JPH06287730A - Production of soft magnetic alloy material - Google Patents
Production of soft magnetic alloy materialInfo
- Publication number
- JPH06287730A JPH06287730A JP5095154A JP9515493A JPH06287730A JP H06287730 A JPH06287730 A JP H06287730A JP 5095154 A JP5095154 A JP 5095154A JP 9515493 A JP9515493 A JP 9515493A JP H06287730 A JPH06287730 A JP H06287730A
- Authority
- JP
- Japan
- Prior art keywords
- soft magnetic
- magnetic alloy
- annealing
- final annealing
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は磁気シ−ルド部品や各種
鉄心部品として使用されるFe−Ni系,Fe−Ni−
Cr系,あるいはFe−Ni−Mo(Cu)系軟質磁性
合金板材の改良に関するもので、部品加工後の磁気焼鈍
時に生じる部品相互の密着の防止に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in magnetic shield parts and various iron core parts.
The present invention relates to improvement of a Cr-based or Fe-Ni-Mo (Cu) -based soft magnetic alloy sheet material, and relates to prevention of mutual adhesion of components that occur during magnetic annealing after component processing.
【0002】[0002]
【従来の技術】各種の磁気シ−ルド部材や時計,小型変
成器のコア−に代表される鉄芯部品には、JIS−P
B,JIS−PCおよびこれらを改良したFe−Ni−
Cr系,Fe−Ni−Mo(Cu)系合金が広く用いら
れている。2. Description of the Prior Art Iron core parts represented by various magnetic shield members, watches, and cores of small transformers are provided in JIS-P.
B, JIS-PC and improved Fe-Ni-
Cr-based and Fe-Ni-Mo (Cu) -based alloys are widely used.
【0003】一般にこれらの磁性合金は、成形加工を行
った後、磁気特性を発揮させるために磁気焼鈍が施され
る。磁気焼鈍は水素雰囲気中や真空中で900〜120
0℃×0.5〜2hrの高温長時間で行われるため、磁
気焼鈍時に部品同志が接触すると、部品同志が互いの接
触点で付着するという現象(密着という)が生じ易い。
加工部品の数量がかさむ場合には特に問題となる。それ
ゆえ従来より、数量の多い加工部品を一度に焼鈍する場
合には、多量のアルミナ粉末内に加工部品をちりばめて
磁気焼鈍を行い、加工部品同志の密着を防止している。Generally, these magnetic alloys are magnetically annealed in order to exert their magnetic properties after being molded. Magnetic annealing is 900 to 120 in a hydrogen atmosphere or in a vacuum.
Since the operation is performed at a high temperature of 0 ° C. × 0.5 to 2 hours for a long time, when the parts are brought into contact with each other during magnetic annealing, a phenomenon that the parts are attached to each other at a contact point (referred to as adhesion) is likely to occur.
This is a particular problem when the number of processed parts is large. Therefore, conventionally, when a large number of processed parts are annealed at one time, the processed parts are magnetically annealed by sprinkling the processed parts in a large amount of alumina powder to prevent close contact between the processed parts.
【0004】[0004]
【発明が解決しようとする課題】アルミナ粉末を使用す
る焼鈍方法では焼鈍後の加工部品のふるい分けや洗浄な
どに手間がかかるため、磁気焼鈍のコスト高を招くとい
う問題があった。そこで本発明者らはアルミナ粉末使用
における煩雑さを解消すべく、適量のAl添加と表面粗
度の調整により、水素雰囲気中での磁気焼鈍時に部品表
面にアルミナ皮膜を形成させて磁気焼鈍時の部品同志の
密着を防止できる素材を開発し、特願平4−88366
にて提案した。In the annealing method using alumina powder, there is a problem that the cost of magnetic annealing is increased because it takes time and effort to screen and clean the processed parts after annealing. Therefore, in order to eliminate the complexity of using the alumina powder, the present inventors formed an alumina film on the surface of the component during magnetic annealing in a hydrogen atmosphere by adding an appropriate amount of Al and adjusting the surface roughness, so that the We have developed a material that can prevent parts from sticking to each other.
