JPH06292010A - Corrected gradation curve generator - Google Patents
Corrected gradation curve generatorInfo
- Publication number
- JPH06292010A JPH06292010A JP5190133A JP19013393A JPH06292010A JP H06292010 A JPH06292010 A JP H06292010A JP 5190133 A JP5190133 A JP 5190133A JP 19013393 A JP19013393 A JP 19013393A JP H06292010 A JPH06292010 A JP H06292010A
- Authority
- JP
- Japan
- Prior art keywords
- gradation
- curve
- correction
- conversion
- gradation curve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Or Security For Electrophotography (AREA)
- Facsimile Image Signal Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はデジタル方式の複写機、
プリンター、FAXなどの画像形成装置の画像処理装置
で使用され、原稿読取装置により読み取った画像データ
の諧調変換のための基準諧調曲線の諧調変換特性を補正
する補正諧調曲線を生成する補正諧調曲線生成装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital type copying machine,
Used in an image processing device of an image forming apparatus such as a printer or a fax machine, a correction gradation curve is generated to correct a gradation conversion characteristic of a reference gradation curve for gradation conversion of image data read by a document reading device. Regarding the device.
【0002】[0002]
【従来の技術】デジタル方式のカラー複写機やカラース
キャナーなどには諧調性を有する原稿を読み取って得ら
れる画像データに基づいてプリンターから出力される転
写紙の記録画像の濃度諧調との整合性を取るために、画
像データの諧調変換を行う諧調変換装置が設けられてい
る。しかしながら、一般に、原稿の濃度分布の特徴を的
確にとらえて諧調変換を行う際の適正な諧調変換曲線を
設定する事は容易ではなく、従来は諧調変換曲線の設定
はオペレーターの経験に頼るところが多かった。原画の
濃度分布の特徴を簡単なパラメーターで表現し、そのパ
ラメーターに応じて経験則に合致した諧調変換曲線を自
動設定する技術の開発が望まれている。そこで、例え
ば、特開平2−12245号公報には、原画の濃度域を
指示するデータを入力し、前記原画の濃度域に応じてそ
の湾曲状態が決定されたモデル曲線を発生するモデル曲
線発生手段と、諧調変換座標面上において、所定のハイ
ライト点とシャドウ点を通るように前記モデル曲線を発
生する修正手段とを備え、前記モデル曲線の湾曲状態
は、少なくとも上に凸の状態と下に凸の状態とを含んだ
状態群の中から、前記原画の濃度域に応じて、経験則に
合致したものが自動的に選択されるようにした諧調変換
曲線発生装置が開示されている。2. Description of the Related Art In digital color copying machines and color scanners, it is necessary to ensure consistency with the density gradation of a recorded image on a transfer paper output from a printer based on image data obtained by scanning an original having gradation. In order to capture, a gradation conversion device that performs gradation conversion of image data is provided. However, in general, it is not easy to set an appropriate gradation conversion curve when performing gradation conversion by accurately grasping the characteristics of the density distribution of the original, and in the past, setting of the gradation conversion curve often relied on operator experience. It was It is desired to develop a technique for expressing the characteristics of the density distribution of the original image with simple parameters and automatically setting a gradation conversion curve that conforms to the empirical rule according to the parameters. Therefore, for example, in Japanese Patent Laid-Open No. 12245/1990, model curve generating means for inputting data instructing a density range of an original image and generating a model curve whose curved state is determined according to the density range of the original image On the gradation conversion coordinate plane, a correction means for generating the model curve so as to pass through a predetermined highlight point and shadow point is provided, and the curved state of the model curve is at least an upward convex state and a downward convex state. A gradation conversion curve generating device is disclosed in which, from a group of states including a convex state, one that conforms to the empirical rule is automatically selected according to the density range of the original image.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上述の
従来技術にに開示されている諧調変換曲線発生装置は複
雑な計算を必要とするために、複写機などの画像形成装
置内で用いるためには計算に時間がかかるため、変換処
理の際に使用者を待たせたり、または、諧調変換曲線を
記憶するために、比較的、多くのROM容量が必要であ
ることから、装置のコストが上がるなどの欠点が有っ
た。さらに、装置の初期設定時等に諧調変換曲線の修正
の際に用いられるモデル曲線の湾曲状態は上に凸の状態
と下に凸の状態とを含んだ状態群の中から選択されるの
で、修正後の諧調変換曲線の湾曲形状は制約を受け、所
定の諧調領域について細かな修正を施すことが難しかっ
た。However, since the gradation conversion curve generating device disclosed in the above-mentioned prior art requires complicated calculation, it cannot be used in an image forming device such as a copying machine. Since the calculation takes time, a relatively large amount of ROM capacity is required to make the user wait during the conversion process or to store the gradation conversion curve, which increases the cost of the device. Had its drawbacks. Further, since the curved state of the model curve used when modifying the gradation conversion curve at the time of initial setting of the device is selected from the state group including the upward convex state and the downward convex state, The curved shape of the gradation conversion curve after the correction was restricted, and it was difficult to make a small correction in a predetermined gradation area.
【0004】本発明は従来技術における上述の問題点に
鑑み成されたものであり、限られたROM容量で、簡単
な計算によって画像形成装置の経時変動や機械間のバラ
つきを補正する諧調変換曲線を得ることができると共
に、所望の濃度領域の諧調変換特性を任意に修正可能な
補正諧調曲線生成装置を提供することを目的とする。The present invention has been made in view of the above-mentioned problems in the prior art, and has a limited ROM capacity, and a gradation conversion curve for correcting the temporal change of the image forming apparatus and the variation between machines by a simple calculation. It is an object of the present invention to provide a corrected gradation curve generation device capable of obtaining the above-mentioned characteristics and capable of arbitrarily correcting the gradation conversion characteristics of a desired density region.
【0005】[0005]
【課題を解決するための手段】本発明は上記課題を解決
するために、全濃度領域の諧調変換特性を変えるための
全諧調補正諧調曲線Bと、特定の濃度領域の諧調変換特
性を変えるためのn 個(n ≧1)の特定濃度域補正諧調
曲線Ci(i=1,2,…,n )を与える特性値データを予
め記憶し、原稿読取装置により所定の基準原稿を読み取
って、画像形成装置により記録紙に記録した画像の濃度
を検出して、原稿読取装置により読み取った画像データ
の諧調変換のための基準諧調曲線Aに対し、全諧調補正
諧調曲線Bと、特定濃度域補正諧調曲線Ciに基づいた
複数の諧調変換特性の補正を行うようにしたものであ
る。SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an overall gradation correction gradation curve B for changing the gradation conversion characteristics of all density areas and an gradation conversion characteristics of a specific density area. (N ≧ 1) of specific density region correction gradation curves Ci (i = 1, 2, ..., N) are stored in advance, a predetermined reference document is read by a document reading device, and an image is read. The density of the image recorded on the recording paper is detected by the forming device, and the whole gradation correction gradation curve B and the specific density range correction gradation are compared with the reference gradation curve A for gradation conversion of the image data read by the document reading device. A plurality of gradation conversion characteristics are corrected based on the curve Ci.
【0006】[0006]
【作用】原稿読取装置による原稿の読取動作に先立っ
て、基準原稿が読み取られ、画像形成装置により記録紙
に記録画像が記録される。記録紙上に記録された画像の
濃度が検出されると、検出された濃度データに従って、
基準諧調曲線Aに対し、全諧調補正諧調曲線Bと、特定
濃度域補正諧調曲線Ciに基づいた複数の諧調変換特性
の補正が行われる。The reference document is read prior to the document reading operation by the document reading device, and the recording image is recorded on the recording paper by the image forming device. When the density of the image recorded on the recording paper is detected, according to the detected density data,
With respect to the reference gradation curve A, a plurality of gradation conversion characteristics are corrected based on the whole gradation correction gradation curve B and the specific density range correction gradation curve Ci.
