Nothing Special   »   [go: up one dir, main page]

JPH0628167B2 - Secondary battery rebalancing method - Google Patents

Secondary battery rebalancing method

Info

Publication number
JPH0628167B2
JPH0628167B2 JP62168451A JP16845187A JPH0628167B2 JP H0628167 B2 JPH0628167 B2 JP H0628167B2 JP 62168451 A JP62168451 A JP 62168451A JP 16845187 A JP16845187 A JP 16845187A JP H0628167 B2 JPH0628167 B2 JP H0628167B2
Authority
JP
Japan
Prior art keywords
positive electrode
fuel cell
stage
rebalancing
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62168451A
Other languages
Japanese (ja)
Other versions
JPS6412467A (en
Inventor
直樹 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP62168451A priority Critical patent/JPH0628167B2/en
Publication of JPS6412467A publication Critical patent/JPS6412467A/en
Publication of JPH0628167B2 publication Critical patent/JPH0628167B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二次電池のリバランス方法に関し、さらに詳し
くは充電末期に負極側で水素を副生し、正極活物質ハラ
イド溶液(以下、正極液という)が過充電状態となるレ
ドックス・フロー型二次電池のリバランス方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a rebalancing method for a secondary battery, and more specifically, it produces hydrogen as a by-product on the negative electrode side at the end of charging to produce a positive electrode active material halide solution (hereinafter referred to as positive electrode). Liquid) is an overcharged state of the redox flow type secondary battery rebalancing method.

〔従来の技術〕[Conventional technology]

レドックス・フロー型二次電池は、鉄−クロム二次電池
を例にとれば、放電状態ではクロムイオン(Cr2+)の
水溶液と3価の鉄イオン(Fe3+)の水溶液とをそれぞ
れ流通型電解槽の隔膜で仕切られた正極室および負極室
に通すことにより、正極ではFe3+が電子を1個受け取
って、2価のFe2+となり、負極ではCr2+が電子を1
個失い3価のCr3+となり、負極と正極で授受された電
子は、外部回路を通って仕事をし、電力を放出し、一
方、この逆の操作を行えば充電が行なわれ、このように
電子の授受(広義の酸化と還元)が別個の電極で行なわ
れ、その電子が外部回路を流れて電気エネルギーを放出
し、化学エネルギーが電気エネルギーに変換されるよう
な電池をいう。
Taking an iron-chromium secondary battery as an example, the redox flow type secondary battery flows an aqueous solution of chromium ions (Cr 2+ ) and an aqueous solution of trivalent iron ions (Fe 3+ ) in a discharged state. By passing it through the positive electrode chamber and the negative electrode chamber that are partitioned by the diaphragm of the electrolytic cell, Fe 3+ receives one electron at the positive electrode and becomes divalent Fe 2+ , and Cr 2+ turns 1 electron at the negative electrode.
The lost trivalent Cr 3+ becomes an electron exchanged between the negative electrode and the positive electrode, works through an external circuit, and releases electric power. On the other hand, if the reverse operation is performed, charging is performed. The transfer of electrons (oxidation and reduction in a broad sense) is performed by separate electrodes, the electrons flow through an external circuit to release electric energy, and the chemical energy is converted into electric energy.

前記レドックス・フロー型二次電池では僅かではある
が、負極(クロム)側より副生する水素ガスのために正
極液と負極活物質ハライド溶液(以下、負極液という)
の充放電深度に差が生じてくる。充放電を重ねてゆくう
ちにこの差は拡大され、正極液の過充電状態(Fe3+
過剰)が進行し、電池の容量が低下してゆく。これを回
避するためには、リバランス装置を設けて負極から発生
する水素を消費するとともに、正極液中のFe3+を還元
して正・負極液の充電状態を正常な状態としなければな
らない。このように正極液、負極液の充放電深度のアン
バランスを解消する方法を二次電池のリバランス方法と
いう。
In the redox flow type secondary battery, a small amount of hydrogen gas is produced as a by-product from the negative electrode (chromium) side, but the positive electrode liquid and the negative electrode active material halide solution (hereinafter referred to as the negative electrode liquid).
There will be a difference in the charge and discharge depth. This difference widens as the charge and discharge are repeated, the overcharged state of the positive electrode liquid (excess of Fe 3+ ) progresses, and the capacity of the battery decreases. In order to avoid this, it is necessary to provide a rebalance device to consume hydrogen generated from the negative electrode, and reduce Fe 3+ in the positive electrode liquid to bring the positive and negative electrode liquids into a normal charged state. . Such a method of eliminating the imbalance of the charge / discharge depth of the positive electrode liquid and the negative electrode liquid is called a rebalancing method of the secondary battery.

