を得
た。この2種類の樹脂被覆磁石粉末を、表1に示した混
合比率で混合し、圧縮成形し、ボンド型永久磁石を得
た。
Examples 6 to 7 Two types of Nd-Fe-B magnet powders A and B having different average particle sizes shown in Table 1 were mixed with an epoxy resin solution at a ratio shown in Table 1 before mixing. Two types of resin-coated magnet powder were obtained. The two types of resin-coated magnet powders were mixed at the mixing ratio shown in Table 1 and compression-molded to obtain a bond-type permanent magnet.

【0057】実施例8 表1に示した平均粒径の磁石粉末Aとエポキシ樹脂液を
用いて得た樹脂被覆磁石粉末を、80℃に加温された金型
内でこの温度に保持しながら圧縮成形した。冷却後に脱
型し、成形体を上記条件で加熱してボンド型永久磁石を
得た。
Example 8 A resin-coated magnet powder obtained by using a magnet powder A having an average particle size shown in Table 1 and an epoxy resin solution was kept at this temperature in a mold heated to 80 ° C. It was compression molded. After cooling, the mold was removed, and the molded body was heated under the above conditions to obtain a bond-type permanent magnet.

【0058】比較例1〜3、9 表1に示した平均粒径の磁石粉末Aを用いて、実施例1
と同様の方法で樹脂被覆を行い、圧縮成形によりボンド
型永久磁石を得た。
Comparative Examples 1 to 3, 9 Using magnet powder A having an average particle size shown in Table 1, Example 1
Resin coating was performed in the same manner as in (1) and compression bonding was performed to obtain a bond-type permanent magnet.

【0059】比較例4〜5 表1に示した平均粒径の異なる2種類の磁石粉末Aおよ
びBを用い、実施例5と同様に混合前に別々にエポキシ
樹脂液で被覆した後、圧縮成形してボンド型永久磁石を
得た。
Comparative Examples 4 to 5 Two types of magnet powders A and B having different average particle diameters shown in Table 1 were used, and similarly to Example 5, they were separately coated with an epoxy resin solution before mixing, and then compression molded. Then, a bond-type permanent magnet was obtained.

【0060】比較例6〜7 表1に示した平均粒径の異なる2種類の磁石粉末Aおよ
びBを用い、この2種類の粉末を混合した後で、表1に
示す量のエポキシ樹脂液と混合して樹脂被覆を行い、得
られた樹脂被覆磁石粉末を圧縮成形してボンド型永久磁
石を得た。
Comparative Examples 6 to 7 Two types of magnet powders A and B having different average particle sizes shown in Table 1 were used. After mixing the two types of powders, the epoxy resin liquids in the amounts shown in Table 1 were used. The mixture was mixed and resin-coated, and the resin-coated magnet powder obtained was compression-molded to obtain a bond-type permanent magnet.

【0061】比較例8 表1に示した平均粒径の磁石粉末Aを、上記エポキシ樹
脂+硬化剤の混合物と、溶液化せずに直接混合し、80℃
に加温して樹脂を溶融させ、磁石粉末に被覆した。得ら
れた樹脂被覆磁石粉末は融着していたので、これを乳鉢
で粉砕した後、上記と同様に圧縮成形してボンド型永久
磁石を得た。
Comparative Example 8 Magnet powder A having an average particle size shown in Table 1 was directly mixed with the above-mentioned epoxy resin + hardening agent mixture without being solubilized, and the mixture was heated to 80 ° C.
Was heated to melt the resin and coat the magnet powder. Since the obtained resin-coated magnet powder was fused, it was crushed in a mortar and compression-molded in the same manner as above to obtain a bond-type permanent magnet.

【0062】以上で得たボンド型永久磁石の(1) 磁気特
性測定、(2) 曲げ強度試験、(3) 耐湿試験の測定結果を
表2にまとめて示す。また、以上の実施例および比較例
で調製した樹脂被覆した原料磁石粉末を走査式電子顕微
鏡(SEM)で観察することにより、樹脂被覆の均一性
を調べた。樹脂層厚みが 0.3〜5μmの範囲内である実
施例の磁石粉末では、いずれも磁石粉末が均一な厚みの
樹脂で被覆されていた。これに対し、比較例において樹
脂層厚みが0.3 μmより薄い磁石粉末では、樹脂が磁石
粉末の周囲全体を均一被覆していなかった。
Table 2 shows the measurement results of (1) measurement of magnetic properties, (2) bending strength test, and (3) moisture resistance test of the bond-type permanent magnets obtained above. Further, the uniformity of resin coating was examined by observing the resin-coated raw material magnet powders prepared in the above Examples and Comparative Examples with a scanning electron microscope (SEM). In each of the magnet powders of Examples having a resin layer thickness within the range of 0.3 to 5 μm, the magnet powder was coated with the resin having a uniform thickness. On the other hand, in the magnet powder having a resin layer thickness of less than 0.3 μm in the comparative example, the resin did not uniformly coat the entire periphery of the magnet powder.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】本発明のボンド型永久磁石は、原料磁石粉
末が適正な範囲内で均一な厚みの樹脂被覆を持っている
ため、比較例1〜7の永久磁石に比べて、磁気特性、曲
げ試験結果および錆発生状況のいずれにも優れており、
磁気特性、機械的強度、耐熱性、耐食性がいずれも向上
していることがわかる。
The bond-type permanent magnet of the present invention has a resin coating having a uniform thickness in the proper range of the raw material magnet powder, and therefore has a magnetic characteristic and a bending test as compared with the permanent magnets of Comparative Examples 1 to 7. Excellent in both results and rust occurrence,
It can be seen that the magnetic properties, mechanical strength, heat resistance, and corrosion resistance are all improved.