【0007】[0007]
【実施例】以下、本発明を画像形成装置である電子写真
複写機(以下、単に複写機と言う)に適用した実施例に
ついて説明する。まず、図2に示す機構図によって実施
例の複写機本体101の機構の概略を説明する。図2に
おいて、複写機本体101のほぼ中央部に配置された像
担持体としての120 mmφの有機感光体(OPC)ドラ
ム102の周囲には、該感光体ドラム102の表面を帯
電する帯電チャージャー103、一様帯電された感光体
ドラム102の表面上に半導体レーザーから射出された
レーザー光を照射して静電潜像を形成するレーザー光学
系104、静電潜像に各色トナーを供給して現像し、各
色毎にトナー像を得る黒現像装置105及びイエロー
Y、マゼンダM、シアンCの3つのカラー現像装置10
6、107、108、感光体ドラム102上に形成され
た各色毎のトナー像を順次転写する中間転写ベルト10
9、上記中間転写ベルト109に転写電圧を印加するバ
イアスローラー110、転写後の感光体ドラム102の
表面に残留するトナーを除去するクリーニング装置11
1、転写後の感光体ドラム102の表面に残留する電荷
を除去する除電部112などが順次配列されている。上
記中間転写ベルト109の周囲には、転写されたトナー
像を転写材に転写する電圧を印加するための転写バイア
スローラー113及び転写材に転写後に残留したトナー
像を除去するためのベルトクリーニング装置114が配
設されている。また、中間転写ベルト109から剥離さ
れた転写材を搬送する搬送ベルト115の下流側端部に
は転写材上のトナーを加熱及び加圧して定着させる定着
装置116が配置されている。この定着装置116の出
口部には、定着された転写材を排出するための排紙トレ
イ117が取り付けられている。複写機本体101のレ
ーザー光学系104の上部には、原稿載置台としてのコ
ンタクトガラス118、このコンタクトガラス118上
に載置された原稿に走査光を照射する露光ランプ11
9、原稿からの反射光を結像レンズ122に導く反射ミ
ラー121、および結像レンズ122によって結像され
入光した反射光を光電変する光電変換素子としてのCC
D(Charge Coupled Device )から成るイメージセンサ
ーアレイ123が配置されている。イメージセンサーア
レイ123で原稿の画像情報が電気信号に変換された画
像信号は、後述する画像処理装置を経てレーザー光学系
104に送られて、その中の半導体レーザーのレーザー
発振を制御する。Embodiments Embodiments in which the present invention is applied to an electrophotographic copying machine (hereinafter simply referred to as a copying machine) which is an image forming apparatus will be described. First, the outline of the mechanism of the copying machine main body 101 of the embodiment will be described with reference to the mechanism diagram shown in FIG. In FIG. 2, a 120 mmφ organic photoconductor (OPC) drum 102, which serves as an image carrier, is arranged in the central portion of the copying machine main body 101, and is surrounded by a charging charger 103 for charging the surface of the photoconductor drum 102. A laser optical system 104 that irradiates a laser beam emitted from a semiconductor laser on the surface of the uniformly charged photosensitive drum 102 to form an electrostatic latent image; and supplies toner of each color to the electrostatic latent image for development. Then, a black developing device 105 for obtaining a toner image for each color and three color developing devices 10 for yellow Y, magenta M, and cyan C
6, 107, 108, the intermediate transfer belt 10 for sequentially transferring the toner images of the respective colors formed on the photosensitive drum 102.
9, a bias roller 110 that applies a transfer voltage to the intermediate transfer belt 109, and a cleaning device 11 that removes toner remaining on the surface of the photosensitive drum 102 after transfer.
1. A charge removing unit 112 for removing charges remaining on the surface of the photosensitive drum 102 after transfer is sequentially arranged. Around the intermediate transfer belt 109, a transfer bias roller 113 for applying a voltage for transferring the transferred toner image to the transfer material and a belt cleaning device 114 for removing the toner image remaining after being transferred to the transfer material. Is provided. Further, a fixing device 116 that heats and pressurizes the toner on the transfer material to fix the toner on the transfer material is arranged at the downstream end of the conveyor belt 115 that conveys the transfer material separated from the intermediate transfer belt 109. A discharge tray 117 for discharging the fixed transfer material is attached to the outlet of the fixing device 116. Above the laser optical system 104 of the copying machine main body 101, a contact glass 118 as a document placing table, and an exposure lamp 11 for irradiating a document placed on the contact glass 118 with scanning light.
9, a reflection mirror 121 that guides the reflected light from the document to the imaging lens 122, and a CC as a photoelectric conversion element that photoelectrically converts the reflected light that is imaged and entered by the imaging lens 122.
An image sensor array 123 including a D (Charge Coupled Device) is arranged. The image signal obtained by converting the image information of the original document into an electric signal by the image sensor array 123 is sent to the laser optical system 104 through an image processing device described later to control the laser oscillation of the semiconductor laser therein.
【0008】次に、複写機の電装部の概略を示す図3を
用いて複写機の電装部について説明する。図3に示すよ
うに、複写機は全体を制御するメイン制御部(CPU)
130を備えていて、このメイン制御部130に対して
所定の制御情報を記憶するROM131及びRAM13
2が付設されている。さらに、メイン制御部130には
インターフェースI/O133を介してレーザー光学系
制御部134、電源回路135、光学センサー136、
トナー濃度センサー137、環境センサー138、電位
センサー139、トナー補給回路140および中間転写
ベルト駆動部141がそれぞれ接続されている。レーザ
ー光学系制御部134はレーザー光学系104のレーザ
ー出力を調整する。また、電源回路135は帯電チャー
ジャー103に対して所定の帯電用放電電圧を与えると
共に、各色の現像装置105、106、107、108
に対して所定の現像バイアス電圧を与え、かつ、バイア
スローラー110および転写バイアスローラー113に
対して所定の転写電圧を与える。光学センサー136は
発光ダイオードなどの発光素子とフォトセンサーなどの
受光素子とから成り、感光体ドラム102の転写位置後
方に近接配置され、感光体ドラム102上に形成される
検知パターン潜像のトナー像におけるトナー付着量及び
地肌部におけるトナー付着量を各色毎にそれぞれ検知す
ると共に、感光体ドラム102の除電後のいわゆる残留
電位を検知するようになっている。この光電センサー1
36からの検知出力信号は図示を省略した光電センサー
制御部に印加されている。光電センサー制御部は検知パ
ターントナー像に於けるトナー付着量と地肌部における
トナー付着量との比率を求め、その比率値を基準値と比
較して画像濃度の変動を検知し、トナー濃度センサー1
37の制御値の補正を行なっている。また、トナー濃度
センサー137は現像装置105〜108内において現
像装置105〜108内に存在する現像剤の透磁率変化
に基づいてトナー濃度を検知する。トナー濃度センサー
137は検知されたトナー濃度値と基準値と比較し、ト
ナー濃度が一定値を下回ってトナー不足状態になった場
合に、その不足分に対応した大きさのトナー補給信号を
トナー補給回路140に出力する機能を有している。電
位センサー139は像担持体である感光体102の表面
電位を検知し、中間転写ベルト駆動部141は中間転写
ベルト109の駆動を制御する。M現像器107内には
Mトナーとキャリアを含む現像剤が収容されていて、剤
撹拌部材204Mの回転によって撹拌される。現像剤規
制部材は現像スリーブ201M上に汲み上げられる現像
剤量を調節する。現像スリーブ201M上に供給された
現像剤は磁気的に現像スリーブ201Mに担持されつ
つ、磁気ブラシとして現像スリーブ201Mの回転方向
に移動する。なお、図3には示していないが、他の色の
現像器においても全く同様である。Next, the electrical component of the copying machine will be described with reference to FIG. 3 which shows the outline of the electrical component of the copying machine. As shown in FIG. 3, the copying machine has a main control unit (CPU) that controls the entire copying machine.
A ROM 131 and a RAM 13 that are provided with a main control unit 130 and store predetermined control information.
2 is attached. Further, the main control unit 130 has a laser optical system control unit 134, a power supply circuit 135, an optical sensor 136, and an interface I / O 133.
A toner concentration sensor 137, an environment sensor 138, a potential sensor 139, a toner replenishing circuit 140, and an intermediate transfer belt driving unit 141 are connected to each other. The laser optical system controller 134 adjusts the laser output of the laser optical system 104. Further, the power supply circuit 135 applies a predetermined charging discharge voltage to the charging charger 103 and also develops the developing devices 105, 106, 107, 108 for the respective colors.
To the bias roller 110 and the transfer bias roller 113. The optical sensor 136 includes a light emitting element such as a light emitting diode and a light receiving element such as a photo sensor. The optical sensor 136 is disposed in the vicinity of the transfer position of the photoconductor drum 102 in the vicinity thereof and is a toner image of a detection pattern latent image formed on the photoconductor drum 102. In addition to detecting the amount of adhered toner and the amount of adhered toner on the background for each color, the so-called residual potential of the photoconductor drum 102 after static elimination is detected. This photoelectric sensor 1
The detection output signal from 36 is applied to a photoelectric sensor control unit (not shown). The photoelectric sensor control unit obtains a ratio between the toner adhesion amount in the detection pattern toner image and the toner adhesion amount in the background portion and compares the ratio value with a reference value to detect a change in the image density, and the toner density sensor 1
The control value of 37 is corrected. Further, the toner concentration sensor 137 detects the toner concentration in the developing devices 105 to 108 based on the change in magnetic permeability of the developer existing in the developing devices 105 to 108. The toner concentration sensor 137 compares the detected toner concentration value with the reference value, and when the toner concentration falls below a certain value and is in a toner shortage state, a toner replenishment signal of a magnitude corresponding to the shortage is supplied. It has a function of outputting to the circuit 140. The potential sensor 139 detects the surface potential of the photoconductor 102, which is an image carrier, and the intermediate transfer belt drive unit 141 controls driving of the intermediate transfer belt 109. A developer containing M toner and a carrier is contained in the M developing device 107, and is stirred by the rotation of the agent stirring member 204M. The developer regulating member regulates the amount of developer drawn up onto the developing sleeve 201M. The developer supplied onto the developing sleeve 201M is magnetically carried by the developing sleeve 201M and moves as a magnetic brush in the rotating direction of the developing sleeve 201M. Although not shown in FIG. 3, the same applies to developing devices of other colors.