従来のリバランス方式として、(1)Fe3+−H2燃料
電池法(レドックス・フロー型電池の正極液と、負極で
副生した水素とをそれぞれ別に設けたFe3+−H2燃料
電池の正極および負極に流通させて正極液中の過剰のF
3+を還元するとともに前記水素を消費させる)、
(2)Br2メディエータ法(レドックス・フロー型電
池の正極液が臭化物イオンを含む場合、別に設けた電解
槽の陽極と陰極の両方に過充電状態の正極液を分岐流通
させ、前記陽極から臭素を電解発生させるとともに前記
陰極で過剰のFe3+を還元する。電解後再び合流させた
正極液は過充電状態が解消される。生じた臭素と前記レ
ドックス・フロー型電池の負極で副生した水素とを、別
に設けたBr2−H2燃料電池の正極および負極にそれぞ
れ流通させて反応させ、生じた臭化水素を前記レドック
ス・フロー型電池の正極液に吸収させる)、(3)Cl
2メディエータ法(レドックス・フロー型電池の正極液
が塩化物イオンを含む場合、別に設けた電解槽の陽極と
陰極の両方に過充電状態の正極液を分岐流通させ、前記
陽極から塩素を電解発生させるとともに前記陰極で過剰
のFe3+を還元する。電解後再び合流させた正極液は過
充電状態が解消される。生じた塩素と前記レドックス・
フロー型電池の負極で副生した水素とを、別に設けたC
2−H2燃料電池の正極および負極にそれぞれ流通させ
て反応させ、生じた塩化水素を前記レドックス・フロー
型電池の正極液に吸収させる)などが知られている。
As a conventional rebalancing method, (1) Fe 3+ -H 2 fuel cell method (positive electrode solution and, Fe 3+ -H 2 fuel cell provided separately-product and hydrogen respectively at the negative electrode of the redox flow type battery Of excess F in the positive electrode liquid by flowing through the positive electrode and the negative electrode of
e 3+ is reduced and the hydrogen is consumed),
(2) Br 2 mediator method (when the positive electrode solution of a redox flow battery contains bromide ions, the positive electrode solution in an overcharged state is branched and circulated to both the anode and the cathode of a separately provided electrolytic cell, and bromine is supplied from the anode. And the excess Fe 3+ is reduced at the cathode. The positive electrode liquids merged again after electrolysis eliminate the overcharged state. Bromine produced and by-product at the negative electrode of the redox flow battery Hydrogen is allowed to flow through the positive electrode and the negative electrode of a separately provided Br 2 —H 2 fuel cell to react with each other, and the generated hydrogen bromide is absorbed in the positive electrode liquid of the redox flow type battery), (3) Cl
2 Mediator method (When the positive electrode solution of a redox flow battery contains chloride ions, an overcharged positive electrode solution is branched and flowed to both the anode and cathode of a separate electrolytic cell to electrolyze chlorine from the anode. At the same time, excess Fe 3+ is reduced at the cathode, and the overcharged state is eliminated in the positive electrode liquids that have been merged again after electrolysis.
Hydrogen, which is a by-product of the negative electrode of the flow-type battery, is provided separately from C.
l 2 -H 2 fuel is reacted by circulating to the positive electrode and the negative electrode of the battery, to absorb the hydrogen chloride generated in the positive electrode liquid of the redox flow type battery), etc. are known.

前記(1)Fe3+−H2燃料電池法は、一段階の工程で
リバランスが行なわれる反面、水素電極の触媒として用
いた白金などがFe3+によって酸化・溶出し、この溶出
物が負極液と接触したときに還元されて水素発生触媒と
なり、2価クロムイオンと水素イオンとの反応を著しく
促進する(自己放電反応)。すなわち燃料電池の触媒
(白金など)が溶出し、正極液さらには負極液を汚染す
ることがある。
In the above-mentioned (1) Fe 3+ -H 2 fuel cell method, rebalancing is performed in a one-step process, while platinum and the like used as a catalyst for the hydrogen electrode are oxidized and eluted by Fe 3+ , and this eluate is When it comes into contact with the negative electrode liquid, it is reduced to serve as a hydrogen generation catalyst, which significantly accelerates the reaction between divalent chromium ions and hydrogen ions (self-discharge reaction). That is, the catalyst (such as platinum) of the fuel cell may be eluted and contaminate the positive electrode liquid and the negative electrode liquid.