I proposed in.
【0005】しかしながら特願平4−88366で提案
した素材では、磁気焼鈍を真空中で行う場合には素材表
面にアルミナ皮膜が形成されないため、部品同志の密着
を防止できない。したがって生産コストの低減や製品の
小型,高性能化が早急に進められている電子,磁気産業
界からは、真空の磁気焼鈍においてアルミナ粉末を用い
なくても部品相互の密着が発生しない素材を提供するこ
とが強く望まれている。However, in the material proposed in Japanese Patent Application No. 4-88366, when the magnetic annealing is performed in a vacuum, the alumina film is not formed on the surface of the material, so that the mutual adhesion of the parts cannot be prevented. Therefore, from the electronics and magnetic industries, where production costs are being reduced and product miniaturization and high performance are being promoted urgently, we provide materials that do not cause mutual adhesion of parts without using alumina powder in vacuum magnetic annealing. There is a strong desire to do so.
【0006】そこで本発明はこのような問題を解消すべ
く案出されたものであり、Fe−Ni系,Fe−Ni−
Cr系,あるいはFe−Ni−Mo(Cu)系軟質磁性
合金について、部品加工後の磁気焼鈍を真空中で行って
も部品相互の密着防止を可能にすることを目的とする。Therefore, the present invention has been devised in order to solve such a problem, and Fe-Ni type and Fe-Ni-type are proposed.
An object of the present invention is to make it possible to prevent mutual adhesion between components of a Cr-based or Fe-Ni-Mo (Cu) -based soft magnetic alloy even if magnetic annealing after component processing is performed in a vacuum.
【0007】[0007]
【課題を解決するための手段】発明者らは、Alを0.
1〜1.2%含有するFe−Ni系,Fe−Ni−Cr
系,あるいはFe−Ni−Mo(Cu)系軟質磁性合金
の、表面粗度がRz≧0.5μmまたはRa≧0.06
μmである板材を製造するに際し、最終焼鈍を水素ガス
中または水素ガスと不活性ガスの混合ガス中にて100
0〜1200℃で行い、最終焼鈍後の仕上げ冷間圧延率
を50%以下とすることにより、真空中の磁気焼鈍にお
いてアルミナ粉末を用いなくても加工部品相互の密着が
防止できるという注目すべき事実を見い出した。The inventors of the present invention have set Al to 0.
Fe-Ni system, Fe-Ni-Cr containing 1 to 1.2%
-Based or Fe-Ni-Mo (Cu) -based soft magnetic alloys having a surface roughness of Rz ≧ 0.5 μm or Ra ≧ 0.06
When manufacturing a plate having a thickness of μm, the final annealing is performed in hydrogen gas or a mixed gas of hydrogen gas and an inert gas at 100
It should be noted that by carrying out at 0 to 1200 ° C. and setting the finish cold rolling rate after final annealing to 50% or less, it is possible to prevent the mutual adhesion of the processed parts without using alumina powder in magnetic annealing in vacuum. I found a fact.
【0008】[0008]
【作用】Ni,Cr,Mo,Cuの主成分の限定理由に
ついては、JIS−PB,PC,PD,PE級の磁気特
性を得ることが必要であるため、JIS−PB,PD,
PE級の低Ni領域においてはNiを35〜65%に限
定した。またJIS−PC級の高Ni領域においてはN
iを60〜85%,Moを≦6%,Cuを≦4%に限定
した。さらに低Ni領域においてJIS−PC級の透磁
率を得るためには、Cr:0.5〜14%が必要であ
る。With respect to the reason for limiting the main components of Ni, Cr, Mo and Cu, it is necessary to obtain JIS-PB, PC, PD and PE grade magnetic characteristics.
In the PE class low Ni region, Ni was limited to 35 to 65%. In the high Ni region of JIS-PC class, N
i was limited to 60 to 85%, Mo was ≤6%, and Cu was ≤4%. Further, in order to obtain the JIS-PC grade magnetic permeability in the low Ni region, Cr: 0.5 to 14% is necessary.