【0009】図1は画像処理ユニットを含む画像処理装
置のブロック図である。以下、画像処理装置の構成につ
いて説明する。図1において、401はスキャナー、4
02はシェーディング補正回路、403はRGBγ補正
回路、404は画像分離回路、405はMTF補正回
路、406は色変換−UCR処理回路、407は変倍回
路、408は画像加工(クリエイト)回路、409はM
TFフィルター、410はγ変換回路、411は諧調処
理回路、412はプリンターである。なお、画像処理ユ
ニットは図1に示す画像処理装置のスキャナー401お
よびプリンター412を除いた部分である。コンタクト
ガラス118上に載置された原稿はスキャナー401に
よってR,G,Bの3色に分解されて読み取られる。シ
ェーディング補正回路402では、イメージセンサーア
レイ123の撮像素子のムラ、露光ランプ119光源の
照明ムラなどが補正される。RGBγ補正回路403で
はスキャナー401で読み取られた画像信号が反射率デ
ータから明度データに変換される。404の画像分離回
路では文字部と写真部の判定および有彩色、無彩色の判
定が行われる。MTF補正回路405では特に、画像信
号の高周波領域でのMTF特性の劣化を補正する。色変
換−UCR処理回路406は入力したR,G,B系の色
分解特性と出力されるY,M,C系の色データの分光特
性の違いを補正し、忠実な色再現に必要な色データY,
M,Cの値を計算する色補正処理部と、補色のY,M,
Cの3色が重なる成分をBk(ブラック)に置き換える
ためのUCR処理部とからなる。上記色補正処理は図1
2のようなマトリックス演算を実行することにより実現
できる。図12において、R,G,BはR,G,Bの3
色の補数を表す。マトリックス係数aij の値は入力系色
データ(R,G,B)と出力系色データ(Y,M,C)
の分光特性によって決まる。なお、本実施例では一次マ
スキング方程式によったが、B 2 、BGのような2次
項、あるいはさらに高次の項を用いることにより、より
精度良く色補正することができる。また、色相によって
演算式を変えたり、ノイゲバー方程式を用いるようにし
ても良い。何れの方法にしても、補色の3成分Y,M,
Cは色の3成分の補数B,G,R(または、色の3成分
B,G,Rでも良い)の値から求めることができる。一
方、UCR処理は次式を用いて演算することにより行う
ことができる。 Y’=Y−α・min (Y,M,C) M’=M−α・min (Y,M,C) C’=C−α・min (Y,M,C) Bk = α・min (Y,M,C) 上式において、αはUCRの量を決める係数であり、α
=1の時100%UCR処理となる。例えば、高濃度部
ではα≒1、ハイライト部ではα≒0にすることによ
り、ハイライト部での画像を滑らかにすることができ
る。なお、αは一定値でも良い。FIG. 1 is a block diagram of an image processing apparatus including an image processing unit. The configuration of the image processing apparatus will be described below. In FIG. 1, 401 is a scanner, 4
Reference numeral 02 is a shading correction circuit, 403 is an RGBγ correction circuit, 404 is an image separation circuit, 405 is an MTF correction circuit, 406 is a color conversion-UCR processing circuit, 407 is a scaling circuit, 408 is an image processing (create) circuit, and 409 is 409. M
A TF filter, 410 is a γ conversion circuit, 411 is a gradation processing circuit, and 412 is a printer. The image processing unit is a part of the image processing apparatus shown in FIG. 1 excluding the scanner 401 and the printer 412. The original placed on the contact glass 118 is separated into three colors of R, G, and B by the scanner 401 and read. The shading correction circuit 402 corrects unevenness of the image sensor of the image sensor array 123, uneven illumination of the light source of the exposure lamp 119, and the like. In the RGBγ correction circuit 403, the image signal read by the scanner 401 is converted from reflectance data to brightness data. The image separation circuit 404 determines the character portion and the photograph portion, and determines the chromatic color and the achromatic color. The MTF correction circuit 405 particularly corrects the deterioration of the MTF characteristic in the high frequency region of the image signal. The color conversion-UCR processing circuit 406 corrects the difference between the spectral characteristics of the input R, G, and B color separation characteristics and the output Y, M, and C color data, and colors necessary for faithful color reproduction. Data Y,
A color correction processing unit that calculates the values of M and C, and Y, M, and
And a UCR processing unit for replacing a component in which the three colors of C overlap with Bk (black). The above color correction processing is shown in FIG.
It can be realized by executing a matrix operation such as 2. In FIG. 12, R , G , and B are 3 of R, G, and B.
Represents the color complement. The values of the matrix coefficient aij are the input system color data (R, G, B) and the output system color data (Y, M, C).
Is determined by the spectral characteristics of. Although the first-order masking equation is used in this embodiment, color correction can be performed with higher accuracy by using a quadratic term such as B 2 or BG , or a higher-order term. Further, the arithmetic expression may be changed depending on the hue, or the Neugeber equation may be used. Whichever method is used, three complementary color components Y, M,
C can be obtained from the values of the complements B 1 , G and R of the three color components (or the three color components B, G and R may be used). On the other hand, the UCR process can be performed by calculating using the following equation. Y ′ = Y−α · min (Y, M, C) M ′ = M−α · min (Y, M, C) C ′ = C−α · min (Y, M, C) Bk = α · min (Y, M, C) In the above equation, α is a coefficient that determines the amount of UCR, and α
When = 1, 100% UCR processing is performed. For example, by setting α≈1 in the high density portion and α≈0 in the highlight portion, the image in the highlight portion can be smoothed. Note that α may be a constant value.
【0010】変倍回路407では縦横変倍が行われ、画
像加工(クリエイト)回路408ではリピート処理など
が行われる。また、MTFフィルター409ではシャー
プな画像やソフトな画像など、使用者の好みに応じてエ
ッジ強調や平滑化等、画像信号の周波数特性を変更する
処理が行われる。γ変換回路410ではプリンター41
2の特性に応じて、画像信号の補正が行われる。また、
地肌飛ばし等の処理も同時に行うことができる。諧調処
理回路411ではディザ処理またはパターン処理が行わ
れる。インターフェース(I/F)413,414はス
キャナー401で読み込んだ画像データを外部の画像処
理装置等で処理したり、外部の画像処理装置からの画像
データをプリンター412で出力するために備えられて
いる。上述の画像処理回路を制御する画像処理CPU4
15及びROM416、RAM417はBUS418で
接続されている。画像処理CPU415はシリアルI/
Fを通じて、システムコントローラー419および必要
に応じて外部のホストコンピューター420と接続され
ており、図示しない操作部などからのコマンド信号をも
受信する。The scaling circuit 407 performs vertical and horizontal scaling, and the image processing (create) circuit 408 performs repeat processing. Further, the MTF filter 409 performs processing for changing the frequency characteristic of the image signal, such as edge enhancement and smoothing according to the user's preference such as a sharp image or a soft image. In the γ conversion circuit 410, the printer 41
The image signal is corrected according to the characteristics of 2. Also,
It is also possible to simultaneously perform processing such as background removal. The gradation processing circuit 411 performs dither processing or pattern processing. Interfaces (I / F) 413 and 414 are provided for processing image data read by the scanner 401 by an external image processing device or the like, and outputting image data from the external image processing device by the printer 412. . Image processing CPU 4 for controlling the above-mentioned image processing circuit
15 and ROM416 and RAM417 are connected by BUS418. The image processing CPU 415 is a serial I /
Through F, it is connected to the system controller 419 and an external host computer 420 as necessary, and receives command signals from an operation unit (not shown).
【0011】図4はプリンター412のレーザー変換回
路のブロック図である。ルックアップテーブル(LU
T)451では8ビットの画像データにγ変換を施すこ
とができる。パルス幅変調回路(PWM)452に入力
した8ビットの画像信号は、その上位2ビットの信号に
基づいて4値のパルス幅データに変換され、強度変調回
路(PM)453で下位6ビットの信号に基づいて64
値の強度変調が施される。レーザーダイオード(LD)
454は変調された駆動信号に基づいて発光する。フォ
トディテクター(PD)455はLD454の発光強度
を検出し、レーザー光学系制御部134はその検出結果
に基づいて1ドット毎に光量補正を行う。なお、レーザ
ー光の強度の最大値は、画像信号とは独立に8ビット
(256段階)に可変できる。また、LD454の書き
込み周波数は18.6MHz 、1画素の走査時間は53.8nsecで
ある。FIG. 4 is a block diagram of a laser conversion circuit of the printer 412. Look-up table (LU
In T) 451, γ conversion can be performed on 8-bit image data. The 8-bit image signal input to the pulse width modulation circuit (PWM) 452 is converted into 4-valued pulse width data based on the higher 2-bit signal, and the intensity modulation circuit (PM) 453 lower-order 6-bit signal. Based on 64
The value is intensity-modulated. Laser diode (LD)
454 emits light based on the modulated drive signal. The photo detector (PD) 455 detects the light emission intensity of the LD 454, and the laser optical system controller 134 corrects the light amount for each dot based on the detection result. The maximum value of the intensity of the laser light can be changed to 8 bits (256 steps) independently of the image signal. The write frequency of the LD454 is 18.6MH z, 1 pixel of the scan time is 53.8Nsec.