また(2)Br2メディエータ法および(3)Cl2メデ
ィエータ法においては、前述のFe3+−H2燃料電池と
同様に水素極側に白金などの触媒を必要とするが、臭素
(または塩素)および水素を気体として燃料電池に送
り、また反応生成物である臭化水素(または塩化水素)
も気体として系内に戻るので、燃料電池と正・負極液間
に液絡がなく、したがって白金などの触媒が溶出しても
レドックス・フロー型二次電池が白金などで汚染される
ことは回避される。しかし、これらの方法では、強制的
に電解還元反応を進行させるので、Fe3+の還元につい
ては追従性や安定性に優れている反面、電解に要する電
力が必要となり、この電力は、通常のリバランス条件で
も二次電池本体出力の、例えば0.5〜2%に達し、二次
電池充放電効率を低下させる原因となる。またこれらの
燃料電池は、臭素極(または塩素極)の物質移動を含め
た分極が律速になりやすいため、定格電流密度を数mA
cm-2以下と非常に小さくして、反応を無理なく進行させ
る必要がある。また白金などの触媒はレドックス・フロ
ー型電池を汚染することはないが、Br2(またはC
2)によって酸化・溶出しやすい。その結果、例えば
白金を担持する電極面積を大きくする必要を生じ、製造
コストが著しく増大するという問題がある。
Further, in the (2) Br 2 mediator method and the (3) Cl 2 mediator method, a catalyst such as platinum is required on the hydrogen electrode side similarly to the Fe 3+ -H 2 fuel cell, but bromine (or chlorine) is required. ) And hydrogen as gases to the fuel cell, and the reaction product hydrogen bromide (or hydrogen chloride)
Also returns to the system as a gas, so there is no liquid junction between the fuel cell and the positive and negative electrode liquids, so even if the catalyst such as platinum elutes, the redox flow type secondary battery is prevented from being contaminated with platinum. To be done. However, in these methods, since the electrolytic reduction reaction is forcibly promoted, although the followability and stability of Fe 3+ reduction are excellent, the electric power required for electrolysis is required. Even under the rebalance condition, the output of the secondary battery main body reaches, for example, 0.5 to 2%, which causes a decrease in the secondary battery charge / discharge efficiency. In addition, in these fuel cells, the polarization including the mass transfer of the bromine electrode (or chlorine electrode) tends to be rate-determining, so the rated current density is several mA.
It is necessary to make the reaction as small as cm -2 or less so that the reaction proceeds smoothly. Also, catalysts such as platinum do not contaminate redox flow type batteries, but Br 2 (or C
L 2 ) easily oxidizes and elutes. As a result, for example, it is necessary to increase the area of the electrode supporting platinum, which causes a problem of significantly increasing the manufacturing cost.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明の目的は、リバランス用燃料電池の水素極での白
金などの触媒の溶出がなく、安定性に優れ、かつリバラ
ンス装置稼動による二次電池の充放電効率を低下させる
ことがなく、低コストで、設備の大型化を招くことのな
い二次電池のリバランス方法を提供することにある。
An object of the present invention is not to elute the catalyst such as platinum at the hydrogen electrode of the rebalancing fuel cell, which is excellent in stability, and does not reduce the charging / discharging efficiency of the secondary battery due to operation of the rebalancing device. An object of the present invention is to provide a rebalancing method for a secondary battery that is low in cost and does not lead to enlargement of equipment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の第1は、正極活物質および負極活物質のハライ
ド溶液(正極液および負極液)をそれぞれ正極液タンク
および負極液タンクから電池本体の正極および負極に供
給しながら充放電を行なう二次電池の充電時に前記負極
より水素が副生されることによって起こる、前記正極活
物質のハライド溶液中の正極活物質の酸化状態が前記負
極活物質のハライド溶液中の負極活物質の還元状態に対
して過剰になるという、前記正極活物質のハライド溶液
と前記負極活物質ハライド溶液との間の充放電状態の差
を解消する二次電池のリバランス方法において、前記二
次電池と別に第1段および第2段の燃料電池を設け、第
1段リバランス用燃料電池の正極に前記酸化状態過剰の
活物質を含む正極活物質ハライド溶液を供給するととも
に、前記負極で副生した水素を第2段リバランス用燃料
電池の負極に供給し、かつ前記第1段リバランス用燃料
電池の負極と第2段リバランス用燃料電池の正極との間
で、前記第1段リバランス用燃料電池の負極で電子を放
出して酸化体となり、第2段リバランス用燃料電池の正
極で電子を取り込んで還元体となるレドックス対のハラ
イド溶液を循環して前記第1段リバランス用燃料電池で
前記酸化状態過剰の正極活物質を還元するとともに、第
2段リバランス用燃料電池で前記副生した水素を酸化し
て水素イオンとすることを特徴とする。
The first aspect of the present invention is a secondary charging and discharging operation in which a halide solution of a positive electrode active material and a negative electrode active material (a positive electrode solution and a negative electrode solution) is respectively supplied from a positive electrode solution tank and a negative electrode solution tank to a positive electrode and a negative electrode of a battery body. The oxidation state of the positive electrode active material in the halide solution of the positive electrode active material, which occurs when hydrogen is by-produced from the negative electrode during charging of a battery, is compared with the reduction state of the negative electrode active material in the halide solution of the negative electrode active material. In the rebalancing method of the secondary battery, which eliminates the difference in charge / discharge state between the halide solution of the positive electrode active material and the halide solution of the negative electrode active material, which is excessive, the first stage separate from the secondary battery. And a second-stage fuel cell is provided, and the positive electrode active material halide solution containing the active material in excess of the oxidation state is supplied to the positive electrode of the first-stage rebalancing fuel cell, and the negative electrode is used as a secondary electrode. Hydrogen is supplied to the negative electrode of the second-stage rebalancing fuel cell, and the first-stage rebalancing is performed between the negative electrode of the first-stage rebalancing fuel cell and the positive electrode of the second-stage rebalancing fuel cell. The first-stage rebalance is performed by circulating the halide solution of the redox couple, which emits electrons at the negative electrode of the balancing fuel cell to become an oxidant and takes in the electrons at the positive electrode of the second-stage rebalancing fuel cell to become a reductant. And a positive electrode active material in excess of the oxidation state is reduced by the fuel cell for use in the fuel cell, and the by-produced hydrogen is oxidized into hydrogen ions by the fuel cell for second-stage rebalancing.