【0066】[0066]

【発明の効果】本発明によれば、予め表面全体が結合用
の熱硬化性樹脂によって均一な厚みで被覆された原料磁
石粉末を使用して圧縮成形によりボンド型永久磁石を製
造することで、下記の効果を奏することができる。
According to the present invention, a bond-type permanent magnet is manufactured by compression molding using a raw material magnet powder whose entire surface is coated with a thermosetting resin for bonding in a uniform thickness in advance, The following effects can be achieved.

【0067】(1) 金型充填時の磁石粉末の滑りが良くな
り、その流動性が向上し、金型に充填した時の充填密度
が向上する。しかも、圧縮成形中も磁石粉末相互間およ
び磁石粉末と結合樹脂間の摩擦が低減するので、得られ
たボンド型永久磁石の密度が増大し、磁場印加時の磁石
粉末の回転も容易になる。その結果、粉末間の空隙が少
なく、磁石粉末の充填率が高いボンド型永久磁石が得ら
れ、異方性磁石粉末を用いた場合の配向度も向上するの
で、磁気特性が向上する。
(1) The slippage of the magnet powder at the time of filling the mold is improved, its fluidity is improved, and the packing density when it is filled in the mold is improved. Moreover, since the friction between the magnet powders and between the magnet powders and the binder resin is reduced during compression molding, the density of the obtained bond-type permanent magnet is increased, and the magnet powders are easily rotated when a magnetic field is applied. As a result, a bonded permanent magnet having a small void between powders and a high packing rate of magnet powder is obtained, and the orientation degree when anisotropic magnet powder is used is also improved, so that the magnetic characteristics are improved.

【0068】(2) 原料磁石粉末が完全に樹脂で結合さ
れ、しかも磁石粉末間の空隙が少なく、高密度で充填さ
れるため、ボンド型永久磁石の機械的強度が向上する。
(2) Since the raw material magnet powder is completely bonded with the resin and the voids between the magnet powders are small and the magnetic powders are packed at a high density, the mechanical strength of the bonded permanent magnet is improved.

【0069】(3) 原料磁石粉末の全表面が結合用熱硬化
性樹脂により均一な厚みで被覆されているので、成形お
よび加熱硬化中の磁石粉末の酸化が防止され、磁石粉末
の酸化による磁気特性の低下が防止できる。また、得ら
れたボンド型永久磁石においても、磁石粉末の表面全体
が樹脂で被覆されていることから、使用時に高温高湿の
環境下に曝された場合も磁石粉末の酸化防止作用が持続
し、耐熱性および耐湿性が良好となる。
(3) Since the entire surface of the raw material magnet powder is coated with the thermosetting resin for bonding in a uniform thickness, oxidation of the magnet powder during molding and heat curing is prevented, and the magnet powder is magnetized by oxidation. The deterioration of characteristics can be prevented. Also in the obtained bond-type permanent magnet, since the entire surface of the magnet powder is coated with the resin, the antioxidant effect of the magnet powder is maintained even when exposed to a high temperature and high humidity environment during use. The heat resistance and humidity resistance are improved.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01F 7/02 A (72)発明者 北川 晃朗 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location // H01F 7/02 A (72) Inventor Akira Kitagawa 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Sumitomo Yamazaki Seisakusho Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 磁石粉末が熱硬化性樹脂で結合されたボ
ンド型永久磁石であって、表面が予め熱硬化性樹脂層で
均一に被覆された磁石粉末の加圧成形体の加熱・硬化に
より得られたボンド型永久磁石。
1. A bond-type permanent magnet in which magnet powder is bonded with a thermosetting resin, the surface of which is uniformly coated with a thermosetting resin layer to heat and cure a pressure-molded body of the magnet powder. The obtained bond-type permanent magnet.
【請求項2】 前記磁石粉末が、平均粒径 300μm以下
の希土類・鉄系磁石粉末である請求項1記載のボンド型
永久磁石。
2. The bond-type permanent magnet according to claim 1, wherein the magnet powder is a rare earth / iron-based magnet powder having an average particle diameter of 300 μm or less.
【請求項3】 前記磁石粉末が、平均粒径63μm以下の
希土類・鉄系磁石粉末と平均粒径 150〜 300μmの希土
類・鉄系磁石粉末との混合物からなる請求項1記載のボ
ンド型永久磁石。
3. The bond type permanent magnet according to claim 1, wherein the magnet powder is a mixture of rare earth / iron-based magnet powder having an average particle size of 63 μm or less and rare earth / iron-based magnet powder having an average particle size of 150 to 300 μm. .
【請求項4】 磁石粉末を低粘度液状の熱硬化性樹脂組
成物と混合して磁石粉末の表面を熱硬化性樹脂層で均一
に被覆し、得られた樹脂被覆磁石粉末を金型に充填して
圧縮成形し、成形体を加熱・硬化させることを特徴とす
る、ボンド型永久磁石の製造方法。
4. A magnet powder is mixed with a low-viscosity liquid thermosetting resin composition to uniformly coat the surface of the magnet powder with a thermosetting resin layer, and the obtained resin-coated magnet powder is filled in a mold. And then compression-molding the molded body to heat and cure the molded body.
【請求項5】 前記磁石粉末が、平均粒径 300μm以下
の希土類・鉄系磁石粉末である請求項5記載のボンド型
永久磁石の製造方法。
5. The method for producing a bonded permanent magnet according to claim 5, wherein the magnet powder is a rare earth / iron-based magnet powder having an average particle diameter of 300 μm or less.
【請求項6】 前記磁石粉末が、平均粒径63μm以下の
希土類・鉄系磁石粉末と平均粒径 150〜 300μmの希土
類・鉄系磁石粉末とからなり、この2種類の磁石粉末を
別々に熱硬化性樹脂層で均一に被覆する、請求項5記載
のボンド型永久磁石の製造方法。
6. The magnet powder comprises a rare earth / iron-based magnet powder having an average particle size of 63 μm or less and a rare earth / iron-based magnet powder having an average particle size of 150 to 300 μm. The method for producing a bonded permanent magnet according to claim 5, wherein the curable resin layer is uniformly coated.
JP5304209A 1993-02-19 1993-12-03 Bond-type permanent magnet and its manufacture Pending JPH06302418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5304209A JPH06302418A (en) 1993-02-19 1993-12-03 Bond-type permanent magnet and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3072293 1993-02-19
JP5-30722 1993-02-19
JP5304209A JPH06302418A (en) 1993-02-19 1993-12-03 Bond-type permanent magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH06302418A true JPH06302418A (en) 1994-10-28