【0012】以下、図3に示すγ変換回路410で行わ
れる諧調変換処理の諧調変換特性を変える諧調曲線の修
正処理について述べる。基準となる基準諧調曲線Aに対
し、全体の諧調変換特性を変える補正諧調曲線を全諧調
補正諧調曲線Bとし、ハイライト領域(低濃度領域)の
諧調変換特性を変える補正諧調曲線を低濃度域補正諧調
曲線C1、シャドー領域(高濃度領域)の諧調変換特性
を変える諧調曲線を高濃度域補正諧調曲線C2、基準諧
調曲線Aに対し、全諧調補正諧調曲線Bにより諧調特性
変換を行った特性変換諧調曲線をEとし、これをE=B
(A)と表記する。このE=B(A)の諧調特性変換を
具体的にプログラム言語Cを用いて表記すると、下記の
ように表すことができる。 このプログラムは関数変換( Transform ) を用いて次の
ように表すこともできる。 リスト2. typedef int Table[256]; Table A, B, E; Table Transform (Table Transformed,Table Transformer, Table Original) { int i; for(i=0;1<= 255; i++) Transformed[i]=Transformer[Original[i]]; return Transformed; } main() { E = Transform(E, B, A ); } また、さらに低濃度域補正諧調曲線C1、高濃度域補正
諧調曲線C2を用いた諧調特性変換を実行するプログラ
ム言語Cは次のように表すことができる。 あるいは、最後のmain関数を次のように表しても良い。 リスト4. main() { E = Transform(E, C2,Transform(E, C1,Transform(E, B, A ))); } この場合の上記のプログラムは前述した関数変換を用い
て次のように表記できる。 リスト5. typedef int Table[256]; typedef Table TransformTable[9]; Table A, E; TransformTable B, C1, C2; int i1, i2, i3; main() { E = Transform(E, C2[i3],Transform(E, C1[i2],Transform(E, B[i1],A ); } 図5は基準諧調曲線Aと、それに対する諧調特性補正を
行うための全諧調補正諧調曲線B(B0〜B9)、低濃
度域補正諧調曲線C1(C10〜C19)、高濃度域補
正諧調曲線C2(C20〜C29)および特性変換諧調
曲線Eの諧調特性を示すグラフである。図5に示す10
本の組(図示の関係上、上に最大凸、下に最大凸および
真っ直ぐな曲線形状のもののみ示した)から成る諧調特
性変換テーブル(TransformTable)を用意しておき、こ
の10本の諧調特性変換テーブルの中から、基準諧調曲
線Aに対し、全体の諧調領域、ハイライト領域およびシ
ャドー領域の諧調変換特性を変える補正諧調変換曲線
(変換テーブル)の番号(i1, i2, i3)を選択する。こ
の選択は図1に示す画像処理ユニットに接続したCPU
415から基準原稿を読み取った画像データに基づいて
出力される選択信号によって行われるが、複写機の操作
部から選択を指示しても良い。The gradation curve correction processing for changing the gradation conversion characteristic of the gradation conversion processing performed by the γ conversion circuit 410 shown in FIG. 3 will be described below. With respect to the reference gradation curve A that is the reference, the correction gradation curve that changes the entire gradation conversion characteristics is the whole gradation correction gradation curve B, and the correction gradation curve that changes the gradation conversion characteristics in the highlight area (low density area) is the low density area. A characteristic in which a gradation curve for changing the gradation conversion curve C1 for the gradation area (high density area) and a gradation curve for changing the gradation curve for the high density area C2 and the reference gradation curve A are converted by the gradation curve B for the whole gradation correction curve C. Let E be the conversion gradation curve and E = B
Notated as (A). The gradation characteristic conversion of E = B (A) can be expressed as follows by using the programming language C specifically. This program can also be expressed as follows using a function transform (Transform). Listing 2. typedef int Table [256]; Table A, B, E; Table Transform (Table Transformed, Table Transformer, Table Original) {int i; for (i = 0; 1 <= 255; i ++) Transformed [i] = Transformer [ Original [i]]; return Transformed;} main () {E = Transform (E, B, A);} Further, the gradation characteristic conversion using the low-density correction gradation curve C1 and the high-density correction gradation curve C2 The programming language C for executing can be expressed as follows. Alternatively, the final main function may be expressed as follows. Listing 4. main () {E = Transform (E, C2, Transform (E, C1, Transform (E, B, A)));} In this case, the above program can be expressed as follows using the function transformation described above. . Listing 5. typedef int Table [256]; typedef Table TransformTable [9]; Table A, E; TransformTable B, C1, C2; int i1, i2, i3; main () {E = Transform (E, C2 [i3], Transform ( E, C1 [i2], Transform (E, B [i1], A);} FIG. 5 shows a reference gradation curve A, and all gradation correction gradation curves B (B0 to B9) for correcting gradation characteristics corresponding thereto. 6 is a graph showing the gradation characteristics of a low-density range correction gradation curve C1 (C10 to C19), a high-density area correction gradation curve C2 (C20 to C29), and a characteristic conversion gradation curve E. 10 shown in FIG.
A gradation characteristic conversion table (TransformTable) made up of a set of books (only the maximum convex upward, the maximum convex downward, and the straight curved shape is shown for the sake of illustration) is prepared. From the conversion table, for the reference gradation curve A, select the number (i1, i2, i3) of the correction gradation conversion curve (conversion table) that changes the gradation conversion characteristics of the entire gradation area, highlight area and shadow area. . This selection is made by the CPU connected to the image processing unit shown in FIG.
The selection signal is output based on the image data obtained by reading the reference document from 415, but the selection may be instructed from the operation unit of the copying machine.
【0013】基準諧調曲線Aに対し、全諧調補正諧調曲
線Bによって変換した特性変換諧調曲線Eのデータを予
め計算し、図1に示すROM416に記憶するようにす
れば、上記のプログラムは次のように変形することがで
きる。 リスト6. typedef int Table[256]; typedef Table TransformTable[10]; Table E; TransformTable A, C1, C2; int i1, i2, i3; main() { E = Transform(E, C2[i3],Transform(E, C1[i2],A[i1] ); } なお、諧調変換特性を変換する補正諧調曲線B,C1,
C2は恒等変換Iを含んでいても良い。本実施例では8
ビットの画像信号を扱っているので、この場合の諧調特
性変換は0 〜255 値の画像信号n に対して、 n =I(n) となる。プログラミング言語Cを用いた恒等変換Iの表
示は上記のものと同様に、次のような配列の(途中を省
略した)変換テーブルで表すことができる。 Table NoChange ={0,1,2,…,254,255 }; /* ── */ あるいは、次のプログラムで表現しても良い。 この変換テーブルNoChangeで画像信号n を諧調変換した
結果の NoChange[n]は元の画像信号n と同じになる。即
ち、恒等変換の場合には、定義上、諧調変換した結果と
諧調変換しない結果とが一致するので、諧調変換の操作
を行わなくても良い。The data of the characteristic conversion gradation curve E converted from the reference gradation curve A by the whole gradation correction gradation curve B is calculated in advance and stored in the ROM 416 shown in FIG. Can be transformed as follows. Listing 6. typedef int Table [256]; typedef Table TransformTable [10]; Table E; TransformTable A, C1, C2; int i1, i2, i3; main () {E = Transform (E, C2 [i3], Transform (E, C1 [i2], A [i1]);} Note that the correction gradation curves B, C1, for converting the gradation conversion characteristics
C2 may include the identity transformation I. 8 in this embodiment
Since a bit image signal is handled, the gradation characteristic conversion in this case is n = I (n) for an image signal n of 0 to 255 values. The display of the identity conversion I using the programming language C can be expressed by a conversion table having the following arrangement (the middle is omitted) as in the above. Table NoChange = {0,1,2, ..., 254,255}; / * ── * / Alternatively, it may be expressed by the following program. NoChange [n], which is the result of gradation conversion of the image signal n with this conversion table NoChange, is the same as the original image signal n. That is, in the case of identity conversion, since the result of gradation conversion and the result of non-conversion are the same by definition, it is not necessary to perform the gradation conversion operation.