本発明の第2は、前記第1の方法において、前記第1段
リバランス用燃料電池で発生した電力を前記レドックス
対ハライド溶液を循環する循環ポンプの動力源および前
記副生した水素を前記第2段リバランス用燃料電池の負
極に供給するブロアー用動力源として使用することを特
徴とする。
In a second aspect of the present invention, in the first method, the power generated by the first-stage rebalancing fuel cell is used as a power source of a circulation pump that circulates the redox pair halide solution and the by-produced hydrogen is used as the first source. It is characterized by being used as a power source for a blower which is supplied to the negative electrode of a two-stage rebalancing fuel cell.

前述のように、この方式の二次電池をレドックス・フロ
ー型電池という。本発明において、レドックス・フロー
型電池の正極活物質および負極活物質のハライド溶液
(正極液および負極液)とは、充放電によって酸化還元
状態が可逆的に変化する正極活物質および負極活物質を
それぞれ溶解した、ハロゲン化物イオン(例えば塩化物
イオンおよび/または臭化物イオン)を含む溶液をい
い、正極活物質として、たとえばFeCl3/FeCl2
の対が、負極活物質として、例えばCrCl2/CrC
3の対が使用される。
As described above, this type of secondary battery is called a redox flow type battery. In the present invention, a halide solution of the positive electrode active material and the negative electrode active material of the redox flow battery (a positive electrode solution and a negative electrode solution) means a positive electrode active material and a negative electrode active material whose redox state is reversibly changed by charging and discharging. A solution containing a halide ion (eg, chloride ion and / or bromide ion) dissolved therein, which is used as a positive electrode active material such as FeCl 3 / FeCl 2
As a negative electrode active material, for example, CrCl 2 / CrC
l 3 pairs are used.

また本発明においてレドックス対ハライド溶液とは、メ
ディエータとして正極活物質の電極電位と負極活物質の
電極電位の間に位置する可逆平衡電位をもつ酸化/還元
体(レドックス)対を溶解し、前記正極液および負極液
と共通するハロゲン化物イオンを含む溶液をいう。この
時、レドックス対ハライド溶液の平衡電位が0〜+0.4
VvsRHE(可逆水素電極基準)となるレドックス対
を用いることが白金等の触媒金属の溶出を回避し、安定
性を向上させる点から好ましく、これらのレドックス対
としてはTi4+/Ti3+、Sn4+/Sn2+などがある。
特にTi4+/Ti3+は負極液中に混合しても析出などの
影響を与えないため好ましい。以下、本発明において、
レドックス対ハライド溶液をメディエータ溶液ともい
う。
Further, in the present invention, the redox pair halide solution is used as a mediator to dissolve an oxidation / reduction body (redox) pair having a reversible equilibrium potential located between the electrode potential of the positive electrode active material and the electrode potential of the negative electrode active material, Solution and a solution containing the same halide ion as the negative electrode solution. At this time, the equilibrium potential of the redox vs. halide solution is 0 to +0.4.
It is preferable to use a redox pair that serves as VvsRHE (reversible hydrogen electrode standard) from the viewpoint of avoiding elution of a catalyst metal such as platinum and improving stability, and these redox pairs include Ti 4+ / Ti 3+ , Sn. 4 + / Sn 2+ etc.
Particularly, Ti 4+ / Ti 3+ is preferable because it does not affect precipitation even when mixed in the negative electrode liquid. Hereinafter, in the present invention,
The redox-halide solution is also referred to as a mediator solution.

本発明のリバランス方法は、亜鉛−塩素電池、亜鉛−臭
素電池、臭素−クロム電池、塩素−クロム電池など水素
発生を伴う溶液型正極活物質方式の二次電池のリバラン
ス方法としても有効である。
INDUSTRIAL APPLICABILITY The rebalancing method of the present invention is also effective as a rebalancing method for a solution-type positive electrode active material type secondary battery involving hydrogen generation such as a zinc-chlorine battery, a zinc-bromine battery, a bromine-chromium battery, and a chlorine-chromium battery. is there.

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be described in more detail with reference to the drawings.