【0009】Alは本発明において重要な添加元素であ
り、部品加工前の素材である板材を製造する過程での最
終焼鈍時に板材表面にアルミナ皮膜を形成させるために
必要である。Al含有量が0.1%未満では最終焼鈍時
に形成されるアルミナ皮膜量が少ないため真空中での磁
気焼鈍においては密着を防止できない。一方、Al含有
量が1.2%を越えると透磁率が低下し磁気特性に悪影
響を及ぼす。従って、Al含有量は0.1〜1.2%に
限定した。Al is an important additional element in the present invention, and is necessary for forming an alumina film on the surface of the plate material during the final annealing in the process of manufacturing the plate material which is a raw material before the parts are processed. If the Al content is less than 0.1%, the amount of alumina film formed during the final annealing is small, and therefore adhesion cannot be prevented during magnetic annealing in vacuum. On the other hand, when the Al content exceeds 1.2%, the magnetic permeability is lowered and the magnetic properties are adversely affected. Therefore, the Al content is limited to 0.1 to 1.2%.
【0010】TiやZrは熱間加工性の改善のため添加
する。Tiは含有量が0.05%未満では熱間加工性の
改善効果が認められず、0.5%を超えると素材の表面
品質を低下させる。またZrは0.001%未満では熱
間加工性の改善効果が認められず、0.02%を超える
と磁気特性を低下させる。したがってTiについては
0.05〜0.5%,Zrについては0.001〜0.
02%とした。Ti and Zr are added to improve hot workability. When the content of Ti is less than 0.05%, the effect of improving hot workability is not recognized, and when it exceeds 0.5%, the surface quality of the material is deteriorated. If Zr is less than 0.001%, the effect of improving hot workability is not recognized, and if it exceeds 0.02%, the magnetic properties are deteriorated. Therefore, Ti is 0.05 to 0.5%, and Zr is 0.001 to 0.
It was set to 02%.
【0011】次に最終焼鈍条件の限定理由について述べ
る。図1に、Fe−46%Ni合金について75%水素
+25%窒素雰囲気中で種々の温度で1分間最終焼鈍を
行ったときに生じた表面皮膜のグロ−放電分光分析(G
DS)結果を示す。図中、縦軸はAlの検出強度であ
り、黒塗りのプロットはその試料について真空中110
0℃×1hrの磁気焼鈍を行ったときに密着の生じたも
の、白抜きのプロットは密着の生じなかったものを示
す。この図より、Alを0.1%以上含有させた試料で
は、最終焼鈍温度が1000℃以上の場合に表面皮膜中
にAlが顕著に濃化しており、これら表面皮膜中にAl
が顕著に濃化した試料では真空中での磁気焼鈍で密着が
起こらないことがわかる。これに対し、Alが0.1%
未満の試料ではいずれの最終焼鈍温度においても表面皮
膜中にAlの濃化はみられず、真空中での磁気焼鈍で密
着が防止できないことがわかる。Next, the reasons for limiting the final annealing conditions will be described. FIG. 1 shows that the Fe-46% Ni alloy is subjected to final annealing for 1 minute at various temperatures in an atmosphere of 75% hydrogen + 25% nitrogen, and a glow discharge spectroscopic analysis (G
DS) shows the results. In the figure, the vertical axis is the detected intensity of Al, and the black-filled plot is 110 in vacuum for the sample.
Adhesion occurred when magnetic annealing was performed at 0 ° C. × 1 hr, and a white plot indicates that adhesion did not occur. From this figure, in the sample containing 0.1% or more of Al, Al was significantly concentrated in the surface coating when the final annealing temperature was 1000 ° C. or higher.
It can be seen that, in the sample in which is markedly concentrated, adhesion does not occur due to magnetic annealing in vacuum. On the other hand, Al is 0.1%
For samples of less than 1%, Al concentration was not found in the surface coating at any final annealing temperature, and it can be understood that adhesion cannot be prevented by magnetic annealing in vacuum.