【0014】ところで、上述の諧調特性変換の操作で
は、最も大きな値のインデックス(即ち、i1=i2=i3=
9 )の補正諧調曲線がそれぞれの補正諧調曲線の中で最
も上に凸とした時は、補正諧調曲線B,C1,C2の3
つの補正諧調曲線によって諧調特性変換された特性変換
諧調曲線の中、最も上に凸の特性変換諧調曲線Eは下記
のプログラムの諧調特性変換によって得られた特性変換
諧調曲線EMAX に限られる。 リスト8. TransformTable A, C1, C2; Table E MAX; int i1, i2, i3; main() { i1 =i2=i3=9; E MAX =Transform( E MAX, C2[i3],Transform( E MAX,C1[i2],A[i1] ); } しかし、特性変換諧調曲線 E MAX より更に上に凸の特
性変換諧調曲線Eが必要な場合には、このプログラムの
諧調特性変換では表すことができない。このような場合
には、以下に述べるように、前述した補正諧調曲線B,
C1,C2による諧調特性変換を必要な回数だけ繰り返
すことにより、それより更に上に凸な特性変換諧調曲線
を得ることができる。図6は基準諧調曲線Aに対し、全
諧調補正諧調曲線B9によって諧調特性変換した諧調曲
線A1に更に全諧調補正諧調曲線B9によって諧調特性
変換した場合を示したものである。この諧調特性変換を
行うプログラムは次のようになる。 リスト9. int i1, i2, i3, i4, i5, i6; void main() { E = Transform(E, C2[i3],Transform(E, C1[i2],Transform(E, B[i1],A ); E = Transform(E, C2[i6],Transform(E, C1[i5],Transform(E, B[i4],E ); } ところで、基準諧調曲線A上の点で、全諧調補正諧調曲
線Bによってのみその値が変化し、変換曲線C1,C2
によってその値が変化しない点をx 、点x の諧調特性変
換後の目標点をk とした時、最も単純な場合の例とし
て、どの様に全諧調補正諧調曲線Bを用いて基準諧調曲
線Aを諧調特性変換すればよいかは次に示すアリゴリズ
ムによって知ることができる。By the way, in the above-mentioned gradation characteristic conversion operation, the index of the largest value (that is, i1 = i2 = i3 =
When the correction gradation curve of 9) is the highest convex of the respective correction gradation curves, the correction gradation curves B, C1 and C2 are 3
The characteristic conversion gradation curve E which is the highest convex among the characteristic conversion gradation curves which is the gradation characteristic conversion by the two correction gradation curves is limited to the characteristic conversion gradation curve EMAX obtained by the gradation characteristic conversion of the following program. Listing 8. TransformTable A, C1, C2; Table E MAX; int i1, i2, i3; main () {i1 = i2 = i3 = 9; E MAX = Transform (E MAX, C2 [i3], Transform (E MAX, C1 [i2], A [i1]);} However, the characteristic conversion gradation curve E When a characteristic conversion gradation curve E which is convex above MAX is required, it cannot be represented by the gradation characteristic conversion of this program. In such a case, as described below, the corrected gradation curve B,
By repeating the gradation characteristic conversion by C1 and C2 as many times as necessary, it is possible to obtain a characteristic conversion gradation curve which is further convex. FIG. 6 shows a case in which the standard gradation curve A is converted by the whole gradation correction gradation curve B9 to a gradation characteristic A1 and the whole gradation correction gradation curve B9 is further changed in gradation characteristics. The program for this gradation characteristic conversion is as follows. Listing 9. int i1, i2, i3, i4, i5, i6; void main () {E = Transform (E, C2 [i3], Transform (E, C1 [i2], Transform (E, B [i1], A); E = Transform (E, C2 [i6], Transform (E, C1 [i5], Transform (E, B [i4], E);) By the way, at the point on the reference gradation curve A, all gradation correction gradation curves B The value changes only by the conversion curves C1 and C2
Assuming that the point whose value does not change is x and the target point after the tone characteristic conversion of point x is k, then as an example of the simplest case, how to use the whole tone correction tone curve B and the reference tone curve A Whether the gradation characteristics should be converted can be known by the following algorithm.
【0015】 リスト10. /* 諧調特性変換後の特性変換諧調曲線が通るべき点k を与えて全諧調補正 諧調曲線Bの番号を求める。 indexOF B : 全諧調補正諧調曲線Bの中の使用する補正諧調曲線の番 号 count : 諧調特性変換を繰り返す回数。 */ void get _B _table _number(int index, int k, int *indexOF _B, int * count ) { int i, j, value; i = 5;/* 恒等変換曲線を表す全諧調補正諧調曲線B[5] をテーブ ル の中心とする。 上に凸の場合、i >5, 下に凸の場合、i <5. */ j = 0;/* 繰り返し数は0を初期値とし、 上に凸の場合、j >0, 下に凸の場合、j <0. */ value =A[index]; if(k>B[i][value]){ /*上に凸の場合*/ /* 指標i の値を1つづつ増やしながら k<=B[i][value] となる全諧調補正 諧調曲線Bを捜していく。 目標kが全諧調補正諧調曲線B[9]上の点より上になった場合には、指標i を中心値5に戻し(i=5)、繰り返し数jを一つ増やす。 その際、諧調特性変換の基準となる値value の新たな初期値を全諧調補 正諧調曲線Bの最も上に凸の全諧調補正諧調曲線B[9]によって諧調特性変 換した値B[9][value] とする。*/ i++; while(k>B[i][value]) { i++; if(i >9){ ++j; i =5; value =B[9][value]; } } }else{ /*下に凸の場合*/ /* 指標i の値を1つづつ減らしながら k>B[i][value] となる全諧調補正諧 調曲線Bを捜していく。目標kが全諧調補正諧調曲線Bの下限値よりも小 さくなった場合には指標i を中心値5 に戻し(i=5 )、繰り返し数j を1 つ減らす。 その際、諧調特性変換の基準となる値value の新たな初期値を全諧調補 正諧調曲線Bの最も下に凸の全諧調補正諧調曲線B[0]によって変換した値 B[0][value] とする。 */ i--; while(k<B[i][value]){ i--; if(i <0){ --j; i =5; value =B[0][value]; } } } * indexOf_ B=i; * count =j; } この値を用いて、次のように特性変換諧調曲線Eを求め
る。Listing 10. / * After the gradation characteristic conversion, give the point k through which the characteristic conversion gradation curve should pass, and find the number of all gradation correction gradation curve B. indexOF B: Number of the correction gradation curve to be used in all gradation correction gradation curve B count: Number of times to repeat the gradation characteristic conversion. * / void get _B _table _number (int index, int k, int * indexOF _B, int * count) {int i, j, value; i = 5; / * All gradation correction gradation curve B [representing the identity conversion curve 5] is the center of the table. When convex upward, i> 5, when convex downward i <5. * / J = 0; / * initial number of iterations is 0, and when convex upward, j> 0, convex downward In case of j <0. * / Value = A [index]; if (k> B [i] [value]) {/ * When convex upward * / / * While increasing the value of index i by 1 All gradation corrections with k <= B [i] [value] Search for gradation curve B. When the target k is above the point on the whole gradation correction gradation curve B [9], the index i is returned to the central value 5 (i = 5) and the number of repetitions j is increased by one. At that time, the new initial value of the value value, which is the reference for the gradation characteristic conversion, is converted into the gradation characteristic value B [9] by the gradation correction curve B [9], which is the highest convex of all gradation correction correct gradation curve B. ] [value]. * / i ++; while (k> B [i] [value]) {i ++; if (i> 9) {++ j; i = 5; value = B [9] [value];}}} else {/ * Convex downward * / / * Decrease the value of index i one by one and search for all gradation correction gradation curve B such that k> B [i] [value]. When the target k becomes smaller than the lower limit of the total gradation correction gradation curve B, the index i is returned to the center value 5 (i = 5) and the number of repetitions j is decreased by one. At that time, the value B [0] [value] obtained by converting the new initial value of the value value, which is the reference for the gradation characteristic conversion, by the all-gradation-corrected gradation curve B [0], which is the lowest convex of the all-gradation compensated gradation curve B ] * / i--; while (k <B [i] [value]) {i--; if (i <0) {--j; i = 5; value = B [0] [value];}} } * IndexOf_B = i; * count = j;} Using this value, the characteristic conversion gradation curve E is obtained as follows.
【0016】 リスト11. int index, k, indexOf _B, count, i2, i3; Table E, A,A1; TransformTable B; void main() { int i; for (i=0; i<=255;i++) A1[(i)] =A[(i)]; get _B _table _number(k, &indexOf B,&count); if(count>0) for (i=0; i<count;i++) A1=Transform(B[9],A1); else for (i=0; i>count;i--) A1=Transform(B[0],A1); E =Transform(B[indexOf _B],A1); E = Transform( C2[i3],Transform( C1[i2],E)); } 変換曲線C1,C2についても同様に求める。その際、
低濃度域補正諧調曲線C1の値を求めるためには、基準
諧調曲線A上の点で、低濃度域補正諧調曲線C1によっ
てその値が変化し、高濃度域補正諧調曲線C2によって
その値が変化しないか、変化量が小さい目標点kを選択
することが望ましい。また、高濃度域補正諧調曲線C2
の中、どの補正諧調曲線を用いればよいかを決めるため
には、基準諧調曲線A上の点で、高濃度域補正諧調曲線
C2によってその値が変化し、低濃度域補正諧調曲線C
1によってその値が変化しないか、または、変化量が小
さい目標点kを選択することが望ましい。Listing 11. int index, k, indexOf _B, count, i2, i3; Table E, A, A1; TransformTable B; void main () {int i; for (i = 0; i <= 255; i ++) A1 [(i) ] = A [(i)]; get _B _table _number (k, & indexOf B, &count); if (count> 0) for (i = 0; i <count; i ++) A1 = Transform (B [9], A1 ); else for (i = 0; i>count; i--) A1 = Transform (B [0], A1); E Transform (B [indexOf _B], A1); E = Transform (C2 [i3] , Transform (C1 [i2], E));} Similarly, the transformation curves C1 and C2 are obtained. that time,
In order to obtain the value of the low density correction gradation curve C1, the value changes at the point on the reference gradation curve A by the low density correction gradation curve C1 and by the high density correction gradation curve C2. It is desirable not to do so or to select the target point k with a small change amount. In addition, the high density range correction gradation curve C2
In order to determine which correction gradation curve should be used, the value changes at the point on the reference gradation curve A by the high density correction gradation curve C2 and the low density correction gradation curve C
It is desirable to select a target point k whose value does not change or whose change amount is small depending on 1.