Family

ID=26369125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5304209A Pending JPH06302418A (en) 1993-02-19 1993-12-03 Bond-type permanent magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH06302418A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128371A1 (en) * 2011-03-23 2012-09-27 愛知製鋼株式会社 Rare-earth magnetic powder, method for manufacturing same, compound of same, and bond magnet of same
JP2012199462A (en) * 2011-03-23 2012-10-18 Aichi Steel Works Ltd Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet
US9666361B2 (en) 2011-03-02 2017-05-30 Hitachi Metals, Ltd. Rare-earth bond magnet manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666361B2 (en) 2011-03-02 2017-05-30 Hitachi Metals, Ltd. Rare-earth bond magnet manufacturing method
WO2012128371A1 (en) * 2011-03-23 2012-09-27 愛知製鋼株式会社 Rare-earth magnetic powder, method for manufacturing same, compound of same, and bond magnet of same
JP2012199462A (en) * 2011-03-23 2012-10-18 Aichi Steel Works Ltd Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet

Similar Documents

Publication Publication Date Title
CN100490027C (en) Composite rare-earth anisotropic bonded magnet, composite rare-earth anisotropic bonded magnet compound, and methods for their production
JPS60207302A (en) Rare earth element-iron magnet coupled with epoxy resin
JP7502137B2 (en) Manufacturing method of bonded magnets and compounds for bonded magnets
CN100590758C (en) Method for preparing powder for bound rare-earth permanent-magnet by quasi-compression method
JPH06302418A (en) Bond-type permanent magnet and its manufacture
JP2022146469A (en) Granulated powder, compound, mold and bond magnet
JPH0774012A (en) Manufacture of bonded permanent magnet and raw material powder therefor
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JP4127077B2 (en) Rare earth bonded magnet manufacturing method
JPH09232132A (en) Rare-earth bonded magnet, composition for rare-earth bonded magnet and manufacture of rare-earth bonded magnet
JP3236813B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JPH1012472A (en) Manufacture of rare-earth bond magnet
JPH1167514A (en) Manufacture of bonded permanent magnet and its raw material powder
WO2021200517A1 (en) Compressed bonded magnet, manufacturing method therefor, and field coil
JPH0831677A (en) Manufacture of magnetic anisotropy resin bonding type magnet and magnetic anisotropy resin type magnet
JPH09186012A (en) Magnetically isotropic resin bond magnet
JP7453512B2 (en) Manufacturing method of bonded magnets and compounds
JPH08167513A (en) Bonded permanent magnet
WO2024028989A1 (en) Preform, preforming method, and method of producing compression-bonded magnet
JP3941134B2 (en) Raw material powder for manufacturing bond type permanent magnet and manufacturing method
JPH0464202A (en) Bonded magnet and manufacture thereof
EP4339974B1 (en) Preparation method of high-compactness bonded rare earth permanent magnet
JPH0922828A (en) Manufacture of bond type permanent magnet
JPH104023A (en) Manufacture of bond type permanent magnet
JP2022157625A (en) Method for manufacturing compressed bond magnet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031111