【0012】図2に、Alを0.12%含有するFe−
46%Niについて75%水素+25%窒素雰囲気中で
1000℃×1分間最終焼鈍を行ったときに生じた表面
皮膜の光電子分光分析(ESCA)結果を示す。アルミ
ナのピ−クがみられ、真空中での磁気焼鈍での密着を防
止するには、表面にアルミナの皮膜を形成させることが
有効であることがわかる。このアルミナの皮膜は、水素
ガス中または水素ガスと不活性ガスの混合ガス中で焼鈍
するときに生成する。雰囲気ガスの露点は0〜−60℃
に保つことが望ましい。なお、最終焼鈍温度が高いほど
アルミナ生成量は多く密着防止には有利となるが、実操
業上1200℃より高温の焼鈍は困難である。以上の知
見から、素材(板材)の最終焼鈍温度は1000〜12
00℃に限定した。In FIG. 2, Fe-containing 0.12% Al
The photoelectron spectroscopy analysis (ESCA) result of the surface film produced when the final annealing was performed for 1000% x 1 minute in 75% hydrogen + 25% nitrogen atmosphere about 46% Ni is shown. A peak of alumina is observed, and it can be seen that it is effective to form an alumina film on the surface in order to prevent adhesion by magnetic annealing in vacuum. This alumina film is formed during annealing in hydrogen gas or a mixed gas of hydrogen gas and an inert gas. Dew point of atmospheric gas is 0 to -60 ℃
It is desirable to keep The higher the final annealing temperature, the larger the amount of alumina produced, which is advantageous for preventing adhesion, but it is difficult to anneal at a temperature higher than 1200 ° C in actual operation. From the above findings, the final annealing temperature of the material (plate material) is 1000 to 12
Limited to 00 ° C.
【0013】次に、最終焼鈍後の仕上げ冷間圧延率につ
いて述べる。部品加工前の素材(板材)は、用途に応じ
適切な材料強度が要求される。最終焼鈍後の材料強度が
要求される材料強度よりも低い場合には、最終焼鈍後に
仕上げ冷間圧延を行い適切な強度を得ることができる。
図3に、Fe−46%Ni合金について75%水素+2
5%窒素雰囲気中で1000℃×1分間の最終焼鈍を行
った試料について最終焼鈍後に種々の冷間圧延率で仕上
げ冷間圧延を行った場合の表面皮膜のグロ−放電分光分
析(GDS)結果を示す。図中、縦軸はAlの検出強度
であり、黒塗りのプロットはその試料について真空中1
100℃×1hrの磁気焼鈍を行ったときに密着の生じ
たもの、白抜きのプロットは密着の生じなかったものを
示す。この図より、Alを0.1%以上含有させた試料
では、仕上げ冷間圧延率が増加するに伴いAlの検出強
度が低下し、冷間圧延率50%以下の場合において真空
中での磁気焼鈍で密着が防止できることがわかる。これ
は、冷間圧延率が増加すると板厚の減少に伴って表面の
アルミナの皮膜が薄くなり、冷間圧延率が50%を越え
るとアルミナ皮膜の破壊が多くなるためと考えられる。
従って、最終焼鈍後に行う仕上げ冷間圧延の圧延率は5
0%以下に規制する。Next, the finish cold rolling rate after the final annealing will be described. The material (plate material) before component processing is required to have appropriate material strength according to the application. When the material strength after the final annealing is lower than the required material strength, finish cold rolling can be performed after the final annealing to obtain an appropriate strength.
In Figure 3, 75% hydrogen + 2 for Fe-46% Ni alloy
Results of Glow Discharge Spectroscopy (GDS) analysis of surface coatings when final cold rolling was performed at various cold rolling ratios after final annealing on a sample that was subjected to final annealing at 1000 ° C for 1 minute in a 5% nitrogen atmosphere. Indicates. In the figure, the vertical axis represents the detected intensity of Al, and the black plot indicates the sample in vacuum 1
Adhesion occurred when magnetic annealing was performed at 100 ° C. × 1 hr, and a white plot indicates that adhesion did not occur. From this figure, in the sample containing Al by 0.1% or more, the detected strength of Al decreases as the finish cold rolling rate increases, and the magnetic strength in vacuum is reduced when the cold rolling rate is 50% or less. It can be seen that the adhesion can be prevented by annealing. It is considered that this is because when the cold rolling rate increases, the alumina coating on the surface becomes thinner as the plate thickness decreases, and when the cold rolling rate exceeds 50%, the alumina coating breaks more.