【0017】基準諧調曲線Aを全諧調補正諧調曲線Bに
よって諧調特性変換した後、低濃度域補正諧調曲線C1
または高濃度域補正諧調曲線C2によって諧調特性変換
した場合には、全諧調補正諧調曲線Bによって諧調特性
変換された後の特性変換諧調曲線Eの形状によって、補
正諧調曲線C1,C2の影響が異なる。即ち、図6に示
す様に、低濃度域補正諧調曲線C1による諧調特性変換
が、濃度データが64以下の画像信号の諧調変換特性に影
響する場合、特性変換諧調曲線Eの形状によって諧調特
性変換の影響度合いが異なる。そのため、実際には低濃
度領域のみの諧調曲線を変更したい場合に、中間濃度領
域や高濃度領域まで諧調変換特性が変化してしまうこと
がある。この場合には補正諧調曲線C1,C2に対する
当初の目的である、特定の濃度領域の諧調変換特性を変
えることができなくなる。そこで、ハイライト領域の諧
調曲線を諧調特性変換するための低濃度域補正諧調曲線
C1を特性変換諧調曲線Eによって諧調特性変換するこ
とにより、目的としない濃度領域の諧調変換特性が変わ
るのを防ぐことができる。After the standard gradation curve A is converted by the whole gradation correction gradation curve B, the gradation characteristics are converted, and then the low density region correction gradation curve C1 is obtained.
Alternatively, when the gradation characteristic conversion is performed by the high-density correction gradation curve C2, the influences of the correction gradation curves C1 and C2 differ depending on the shape of the characteristic conversion gradation curve E after the gradation characteristics conversion is performed by the whole gradation correction gradation curve B. . That is, as shown in FIG. 6, when the gradation characteristic conversion by the low-density correction gradation curve C1 affects the gradation conversion characteristics of the image signal with density data of 64 or less, the gradation characteristic conversion is performed by the shape of the characteristic conversion gradation curve E. The degree of influence of is different. Therefore, in actuality, when it is desired to change the gradation curve only in the low density area, the gradation conversion characteristics may change up to the intermediate density area or the high density area. In this case, it is impossible to change the gradation conversion characteristic of the specific density region, which is the original purpose of the corrected gradation curves C1 and C2. Therefore, by changing the gradation characteristic of the low-density correction gradation curve C1 for converting the gradation curve of the highlight area to the gradation characteristic by the characteristic conversion gradation curve E, it is possible to prevent the gradation conversion characteristics of an undesired density area from changing. be able to.
【0018】図7は基準諧調曲線Aに対する諧調特性変
換の仕方が異なる他の諧調変換方式を示したものであ
る。この諧調変換方式のプログラムの例をリスト12.
に示す。リスト12.のリスト11.との相違点はプロ
グラムの末行の後半の部分である。この部分の様式は求
める補正諧調曲線によって選択する。 リスト12. int index, k, indexOf _B, count, i2, i3; Table E, A; TransformTable B; void main() { int i; for (i=0; i<=255;i++) A1[i]=A[i]; get _B _table _number(k, &indexOf_ B,&count); if(count>0) for (i=0; i<count;i++) A1=Transform(B[9],A1); else for (i=0; i>count;i--) A1=Transform(A1,B[0],A1); E =Transform(E,B[indexOf _B],A1); E = Transform(E, C2[i3],Transform(E,E,C1[i2])); 次に、さらに他の諧調変換方式を説明する。図8および
図9は本諧調変換方式を説明するための図である。図に
おいて、8ビットの画像信号に対する補正諧調曲線の始
点および終点はそれぞれP0=(0,0) およびP1=(255,25
5)とする。全体の諧調変換特性を変えるための全諧調
補正諧調曲線Bを生成するためには、始点P0と終点P
1とを結ぶ直線P0P1と交わる直線Lと、直線L上に
有り、直線P0P1と直線Lとの交点からの距離dをパ
ラメーターとする制御点P3と、2次のベジエ曲線を用
いる。図8は直線P0P1と直線L1が直行する場合、
図9は直線L2が縦軸に平行な場合を示したものであ
る。図8の例における線分P0P1の中心点をPCとした時、
制御点P3は中心点PC=(PO+P1)/2=(127.5,127.5)との
距離d をパラメーターとして、 P3(d)=PC+(-d/ √2, d/ √2)=(127.5 - d/ √2, 127.5 + d/ √2) で与えられる。これを用いて、全諧調補正諧調曲線Bを
与える諧調変換曲線P(d,t)は、 P(d,t) =P0・t2 + 2・P3(d) ・t ・(1-t) + P1・(1-t) 2 で与えられる。図9の例における制御点P3(d) は、中心
点PCとのy座標成分の差d をパラメーターとして、 P3(d)=PC+(0,d) で与えられる。なお、本実施例では線分P0P1の中心点PC
を基準としたが、基準点はその他の点でも良く、必要と
する全諧調補正諧調曲線Bに合わせて選択すれば良い。FIG. 7 shows another gradation conversion method in which the gradation characteristic conversion method with respect to the reference gradation curve A is different. An example of this gradation conversion program is shown in Listing 12.
Shown in. Listing 12. Listing 11. The difference is with the latter part of the last line of the program. The style of this part is selected according to the desired correction gradation curve. Listing 12. int index, k, indexOf _B, count, i2, i3; Table E, A; TransformTable B; void main () {int i; for (i = 0; i <= 255; i ++) A1 [i] = A [ i]; get _B _table _number (k, & indexOf_B, &count); if (count> 0) for (i = 0; i <count; i ++) A1 = Transform (B [9], A1); else for (i = 0; i > count; i--) A1 = Transform (A1, B [0], A1); E = Transform (E, B [indexOf _B], A1); E = Transform (E, C2 [i3] , Transform (E, E, C1 [i2])); Next, still another gradation conversion method will be described. 8 and 9 are diagrams for explaining the grayscale conversion method. In the figure, the start and end points of the corrected gradation curve for an 8-bit image signal are P0 = (0,0) and P1 = (255,25), respectively.
5) In order to generate the total gradation correction gradation curve B for changing the entire gradation conversion characteristic, the start point P0 and the end point P are generated.
A straight line L that intersects with the straight line P0P1 connecting 1 and a control point P3 that is on the straight line L and has a distance d from the intersection of the straight line P0P1 and the straight line L as a parameter, and a quadratic Bezier curve are used. FIG. 8 shows that when the straight line P0P1 and the straight line L1 go straight,
FIG. 9 shows a case where the straight line L2 is parallel to the vertical axis. When the center point of the line segment P0P1 in the example of FIG. 8 is PC,
The control point P3 is P3 (d) = PC + (-d / √2, d / √2) = (127.5) with the distance d from the center point PC = (PO + P1) / 2 = (127.5,127.5) as a parameter. -d / √2, 127.5 + d / √2). Using this, the gradation conversion curve P (d, t) giving the total gradation correction gradation curve B is P (d, t) = P0 ・ t 2 + 2 ・ P3 (d) ・ t ・ (1-t) + It is given by P1 · (1-t) 2 . The control point P3 (d) in the example of FIG. 9 is given by P3 (d) = PC + (0, d) with the difference d of the y coordinate component from the center point PC as a parameter. In this embodiment, the center point PC of the line segment P0P1
However, the reference point may be any other point, and the reference point may be selected in accordance with the required whole gradation correction gradation curve B.