〔実施例〕〔Example〕

第1図は、本発明における2段燃料電池方式のリバラン
ス装置の説明図である。この装置は、二次電池本体(例
えば鉄−クロムレドックス・フロー型二次電池)9に連
結された正極液タンク4および負極液タンク5と、レド
ックス対ハライド溶液(メディエータ溶液)を貯溜する
メディエータタンク3と、前記メディエータ溶液と正極
液タンク4で過充電されたFe3+過剰の正極液とがそれ
ぞれ供給される、隔膜によって仕切られた正極室および
負極室を有する第1段燃料電池1と、前記第1段燃料電
池1で酸化されたレドックス対(以下、メディエータと
いう)を含むメディエータ溶液と前記本体電池の負極側
で副生したH2ガスとがそれぞれ供給される、隔膜によ
って仕切られた負極室および正極室を有する第2段燃料
電池2とからなる。このような構成において、前記メデ
ィエータ溶液は、メディエータ送液ポンプ6によって第
1段燃料電池1の負極に供給され、ここで酸化反応が行
われ、前記メディエータ溶液中のメディエータは電子を
放出して酸化体となる。該酸化体を含むメディエータ溶
液は第2段燃料電池2の正極に送られ、ここで還元反応
が行われ、前記メディエータは還元体となってメディエ
ータタンク3に戻される。一方、正極液は前記第1段燃
料電池1の正極に供給され、前記メディエータが放出し
た電子を受けとり、Fe3++e→Fe2+の還元反応が行
なわれ、正極液タンク4に戻され、また、二次電池負極
側で副生したH2ガスは負極液タンク5からH2ガスブロ
アーによって第2段燃料電池2の負極に供給され、H2
→H++eの酸化反応が行なわれ、水素イオンとなり、
隔膜を通して第2段燃料電池2の正極(メディエータ
極)に移動する。
FIG. 1 is an explanatory diagram of a two-stage fuel cell type rebalance device according to the present invention. This device comprises a positive electrode liquid tank 4 and a negative electrode liquid tank 5 connected to a secondary battery body (for example, an iron-chromium redox flow type secondary battery) 9, and a mediator tank for storing a redox-halide solution (mediator solution). 3, a first-stage fuel cell 1 having a positive electrode chamber and a negative electrode chamber partitioned by a diaphragm, to which the mediator solution and the Fe 3+ excess positive electrode liquid overcharged in the positive electrode liquid tank 4 are respectively supplied, A negative electrode partitioned by a diaphragm, to which a mediator solution containing a redox pair (hereinafter referred to as a mediator) oxidized in the first-stage fuel cell 1 and H 2 gas produced as a by-product on the negative electrode side of the main battery are respectively supplied. A second stage fuel cell 2 having a chamber and a positive electrode chamber. In such a configuration, the mediator solution is supplied to the negative electrode of the first-stage fuel cell 1 by the mediator liquid feed pump 6, where an oxidation reaction is performed, and the mediator in the mediator solution releases electrons to oxidize. Become a body. The mediator solution containing the oxidant is sent to the positive electrode of the second stage fuel cell 2, where a reduction reaction is performed, and the mediator is returned to the mediator tank 3 as a reducer. On the other hand, the positive electrode liquid is supplied to the positive electrode of the first-stage fuel cell 1, receives the electrons emitted by the mediator, undergoes a reduction reaction of Fe 3+ + e → Fe 2+ , and is returned to the positive electrode liquid tank 4. Further, by-produced H 2 gas in the secondary battery negative electrode side is supplied to the negative electrode of the second stage fuel cell 2 by the H 2 gas blower from negative electrolyte tank 5, H 2
→ H + + e oxidation reaction is carried out and it becomes hydrogen ion,
It moves to the positive electrode (mediator electrode) of the second stage fuel cell 2 through the diaphragm.

前記第1段燃料電池1によって生じた電力は、負荷8に
よって電圧制御され、前記メディエータ送液ポンプ6お
よびH2ガスブロアー7の動力として消費される。また
第2段燃料電池2は短絡、または小さな負荷を通して通
電される。
The electric power generated by the first-stage fuel cell 1 is voltage-controlled by a load 8 and consumed as power for the mediator liquid-sending pump 6 and the H 2 gas blower 7. The second-stage fuel cell 2 is energized through a short circuit or a small load.