Therefore, the rolling ratio of finish cold rolling performed after the final annealing is 5
Regulate below 0%.
【0014】表面粗度は、磁気焼鈍での密着防止に関し
て重要な因子である。表面粗度がRz≧0.5μmまた
はRa≧0.06μmのとき、磁気焼鈍での密着を防止
できる。表面粗度の調整方法としては、最終焼鈍前に適
量の研磨を行う方法等が考えられる。なお、本発明方法
により得られた素材(板材)は、真空中以外の雰囲気
(例えば水素中)での磁気焼鈍に供しても、従来方法に
よる素材(板材)以上に良好な密着防止効果が得られ
る。Surface roughness is an important factor for preventing adhesion during magnetic annealing. When the surface roughness is Rz ≧ 0.5 μm or Ra ≧ 0.06 μm, adhesion during magnetic annealing can be prevented. As a method of adjusting the surface roughness, a method of polishing an appropriate amount before the final annealing can be considered. The material (plate material) obtained by the method of the present invention has a better adhesion preventing effect than the material (plate material) by the conventional method even when subjected to magnetic annealing in an atmosphere other than vacuum (for example, in hydrogen). To be
【0015】[0015]
【実施例】表1に示す組成の合金を400kg真空溶解
し、通常の熱延〜冷延工程を施して板厚1.5〜0.4
mmの合金帯を製造した。これらの合金帯をエメリーペ
ーパーを用いて種々の粗度に研磨した後、連続型の焼鈍
炉にて75%水素+25%窒素雰囲気中で素材(板材)
としての最終焼鈍を行い、その後種々の圧延率の仕上げ
冷間圧延を行い、表面粗度を調整した板厚0.4mmの
合金帯とした。次にこれらの合金帯から磁気ヘッドカバ
−用の部品を5000個形成後、バッヂ型の真空焼鈍炉
を用いて真空中で1100℃×1hの磁気焼鈍を行っ
た。EXAMPLE An alloy having the composition shown in Table 1 was melted in a vacuum of 400 kg and subjected to normal hot rolling to cold rolling to obtain a plate thickness of 1.5 to 0.4.
mm alloy strip was produced. After polishing these alloy strips to various roughnesses using emery paper, the material (plate material) in a continuous annealing furnace in an atmosphere of 75% hydrogen + 25% nitrogen
Final annealing, followed by finish cold rolling with various rolling rates to obtain an alloy strip having a plate thickness of 0.4 mm, the surface roughness of which was adjusted. Next, 5000 parts for a magnetic head cover were formed from these alloy strips, and then magnetic annealing was performed at 1100 ° C. × 1 h in a vacuum using a badge type vacuum annealing furnace.
【0016】[0016]
【表1】 [Table 1]
【0017】表2に、熱延歩留,素材の最終焼鈍温度,
仕上げ冷間圧延率,磁気焼鈍前における表面粗度,磁気
焼鈍後の密着不良率を、アルミナ粉末を用いる従来法と
比較して示す。素材の熱間加工性および磁気焼鈍時の密
着防止効果はそれぞれ次に示す熱延歩留りおよび密着不
良率により評価した。 熱延歩留り(%)=(不良部除去後の熱延コイル重量/
熱延コイルの元重量)×100 密着不良率(%)=(密着した試料個数/焼鈍した全試
料個数)×100Table 2 shows the hot rolling yield, the final annealing temperature of the material,
The finish cold rolling rate, surface roughness before magnetic annealing, and adhesion failure rate after magnetic annealing are shown in comparison with the conventional method using alumina powder. The hot workability of the material and the effect of preventing adhesion during magnetic annealing were evaluated by the hot rolling yield and the adhesion failure rate, respectively, shown below. Hot rolling yield (%) = (weight of hot rolled coil after defective part removal /
Original weight of hot-rolled coil) × 100 Adhesion failure rate (%) = (number of adhered samples / total number of annealed samples) × 100
【0018】[0018]
【表2】 [Table 2]
【0019】表2より、本発明例での密着不良率はいず
れも磁気焼鈍時にアルミナ粉末を用いる従来法と同等の
0.2〜0.5%程度と良好であることがわかる。また
TiやZrを含有すると熱延歩留りが向上することもわ
かる。From Table 2, it can be seen that the adhesion failure rate in each of the examples of the present invention is as good as about 0.2 to 0.5%, which is equivalent to the conventional method using the alumina powder during magnetic annealing. It is also found that the inclusion of Ti or Zr improves the hot rolling yield.