【0019】次に、ハイライト領域およびシャドー領域
のように、特定の濃度領域の諧調変換特性を変える諧調
変換方式を説明する。上述の補正諧調曲線の生成と同様
に、直線P0P1と直線P0P1を交わる直線Lと、直
線L上に存在し、直線P0P1と直線Lとの交点からの
距離dをパラメーターとする制御点P3から3次のベジ
エ曲線を用いて補正諧調曲線を生成する。図10および
図11はそれぞれ直線L1が直線P0P1と直交する場
合、直線L2が縦軸に平行な場合の例を示したものであ
る。図10に示す様に、ハイライト領域の諧調特性を変
える補正諧調曲線は次のように生成する。始点P0、終点
P1をそれぞれP0=(0,0) 、P1=(255,255)とし、第1の
制御点P2をP2=(64,64) とする。図10に示す例におけ
る制御点P3は直線P0P1と直線L1との交点からの距離
d をパラメーターとして、P3(d) =(32,32)+ (-d/√2,
d/ √2)となる。図11に示す例における制御点P3は同
様に、直線P0P1と直線L2との交点からの距離d をパ
ラメーターとして、P3(d) =(32,32)+ (0,d) となる。
そこで、ハイライト領域の諧調特性を変える補正諧調曲
線を与える諧調変換曲線P(d,t)は始点P0、終点P1および
制御点P2,P3を用いて、 P(d,t)=P0・t3+ 3 ・P2・t2・(1-t) +3・P3(d) ・t ・(1-t)2 + P1 ・(1-t)3 で与えられる。なお、本実施例では、終点座標はP1=(2
55,255)としたが、終点座標を例えば、P1=(64,64) な
ど、線分m[(0,0)-(255,255)]上の他の座標点とし、その
間の領域はハイライト領域、または、シャドー領域のよ
うに、特定の濃度領域の諧調変換特性を変えるための補
正諧調曲線を算出し、線分m 上で線分P0P1に含まれない
線分については諧調特性変換は恒等変換を行うようにす
ることもできる。Next, a gradation conversion method for changing the gradation conversion characteristics of a specific density area such as a highlight area and a shadow area will be described. Similar to the above-described generation of the correction gradation curve, a straight line L that intersects the straight line P0P1 and the straight line P0P1, and control points P3 to 3 existing on the straight line L and having a distance d from the intersection point of the straight lines P0P1 and the straight line L as a parameter. Generate a corrected tone curve using the following Bezier curve. 10 and 11 show examples in which the straight line L1 is orthogonal to the straight line P0P1 and the straight line L2 is parallel to the vertical axis. As shown in FIG. 10, a corrected gradation curve that changes the gradation characteristic of the highlight area is generated as follows. Start point P0, end point
Let P1 be P0 = (0,0) and P1 = (255,255), respectively, and let the first control point P2 be P2 = (64,64). The control point P3 in the example shown in FIG. 10 is the distance from the intersection of the straight line P0P1 and the straight line L1.
Using d as a parameter, P3 (d) = (32,32) + (-d / √2,
d / √2). Similarly, the control point P3 in the example shown in FIG. 11 is P3 (d) = (32,32) + (0, d) using the distance d from the intersection of the straight line P0P1 and the straight line L2 as a parameter.
Therefore, the gradation conversion curve P (d, t) that gives the corrected gradation curve that changes the gradation characteristics of the highlight area is P (d, t) = P0 ・ t using the start point P0, the end point P1 and the control points P2, P3. It is given by 3 + 3 · P2 · t 2 · (1-t) +3 · P3 (d) · t · (1-t) 2 + P1 · (1-t) 3 . In this embodiment, the end point coordinates are P1 = (2
55,255), but the end point coordinates are other coordinate points on the line segment m [(0,0)-(255,255)] such as P1 = (64,64), and the area between them is the highlight area, Alternatively, as in the shadow area, a correction gradation curve for changing the gradation conversion characteristic of a specific density area is calculated, and the gradation characteristic conversion is performed as an identity conversion for the line segment that is not included in the line segment P0P1 on the line segment m. It is also possible to do.
【0020】[0020]
【発明の効果】以上説明したように請求項1記載の発明
によれば、全濃度領域の諧調変換特性を変えるための全
諧調補正諧調曲線Bと、特定の濃度領域の諧調変換特性
を変えるためのn 個の特定濃度域補正諧調曲線Ciを与
える特性値データを予め記憶し、基準諧調曲線Aに対
し、全諧調補正諧調曲線Bと、特定濃度域補正諧調曲線
Ciに基づいた複数の諧調変換特性の補正を行うように
したので、比較的少ないメモリ容量で、簡単な計算によ
って画像形成装置の経時変動や機械間のバラつきを補正
する諧調変換曲線を得ることができると共に、所望の濃
度領域の諧調変換特性を任意に修正可能になる。請求項
2記載の発明によれば、全諧調補正諧調曲線Bに基づい
て基準諧調曲線Aの諧調変換特性の補正を行った後、特
定濃度域補正諧調曲線Ciに基づいた複数の諧調変換特
性の補正を行うようにしたので、全諧調濃度領域の諧調
変換特性を効果的に修正することができる。請求項3記
載の発明によれば、特定濃度域補正諧調曲線Ciのいず
れかの特定濃度域補正諧調曲線Ck に基づいた基準諧調
曲線Aの諧調変換特性の補正を少なくとも1回行った
後、全諧調補正諧調曲線Bに基づいて諧調変換特性の補
正を行い、さらに、特定濃度域補正諧調曲線Ci( i≠k
)に基づいて諧調変換特性の補正を少なくとも1回行
うようにしたので、特定濃度域の諧調変換特性を効果的
に修正することができる。請求項4記載の発明によれ
ば、一通り諧調変換特性の補正を終了した後、再度、諧
調変換特性の補正を繰り返すようにしたので、記憶され
た特性値データ群の数が少ない場合でも、一度補正され
た諧調変換曲線に対し、必要回数だけ、補正を繰り返す
ことにより、必要とする諧調変換曲線を得ることができ
る。請求項5記載の発明によれば、全諧調補正諧調曲線
Bまたは特定濃度域補正諧調曲線Ciの始点P0、終点
P1、および始点P0と終点P1とを結ぶ直線P0P1
に交わる直線L上に存在し、直線P0P1と直線Lとの
交点からの距離dをパラメーターとする制御点P2を含
む1つないし2つの制御点で定義される2次または3次
のベジエ曲線により全諧調補正諧調曲線Bまたは特定濃
度域補正諧調曲線Ciを生成するようにしたので、諧調
変換特性曲線を簡単なパラメーターにより表すことがで
きると共に、単調増加し、滑らかな諧調特性を有する諧
調変換曲線を得ることができる。As described above, according to the first aspect of the present invention, the whole gradation correction gradation curve B for changing the gradation conversion characteristics of the entire density area and the gradation conversion characteristics of the specific density area are changed. The characteristic value data that gives the n specific density range correction gradation curves Ci are stored in advance, and a plurality of gradation conversions based on the entire gradation correction gradation curve B and the specific density range correction gradation curve Ci are performed with respect to the reference gradation curve A. Since the characteristics are corrected, it is possible to obtain a gradation conversion curve that corrects the temporal variation of the image forming apparatus and the variation between the machines by a simple calculation with a relatively small memory capacity, and at the same time, obtain a desired density region. The gradation conversion characteristics can be modified arbitrarily. According to the invention described in claim 2, after the gradation conversion characteristic of the reference gradation curve A is corrected based on the whole gradation correction gradation curve B, a plurality of gradation conversion characteristics based on the specific concentration range correction gradation curve Ci are obtained. Since the correction is performed, it is possible to effectively correct the gradation conversion characteristics in the entire gradation density region. According to the invention of claim 3, after the gradation conversion characteristic of the reference gradation curve A is corrected at least once based on any one of the specific density area correction gradation curves Ck of the specific density area correction gradation curve Ci, the whole is corrected. Gradation correction The gradation conversion characteristic is corrected based on the gradation curve B, and further, the specific concentration range correction gradation curve Ci (i ≠ k
Since the gradation conversion characteristic is corrected at least once based on (4), the gradation conversion characteristic in the specific density range can be effectively corrected. According to the invention of claim 4, after the correction of the gradation conversion characteristics is completed, the gradation conversion characteristics are corrected again. Therefore, even if the number of stored characteristic value data groups is small, By repeating the correction once for the gradation conversion curve that has been corrected, the required gradation conversion curve can be obtained. According to the fifth aspect of the present invention, the start point P0, the end point P1, and the straight line P0P1 connecting the start point P0 and the end point P1 of the whole gradation correction gradation curve B or the specific concentration range correction gradation curve Ci.
By a quadratic or cubic Bezier curve defined by one or two control points that exist on the straight line L that intersects with the control point P2 and have the distance d from the intersection point of the straight line P0P1 and the straight line L as a parameter. Since the whole gradation correction gradation curve B or the specific density range correction gradation curve Ci is generated, the gradation conversion characteristic curve can be expressed by simple parameters, and the gradation conversion curve having a smooth gradation characteristic can be obtained. Can be obtained.
【図1】本発明の実施例に係る複写機の画像処理装置の
ブロック図である。FIG. 1 is a block diagram of an image processing apparatus of a copying machine according to an exemplary embodiment of the present invention.
【図2】複写機本体の機構の概略を示す機構図である。FIG. 2 is a mechanism diagram showing an outline of a mechanism of a copying machine main body.
【図3】複写機の電装部の概略を示す構成図である。FIG. 3 is a configuration diagram showing an outline of an electric component section of the copying machine.
【図4】プリンターのレーザー変換回路のブロック図で
ある。FIG. 4 is a block diagram of a laser conversion circuit of the printer.
【図5】基準諧調曲線と、それに対する諧調特性補正を
行うための全諧調補正諧調曲線、低濃度域補正諧調曲
線、高濃度域補正諧調曲線および特性変換諧調曲線の諧
調特性を示すグラフである。FIG. 5 is a graph showing the gradation characteristics of a standard gradation curve, an overall gradation correction gradation curve for performing gradation characteristic correction for the reference gradation curve, a low density correction gradation curve, a high density correction gradation curve and a characteristic conversion gradation curve. .
【図6】基準諧調曲線に対し、全諧調補正諧調曲線B9
によって諧調特性変換した諧調曲線A1に更に全諧調補
正諧調曲線B9によって諧調特性変換した特性変換諧調
曲線を示したグラフである。[FIG. 6] All gradation correction gradation curves B9 with respect to the reference gradation curve
7 is a graph showing a characteristic conversion gradation curve obtained by further converting the gradation characteristics by the all gradation correction gradation curve B9 to the gradation curve A1 converted by the gradation characteristics.