本発明のリバランス方法では、メディエータとしてTi
4+/Ti3+、Sn4+/Sn2+など平衡電位が0〜+0.4
VvsRHEとなるレドックス対を用いることが好まし
い。これによって水素極での触媒(白金など)の溶出が
なく安定となる。また従来のBr2またはCl2メディエ
ータ法と異なり、電解電力を必要とせず、前記メディエ
ータ送液ポンプ6およびH2ガスブロアー7の動力を前
記リバランス用の第1段燃料電池の電力で賄うことがで
きる。このため、本発明におけるリバランスプロセスの
消費電力は従来のBr2メディエータ法やCl2メディエ
ータ法の設備に比べ約1/10となり、Fe3+−H2
料電池の設備とほぼ同程度の大きさで行なうことができ
る。
In the rebalancing method of the present invention, Ti is used as a mediator.
4 + / Ti 3+ , Sn 4+ / Sn 2+ etc. Equilibrium potential is 0 to +0.4
It is preferable to use a redox pair that results in VvsRHE. As a result, the catalyst (such as platinum) does not elute at the hydrogen electrode and becomes stable. Also, unlike the conventional Br 2 or Cl 2 mediator method, electrolysis power is not required, and the power of the mediator liquid feed pump 6 and the H 2 gas blower 7 is covered by the power of the first-stage fuel cell for rebalancing. You can Therefore, the power consumption of the rebalancing process in the present invention is about 1/10 of the equipment of the conventional Br 2 mediator method or Cl 2 mediator method, which is about the same as that of the Fe 3+ -H 2 fuel cell equipment. You can do it now.