【0020】[0020]
【発明の効果】以上説明したように本発明によれば、真
空中の磁気焼鈍においてもアルミナ粉末を用いることな
く、加工部品同志の密着を防止できるため、磁気焼鈍前
後の手間が省け、磁気焼鈍にかかるコストを大幅に削減
できる磁性合金を提供できる。As described above, according to the present invention, even in magnetic annealing in vacuum, it is possible to prevent the work parts from adhering to each other without using alumina powder. It is possible to provide a magnetic alloy that can significantly reduce the cost involved.
【図1】 グロ−放電分光分析(GDS)による素材の
最終焼鈍温度と最終焼鈍後の表面皮膜中のAl強度の関
係を表したグラフFIG. 1 is a graph showing the relationship between the final annealing temperature of a material and the Al strength in the surface coating after the final annealing by glow discharge spectroscopy (GDS).
【図2】 光電子分光分析(ESCA)による素材の最
終焼鈍後の表面皮膜中のアルミナ強度を示すグラフFIG. 2 is a graph showing the alumina strength in the surface coating after the final annealing of the material by photoelectron spectroscopy (ESCA).
【図3】 グロ−放電分光分析(GDS)による素材の
最終焼鈍後の冷間圧延率と表面皮膜中のAl強度の関係
を表したグラフFIG. 3 is a graph showing the relationship between the cold rolling rate after final annealing of the material and the Al strength in the surface coating by glow discharge spectroscopy (GDS).
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 303 S 38/14 H01F 1/147 (72)発明者 武本 敏彦 山口県新南陽市野村南町4976番地 日新製 鋼株式会社鉄鋼研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location C22C 38/00 303 S 38/14 H01F 1/147 (72) Inventor Toshihiko Takemoto Shinnanyo Yamaguchi Prefecture 4976 Ichinomura-Minamimachi Nisshin Steel Co., Ltd.
Claims (8)
1.2%を含有し残部Feおよび不可避的不純物よりな
り、表面粗度がRz≧0.5μmまたはRa≧0.06
μmである軟質磁性合金の板材を製造するに際し、最終
焼鈍を水素ガス中または水素ガスと不活性ガスの混合ガ
ス中にて1000〜1200℃で行うことを特徴とする
軟質磁性合金材料の製造方法。1. Ni: 35-85%, Al: 0.1-
1.2% and the balance Fe and unavoidable impurities, and the surface roughness is Rz ≧ 0.5 μm or Ra ≧ 0.06.
When manufacturing a soft magnetic alloy sheet having a thickness of μm, the final annealing is performed at 1000 to 1200 ° C. in hydrogen gas or a mixed gas of hydrogen gas and an inert gas, a method for manufacturing a soft magnetic alloy material. .
1.2%,Cr≦0.5〜14%を含有し残部Feおよ
び不可避的不純物よりなり、表面粗度がRz≧0.5μ
mまたはRa≧0.06μmである軟質磁性合金の板材
を製造するに際し、最終焼鈍を水素ガス中または水素ガ
スと不活性ガスの混合ガス中にて1000〜1200℃
で行うことを特徴とする軟質磁性合金材料の製造方法。2. Ni: 35-60%, Al: 0.1-
1.2%, Cr ≦ 0.5 to 14%, balance Fe and unavoidable impurities, and surface roughness Rz ≧ 0.5 μ
m or Ra ≧ 0.06 μm, when producing a plate material of a soft magnetic alloy, the final annealing is performed in hydrogen gas or a mixed gas of hydrogen gas and an inert gas at 1000 to 1200 ° C.