【図7】基準諧調曲線に対する諧調特性変換の仕方が異
なる他の諧調変換方式を示したグラフである。FIG. 7 is a graph showing another gradation conversion method in which the gradation characteristic conversion method with respect to the reference gradation curve is different.
【図8】全諧調補正諧調曲線の生成方法に関する説明図
である。FIG. 8 is an explanatory diagram related to a method of generating an entire gradation correction gradation curve.
【図9】全諧調補正諧調曲線の他の生成方法に関する説
明図である。FIG. 9 is an explanatory diagram relating to another method of generating an entire gradation correction gradation curve.
【図10】特定の濃度領域の諧調変換特性を変える諧調
変換方式を説明するための説明図である。FIG. 10 is an explanatory diagram for describing a gradation conversion method that changes the gradation conversion characteristic of a specific density region.
【図11】特定の濃度領域の諧調変換特性を変える他の
諧調変換方式を説明するための説明図である。FIG. 11 is an explanatory diagram for explaining another gradation conversion method that changes the gradation conversion characteristic of a specific density region.
【図12】色補正処理を実行するマトリックス演算式を
表す数式図である。FIG. 12 is a mathematical diagram showing a matrix arithmetic expression for executing color correction processing.
101 複写機本体 102 感光体ドラム 104 レーザー光学系 123 イメージセンサーアレイ 401 スキャナー 405 MTF補正回路 410 γ変換回路 411 諧調処理回路 412 プリンター 413,414 インターフェイス 101 Copier main body 102 Photoconductor drum 104 Laser optical system 123 Image sensor array 401 Scanner 405 MTF correction circuit 410 γ conversion circuit 411 Gradation processing circuit 412 Printer 413, 414 Interface
Claims (5)
み取って、画像形成装置により記録紙に記録した画像の
濃度を検出して、原稿読取装置により読み取った画像デ
ータの諧調変換のための基準諧調曲線Aの諧調変換特性
を補正する補正諧調曲線を生成する補正諧調曲線生成装
置において、 全濃度領域の諧調変換特性を変えるための全諧調補正諧
調曲線Bと、 ハイライト領域またはシャドー領域のように、特定の濃
度領域の諧調変換特性を変えるためのn 個(n ≧1)の
特定濃度域補正諧調曲線Ci(i=1,2,…,n)を与え
る特性値データを予め記憶し、 前記基準諧調曲線Aに対し、前記全諧調補正諧調曲線B
と、前記特定濃度域補正諧調曲線Ciに基づいた複数の
諧調変換特性の補正を行うことを特徴とする補正諧調曲
線生成装置。1. A reference gradation for gradation conversion of image data read by a document reading device by detecting a density of an image recorded on recording paper by an image reading device by reading a predetermined reference document. In the correction gradation curve generating device for generating the correction gradation curve for correcting the gradation conversion characteristic of the curve A, the whole gradation correction gradation curve B for changing the gradation conversion characteristic of the entire density area and the highlight area or the shadow area , Characteristic value data for giving n (n ≧ 1) specific gradation region correction gradation curves Ci (i = 1, 2, ..., N) for changing the gradation conversion characteristic of the specific density region are stored in advance, For the standard gradation curve A, the whole gradation correction gradation curve B
And a correction gradation curve generation device for correcting a plurality of gradation conversion characteristics based on the specific density range correction gradation curve Ci.
おいて、 全諧調補正諧調曲線Bに基づいて基準諧調曲線Aの諧調
変換特性の補正を行った後、 特定濃度域補正諧調曲線Ciに基づいた複数の諧調変換
特性の補正を行うことを特徴とする補正諧調曲線生成装
置。2. The corrected gradation curve generating device according to claim 1, wherein after the gradation conversion characteristic of the reference gradation curve A is corrected based on the whole gradation correction gradation curve B, it is based on the specific density range correction gradation curve Ci. A corrected gradation curve generating device characterized by correcting a plurality of gradation conversion characteristics.
おいて、 特定濃度域補正諧調曲線Ciのいずれかの特定濃度域補
正諧調曲線Ck (k=1,2,…,n )に基づいた基準諧調曲
線Aの諧調変換特性の補正を少なくとも1回行った後、
全諧調補正諧調曲線Bに基づいて諧調変換特性の補正を
行い、さらに、特定濃度域補正諧調曲線Ci( i≠k )に
基づいて諧調変換特性の補正を少なくとも1回行うこと
を特徴とする補正諧調曲線生成装置。3. The corrected gradation curve generating device according to claim 1, wherein a reference based on any one of the specific density range correction gradation curves Ci of the specific density range correction gradation curve Ck (k = 1,2, ..., n). After correcting the gradation conversion characteristics of the gradation curve A at least once,
All gradation correction The gradation conversion characteristic is corrected based on the gradation curve B, and further the gradation conversion characteristic is corrected at least once based on the specific density range correction gradation curve Ci (i ≠ k). Gradation curve generator.
装置において、 一通り諧調変換特性の補正を終了した後、再度、諧調変
換特性の補正を繰り返すことを特徴とする補正諧調曲線
生成装置。4. The corrected gradation curve generation device according to claim 1, wherein after the correction of the gradation conversion characteristics is completed, the correction gradation curve generation is repeated again. apparatus.
装置において、 全諧調補正諧調曲線Bまたは特定濃度域補正諧調曲線C
iの始点P0、終点P1、および始点P0と終点P1と
を結ぶ直線P0P1に交わる直線L上に存在し、直線P
0P1と直線Lとの交点からの距離dをパラメーターと
する制御点P2を含む1つないし2つの制御点で定義さ
れる2次または3次のベジエ曲線により前記全諧調補正
諧調曲線Bまたは前記特定濃度域補正諧調曲線Ciを生
成することを特徴とする補正諧調曲線生成装置。5. The corrected gradation curve generating device according to claim 1, wherein the whole gradation correction gradation curve B or the specific concentration range correction gradation curve C is used.
i exists on a straight line L that intersects a start point P0, an end point P1, and a straight line P0P1 connecting the start point P0 and the end point P1.
The whole gradation correction gradation curve B or the above-mentioned specification by a quadratic or cubic Bezier curve defined by one or two control points including a control point P2 whose parameter is the distance d from the intersection of 0P1 and the straight line L A corrected gradation curve generation device characterized by generating a density range corrected gradation curve Ci.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5190133A JPH06292010A (en) | 1993-02-08 | 1993-07-30 | Corrected gradation curve generator |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-20314 | 1993-02-08 | ||
JP2031493 | 1993-02-08 | ||
JP5190133A JPH06292010A (en) | 1993-02-08 | 1993-07-30 | Corrected gradation curve generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06292010A true JPH06292010A (en) | 1994-10-18 |
Family
ID=26357237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5190133A Pending JPH06292010A (en) | 1993-02-08 | 1993-07-30 | Corrected gradation curve generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06292010A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7369285B2 (en) | 2000-01-26 | 2008-05-06 | Fujifilm Corporation | Method of processing image |
JP2012104099A (en) * | 2010-11-05 | 2012-05-31 | Lg Innotek Co Ltd | Method of enhancing contrast using bezier curve |
-
1993
- 1993-07-30 JP JP5190133A patent/JPH06292010A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7369285B2 (en) | 2000-01-26 | 2008-05-06 | Fujifilm Corporation | Method of processing image |
JP2012104099A (en) * | 2010-11-05 | 2012-05-31 | Lg Innotek Co Ltd | Method of enhancing contrast using bezier curve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3678875B2 (en) | Image forming apparatus | |
JP6512838B2 (en) | Image processing apparatus, image processing method and program | |
JP4115098B2 (en) | Image forming apparatus, masking coefficient calculation method, and recording medium recording masking coefficient calculation program | |
JPH1169157A (en) | Image forming device | |
JP3658461B2 (en) | Image forming apparatus | |
US5212560A (en) | Electrophotographic image forming apparatus comprising means for automatically adjusting image reproduction density | |
US20070273929A1 (en) | Image forming apparatus | |
JPH06186816A (en) | Method measuring toner adhesive quantity and image forming device | |
JP3518913B2 (en) | Tone conversion curve generator | |
JP3594712B2 (en) | Image forming device | |
JPH06292010A (en) | Corrected gradation curve generator | |
JP6201281B2 (en) | Image forming apparatus, image forming method, program, and recording medium | |
JPH05244418A (en) | Image forming method and device | |
JP2008154131A (en) | Image forming apparatus | |
JP2002171417A (en) | Image forming device and image forming method | |
JP3211106B2 (en) | Image forming device | |
JP2000131896A (en) | Device and method for forming image | |
JP3861109B2 (en) | Image forming apparatus | |
JP3947810B2 (en) | Image forming apparatus | |
JPH07221985A (en) | Corrected gradation curve generator | |
JPH10178551A (en) | Image forming device | |
JPH10112802A (en) | Image forming device | |
JP2004236349A (en) | Corrected gradation curve creating apparatus | |
JPH09107477A (en) | Image forming device | |
JP2000165667A (en) | Image forming device |