〔発明の効果〕〔The invention's effect〕

本発明によれば、2段の燃料電池を設け、第1段リバラ
ンス用燃料電池で過剰の正極活物質を還元し、第2段リ
バランス用燃料電池で副生した水素を消費するようにし
たことにより、リバランス用燃料電池の水素電極の触媒
として用いられる、例えば白金と二次電池本体の正極液
との接触を回避することができるので、前記水素極にお
ける触媒金属の溶出がなく、二次電池本体の正極液と負
極液とを安定にリバランスすることができる。また、リ
バランス用燃料電池で発生する電力をリバランス用の送
液ポンプおよび送気ブロアーの動力源として用いること
により、二次電池本体の充放電効率を低下させることな
くリバランス装置を稼動することができる。従って高価
な構造材を必要とせず、低コストで、二次電池の正、負
極液の充電深度を調整することができる。
According to the present invention, a two-stage fuel cell is provided, an excess positive electrode active material is reduced by the first-stage rebalancing fuel cell, and hydrogen by-produced by the second-stage rebalancing fuel cell is consumed. By doing so, used as a catalyst of the hydrogen electrode of the rebalancing fuel cell, for example, because it is possible to avoid contact between the platinum and the positive electrode liquid of the secondary battery body, there is no elution of the catalyst metal in the hydrogen electrode, It is possible to stably rebalance the positive electrode liquid and the negative electrode liquid of the secondary battery body. Further, by using the electric power generated by the rebalancing fuel cell as the power source of the rebalancing liquid feed pump and the air blowing blower, the rebalancing device is operated without lowering the charge / discharge efficiency of the secondary battery body. be able to. Therefore, it is possible to adjust the charge depth of the positive and negative electrode liquids of the secondary battery at low cost without requiring an expensive structural material.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明における2段燃料電池方式のリバランス
装置の説明図である。 1……第1段燃料電池、2……第2段燃料電池、3……
メディエータタンク、4……正極液タンク、5……負極
液タンク、6……メディエータ送液ポンプ、7……H2
ガスブロアー、8……負荷、9……二次電池本体。
FIG. 1 is an explanatory diagram of a two-stage fuel cell type rebalance device according to the present invention. 1 ... First-stage fuel cell, 2 ... Second-stage fuel cell, 3 ...
Mediator tank, 4 ...... cathode solution tank, 5 ...... negative electrolyte tank, 6 ...... mediator liquid feed pump, 7 ...... H 2
Gas blower, 8 ... Load, 9 ... Rechargeable battery body.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極活物質および負極活物質のハライド溶
液をそれぞれ正極液タンクおよび負極液タンクから電池
本体の正極および負極に供給しながら充放電を行なう二
次電池の充電時に前記負極より水素が副生されることに
よって起こる、前記正極活物質のハライド溶液中の正極
活物質の酸化状態が前記負極活物質のハライド溶液中の
負極活物質の還元状態に対して過剰になるという、前記
正極活物質のハライド溶液と前記負極活物質ハライド溶
液との間の充放電状態の差を解消する二次電池のリバラ
ンス方法において、前記二次電池と別に第1段および第
2段の燃料電池を設け、第1段リバランス用燃料電池の
正極に前記酸化状態過剰の活物質を含む正極活物質ハラ
イド溶液を供給するとともに、前記負極で副生した水素
を第2段リバランス用燃料電池の負極に供給し、かつ前
記第1段リバランス用燃料電池の負極と第2段リバラン
ス用燃料電池の正極との間で、前記第1段リバランス用
燃料電池の負極で電子を放出して酸化体となり、第2段
リバランス用燃料電池の正極で電子を取り込んで還元体
となるレドックス対のハライド溶液を循環して前記第1
段リバランス用燃料電池で前記酸化状態過剰の正極活物
質を還元するとともに、第2段リバランス用燃料電池で
前記副生した水素を酸化して水素イオンとすることを特
徴とする二次電池のリバランス方法。
1. A secondary battery that is charged and discharged while supplying a halide solution of a positive electrode active material and a negative electrode active material to a positive electrode and a negative electrode of a battery main body from a positive electrode liquid tank and a negative electrode liquid tank, respectively. The positive electrode active state in which the oxidation state of the positive electrode active material in the halide solution of the positive electrode active material caused by by-product is excessive with respect to the reduction state of the negative electrode active material in the halide solution of the negative electrode active material. In a method of rebalancing a secondary battery, which eliminates a difference in charge / discharge state between a halide solution of a substance and the negative electrode active material halide solution, a first-stage fuel cell and a second-stage fuel cell are provided separately from the secondary battery. Supplying the positive electrode active material halide solution containing the active material in excess of the oxidation state to the positive electrode of the first-stage rebalancing fuel cell, and generating hydrogen by-produced in the negative electrode in the second-stage rebalan. To the negative electrode of the first-stage rebalancing fuel cell and between the negative electrode of the first-stage rebalancing fuel cell and the positive electrode of the second-stage rebalancing fuel cell. Is released to become an oxidant, and the halide solution of the redox couple, which becomes a reductant by taking in electrons at the positive electrode of the second-stage rebalancing fuel cell, is circulated to circulate the first
A secondary battery, wherein the positive electrode active material in an excessive oxidation state is reduced by a stage rebalancing fuel cell, and the by-produced hydrogen is oxidized into hydrogen ions by the second stage rebalancing fuel cell. Rebalancing method.
【請求項2】正極活物質および負極活物質のハライド溶
液をそれぞれ正極液タンクおよび負極液タンクから電池
本体の正極および負極に供給しながら充放電を行なう二
次電池の充電時に前記負極より水素が副生されることに
よって起こる、前記正極活物質のハライド溶液中の正極
活物質の酸化状態が前記負極活物質のハライド溶液中の
負極活物質の還元状態に対して過剰になるという、前記
正極活物質のハライド溶液と前記負極活物質ハライド溶
液との間の充放電状態の差を解消する二次電池のリバラ
ンス方法において、前記二次電池と別に第1段および第
2段の燃料電池を設け、第1段リバランス用燃料電池の
正極に前記酸化状態過剰の活物質を含む正極活物質ハラ
イド溶液を供給するとともに、前記負極で副生した水素
を第2段リバランス用燃料電池の負極に供給し、かつ前
記第1段リバランス用燃料電池の負極と第2段リバラン
ス用燃料電池の正極との間で、前記第1段リバランス用
燃料電池の負極で電子を放出して酸化体となり、第2段
リバランス用燃料電池の正極で電子を取り込んで還元体
となるレドックス対のハライド溶液を循環して前記第1
段リバランス用燃料電池で前記酸化状態過剰の正極活物
質を還元するとともに、第2段リバランス用燃料電池で
前記副生した水素を酸化して水素イオンとし、かつ前記
第1段リバランス用燃料電池で発生した電力を前記レド
ックス対ハライド溶液を循環する循環ポンプの動力源お
よび前記副生した水素を前記第2段リバランス用燃料電
池の負極に供給するブロワ用動力源として使用すること
を特徴とする二次電池のリバランス方法。
2. Hydrogen is discharged from the negative electrode during charging of a secondary battery that is charged and discharged while supplying a halide solution of the positive electrode active material and the negative electrode active material from the positive electrode liquid tank and the negative electrode liquid tank, respectively, to the positive electrode and the negative electrode of the battery body. The positive electrode active state in which the oxidation state of the positive electrode active material in the halide solution of the positive electrode active material caused by by-product is excessive with respect to the reduction state of the negative electrode active material in the halide solution of the negative electrode active material. In a method of rebalancing a secondary battery, which eliminates a difference in charge / discharge state between a halide solution of a substance and a halide solution of the negative electrode active material, a first-stage fuel cell and a second-stage fuel cell are provided separately from the secondary battery. Supplying a positive electrode active material halide solution containing the active material in excess of oxidation state to the positive electrode of the first-stage rebalancing fuel cell, and generating hydrogen by-produced in the negative electrode in the second-stage rebalan. To the negative electrode of the first-stage rebalancing fuel cell and between the negative electrode of the first-stage rebalancing fuel cell and the positive electrode of the second-stage rebalancing fuel cell. Is released to become an oxidant, and the halide solution of the redox pair, which becomes an reductant by taking in electrons at the positive electrode of the second-stage rebalancing fuel cell, is circulated to circulate the first solution.
The above-mentioned positive electrode active material in excess of oxidation state is reduced by the fuel cell for stage rebalancing, and the by-produced hydrogen is oxidized into hydrogen ions by the fuel cell for second stage rebalancing, and for the first stage rebalancing. Using the electric power generated in the fuel cell as a power source for a circulation pump that circulates the redox pair halide solution and as a power source for a blower that supplies the by-produced hydrogen to the negative electrode of the second-stage rebalancing fuel cell. Rechargeable battery rebalancing method featuring.
JP62168451A 1987-07-06 1987-07-06 Secondary battery rebalancing method Expired - Lifetime JPH0628167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62168451A JPH0628167B2 (en) 1987-07-06 1987-07-06 Secondary battery rebalancing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62168451A JPH0628167B2 (en) 1987-07-06 1987-07-06 Secondary battery rebalancing method