A method of manufacturing a soft magnetic alloy material, characterized in that
1.2%,Mo≦6%,Cu≦4%を含有し残部Feお
よび不可避的不純物よりなり、表面粗度がRz≧0.5
μmまたはRa≧0.06μmである軟質磁性合金の板
材を製造するに際し、最終焼鈍を水素ガス中または水素
ガスと不活性ガスの混合ガス中にて1000〜1200
℃で行うことを特徴とする軟質磁性合金材料の製造方
法。3. Ni: 60-85%, Al: 0.1-
1.2%, Mo ≦ 6%, Cu ≦ 4%, balance Fe and unavoidable impurities, and surface roughness Rz ≧ 0.5
When manufacturing a plate material of a soft magnetic alloy with μm or Ra ≧ 0.06 μm, final annealing is performed in hydrogen gas or in a mixed gas of hydrogen gas and an inert gas in the range of 1000 to 1200.
A method for producing a soft magnetic alloy material, which is performed at ℃.
Zr:0.001〜0.02%のうち1種以上を含有
し、表面粗度がRz≧0.5μmまたはRa≧0.06
μmである、請求項1〜3のいずれかの項に記載の軟質
磁性合金の板材を製造するに際し、最終焼鈍を水素ガス
中または水素ガスと不活性ガスの混合ガス中にて100
0〜1200℃で行うことを特徴とする軟質磁性合金材
料の製造方法。4. Further, at least one of Ti: 0.05 to 0.5% or Zr: 0.001 to 0.02% is contained and the surface roughness is Rz ≧ 0.5 μm or Ra ≧ 0. 06
When manufacturing the plate material of the soft magnetic alloy according to any one of claims 1 to 3, the final annealing is 100 in hydrogen gas or a mixed gas of hydrogen gas and an inert gas.
A method for producing a soft magnetic alloy material, which is performed at 0 to 1200 ° C.
製造するに際し、最終焼鈍を水素ガス中または水素ガス
と不活性ガスの混合ガス中にて1000〜1200℃で
行った後、圧延率50%以下の仕上げ冷間圧延を行うこ
とを特徴とする軟質磁性合金材料の製造方法。5. When manufacturing the plate material of the soft magnetic alloy according to claim 1, final annealing is performed in hydrogen gas or a mixed gas of hydrogen gas and an inert gas at 1000 to 1200 ° C., and then rolling. A method for producing a soft magnetic alloy material, which comprises performing finish cold rolling at a rate of 50% or less.
製造するに際し、最終焼鈍を水素ガス中または水素ガス
と不活性ガスの混合ガス中にて1000〜1200℃で
行った後、圧延率50%以下の仕上げ冷間圧延を行うこ
とを特徴とする軟質磁性合金材料の製造方法。6. When manufacturing the plate material of the soft magnetic alloy according to claim 2, final annealing is performed in hydrogen gas or a mixed gas of hydrogen gas and an inert gas at 1000 to 1200 ° C., followed by rolling. A method for producing a soft magnetic alloy material, which comprises performing finish cold rolling at a rate of 50% or less.
製造するに際し、最終焼鈍を水素ガス中または水素ガス
と不活性ガスの混合ガス中にて1000〜1200℃で
行った後、圧延率50%以下の仕上げ冷間圧延を行うこ
とを特徴とする軟質磁性合金材料の製造方法。7. When manufacturing the plate material of the soft magnetic alloy according to claim 3, final annealing is performed in hydrogen gas or a mixed gas of hydrogen gas and an inert gas at 1000 to 1200 ° C., and then rolling. A method for producing a soft magnetic alloy material, which comprises performing finish cold rolling at a rate of 50% or less.
製造するに際し、最終焼鈍を水素ガス中または水素ガス
と不活性ガスの混合ガス中にて1000〜1200℃で
行った後、圧延率50%以下の仕上げ冷間圧延を行うこ
とを特徴とする軟質磁性合金材料の製造方法。8. When manufacturing the sheet material of the soft magnetic alloy according to claim 4, final annealing is performed in hydrogen gas or a mixed gas of hydrogen gas and an inert gas at 1000 to 1200 ° C., followed by rolling. A method for producing a soft magnetic alloy material, which comprises performing finish cold rolling at a rate of 50% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5095154A JPH06287730A (en) | 1993-03-31 | 1993-03-31 | Production of soft magnetic alloy material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5095154A JPH06287730A (en) | 1993-03-31 | 1993-03-31 | Production of soft magnetic alloy material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06287730A true JPH06287730A (en) | 1994-10-11 |
Family
ID=14129879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5095154A Withdrawn JPH06287730A (en) | 1993-03-31 | 1993-03-31 | Production of soft magnetic alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06287730A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6296661B1 (en) | 2000-02-01 | 2001-10-02 | Luis A. Davila | Self-expanding stent-graft |
-
1993
- 1993-03-31 JP JP5095154A patent/JPH06287730A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6296661B1 (en) | 2000-02-01 | 2001-10-02 | Luis A. Davila | Self-expanding stent-graft |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002173745A (en) | Fe-Ni BASED PERMALLOY, ITS PRODUCTION METHOD AND CAST SLAB | |
TWI789871B (en) | Manufacturing method of Wostian iron-based stainless steel strip | |
JP2510154B2 (en) | Fe-Ni alloy cold rolled sheet and method for producing the same | |
JP3350285B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties | |
JP3692222B2 (en) | High-strength cold-rolled steel sheet and high-strength plated steel sheet with good geomagnetic shielding characteristics and manufacturing method thereof | |
JP2871414B2 (en) | Alloy thin plate for shadow mask excellent in press formability and method for producing the same | |
JPH06287730A (en) | Production of soft magnetic alloy material | |
JP3686502B2 (en) | Cold rolled steel sheet for TV cathode ray tube mask frame and manufacturing method thereof | |
JPH11315338A (en) | Aluminum alloy for magnetic disk, excellent in zincate treatment property | |
JP2003268507A (en) | Inner frame for cathode-ray tube, ferritic stainless steel sheet therefor and production method thereof | |
JPH0673452A (en) | Production of fe-ni alloy thin sheet and fe-ni-co alloy thin sheet excellent in rusting resistance | |
JP3538850B2 (en) | Fe-Ni alloy thin plate and Fe-Ni-Co alloy thin plate for shadow mask excellent in press formability and method for producing the same | |
JP4132252B2 (en) | High-strength cold-rolled steel sheet that is resistant to corrosion and has excellent geomagnetic shielding properties, and a method for producing the same | |
WO1999023268A9 (en) | High-strength cold rolled steel sheet and high-strength plated steel sheet which have excellent geomagnetism shielding characteristics, and method of manufacturing them | |
JP3042273B2 (en) | Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance | |
JP3775215B2 (en) | Magnetic shield material, steel plate for magnetic shield material and method for producing the same | |
JP3033426B2 (en) | Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for electronic parts excellent in resist adhesion and rust resistance, and method for producing the same | |
JPH0798975B2 (en) | Method for producing Fe-Ni alloy | |
JPH11158548A (en) | Hot rolled steel sheet for shrink band of tv cathode-ray tube and its production | |
JPH05279826A (en) | Production of 'permalloy(r)' excellent in impedance relative magnetic permeability | |
JPH11158549A (en) | Cold rolled steel sheet for shrink band of tv cathode-ray tube and its production | |
JP3410873B2 (en) | Manufacturing method of shadow mask master by continuous annealing | |
JP3234271B2 (en) | Improved soft magnetic alloy material | |
JP3161209B2 (en) | Fe-Ni-based alloy thin plate for electronic parts having excellent rust resistance and method for producing the same | |
JPH0663607A (en) | Production of fe-ni based alloy plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000704 |