Publications (2)

Publication Number Publication Date
JPS6412467A JPS6412467A (en) 1989-01-17
JPH0628167B2 true JPH0628167B2 (en) 1994-04-13

Family

ID=15868353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62168451A Expired - Lifetime JPH0628167B2 (en) 1987-07-06 1987-07-06 Secondary battery rebalancing method

Country Status (1)

Country Link
JP (1) JPH0628167B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016168362A1 (en) 2015-04-14 2016-10-20 Lockheed Martin Advanced Energy Storage, Llc Flow battery balancing cells having a bipolar membrane and methods for use thereof
EP3284129A4 (en) * 2015-04-14 2018-12-19 Lockheed Martin Energy, LLC Flow battery balancing cells having a bipolar membrane for simultaneous modification of a negative electrolyte solution and a positive electrolyte solution
US11777128B1 (en) 2022-05-09 2023-10-03 Lockheed Martin Energy, Llc Flow battery with a dynamic fluidic network

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983056A (en) 1973-09-27 1976-09-28 Dai Nippon Toryo Co., Ltd. Aqueous epoxy resin paint composition
GB0614338D0 (en) * 2006-07-19 2006-08-30 Acal Energy Ltd Fuel cells
GB0614337D0 (en) * 2006-07-19 2006-08-30 Acal Energy Ltd Fuel Cells
KR20140053206A (en) * 2011-07-21 2014-05-07 내셔널 유니버시티 오브 싱가포르 A redox flow battery system
JP7022952B2 (en) * 2016-07-19 2022-02-21 パナソニックIpマネジメント株式会社 Flow battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016168362A1 (en) 2015-04-14 2016-10-20 Lockheed Martin Advanced Energy Storage, Llc Flow battery balancing cells having a bipolar membrane and methods for use thereof
EP3284130A4 (en) * 2015-04-14 2018-12-12 Lockheed Martin Energy, LLC Flow battery balancing cells having a bipolar membrane and methods for use thereof
EP3284129A4 (en) * 2015-04-14 2018-12-19 Lockheed Martin Energy, LLC Flow battery balancing cells having a bipolar membrane for simultaneous modification of a negative electrolyte solution and a positive electrolyte solution
US10411285B2 (en) 2015-04-14 2019-09-10 Lockheed Martin Energy, Llc Flow battery balancing cells having a bipolar membrane for simultaneous modification of a negative electrolyte solution and a positive electrolyte solution
US11777128B1 (en) 2022-05-09 2023-10-03 Lockheed Martin Energy, Llc Flow battery with a dynamic fluidic network
US11916272B2 (en) 2022-05-09 2024-02-27 Lockheed Martin Energy, Llc Flow battery with a dynamic fluidic network

Also Published As

Publication number Publication date
JPS6412467A (en) 1989-01-17

Similar Documents

Publication Publication Date Title
US4159366A (en) Electrochemical cell for rebalancing redox flow system
US4576878A (en) Method and apparatus for rebalancing a redox flow cell system
JP2649700B2 (en) Electrolyte regeneration device for redox flow battery
US3996064A (en) Electrically rechargeable REDOX flow cell
EP0517217B1 (en) Redox battery
EP1425807B1 (en) Vanadium / polyhalide redox flow battery
CA1309135C (en) Redox battery
AU2002328660A1 (en) Vanadium / polyhalide redox flow battery
US6887600B2 (en) Regenerative fuel cell with pH control
Li et al. Vanadium redox-flow-battery electrolyte preparation with reducing agents
US11876270B2 (en) Redox-flow battery for energy storage
AU2002249417A1 (en) Regenerative fuel cell with pH control
JP3163370B2 (en) Redox battery
JPH0628167B2 (en) Secondary battery rebalancing method
JPH0419966A (en) Redox battery
US4220690A (en) Secondary zinc/oxygen electrochemical cells using inorganic oxyacid electrolytes
Carlsson et al. Bifunctional Air Electrode for Metal‐Air Batteries
JP2000030721A (en) Regenerating method for all-vanadium redox flow battery electrolyte
JPS61211960A (en) Secondary cell
JPH04286871A (en) Redox type secondary battery
RU2126192C1 (en) High-temperature lithium-oxygen (air) storage battery
JPS63148563A (en) Rebalancing method for secondary battery
JPH0364863A (en) Redox-flow cell with electrolyte regeneration unit
JPH0626144B2 (en) Secondary battery device charging / discharging method
JPH01313858A (en) Operation of liquid circulation type cell