JPH06273601A - Antireflection film of optical parts made of synthetic resin - Google Patents
Antireflection film of optical parts made of synthetic resinInfo
- Publication number
- JPH06273601A JPH06273601A JP5084092A JP8409293A JPH06273601A JP H06273601 A JPH06273601 A JP H06273601A JP 5084092 A JP5084092 A JP 5084092A JP 8409293 A JP8409293 A JP 8409293A JP H06273601 A JPH06273601 A JP H06273601A
- Authority
- JP
- Japan
- Prior art keywords
- film
- layer
- refractive index
- thin film
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Surface Treatment Of Optical Elements (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、プラスチックレンズ等
の合成樹脂製光学部品の表面反射を防止するための合成
樹脂製光学部品の反射防止膜に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antireflection film of a synthetic resin optical component for preventing surface reflection of a synthetic resin optical component such as a plastic lens.
【0002】[0002]
【従来の技術】従来から、光学レンズ等の光学部品の表
面反射を防止するために、ケイ素酸化物SiOx の薄膜
を設けたり、あるいはZrO2 ,TiO2 ,CaO2 ,
Ta2O5 等の高屈折率材料の薄膜とMgF2 ,SiO2
等の低屈折率材料の薄膜を交互に蒸着した多層膜から
なる反射防止膜を設ける方法が提案されており、特に、
プラスチックレンズ等の合成樹脂製の光学部品において
は、その表面の軟質性や耐薬品性等を補うことも必要で
あるため、硬度が高く、耐薬品性等にすぐれたケイ素酸
化物SiOx の薄膜を反射防止膜の第1層あるいは中間
層として用いることが多い。2. Description of the Related Art Conventionally, in order to prevent surface reflection of optical parts such as optical lenses, a thin film of silicon oxide SiO x is provided, or ZrO 2 , TiO 2 , CaO 2 ,
Thin film of high refractive index material such as Ta 2 O 5 and MgF 2 , SiO 2
It has been proposed a method of providing an antireflection film composed of a multilayer film in which thin films of low refractive index materials such as
In optical parts made of synthetic resin such as plastic lenses, since it is necessary to supplement the softness and chemical resistance of the surface, a thin film of silicon oxide SiO x having high hardness and excellent chemical resistance. Is often used as the first or intermediate layer of the antireflection film.
【0003】一例として、特開昭60−98401号公
報には、アクリルレンズの表面にSiOからなる屈折率
nが1.55以上で厚さ89nm以下の四分の一波長膜
(以下、「λ/4膜」という。)を蒸着し、その上にM
gF2 からなる屈折率n=1.38のλ/4膜を積層し
た2層膜の反射防止膜が提案されており、また、特開昭
60−225101号公報には、第1層としてSiO2
からなる屈折率n=1.47、膜厚d=354nm、光
学膜厚nd=λ0 の薄膜を真空蒸着によって形成し、そ
の上に順次、Ta2 O5 からなる屈折率n=2.05、
光学膜厚nd=0.057λ0 の薄膜と、SiO2 から
なる屈折率n=1.47、光学膜厚d=0.11λ0 の
薄膜と、Ta2 O5 からなる屈折率n=2.05、光学
膜厚nd=0.538λ0 の薄膜と、SiO2 からなる
屈折率n=1.47、光学膜厚nd=0.258λ0 の
薄膜を積層した5層膜からなる反射防止膜が提案されて
おり(設計波長λ0 =520nm)、さらに、特開平3
−116101号公報には、メタクリル樹脂注型基板上
に第1層としてSiOx からなる屈折率n=1.60、
光学膜厚nd=(λ0 /4)×20%(d=17〜18
nm)の薄膜を真空蒸着によって形成し、その上に、T
iO2 からなる屈折率n=1.95、光学膜厚nd=
(λ0 /4)×20%の薄膜と、SiO2 からなる屈折
率n=1.45、光学膜厚nd=(λ0 /4)×40%
の薄膜と、TiO2 からなる屈折率n=2.0、光学膜
厚nd=(λ0 /4)×70%の薄膜と、SiO2 から
なる屈折率n=1.45、光学膜厚nd=(λ0 /4)
×95%の薄膜を積層した5層膜からなる反射防止膜
(設計波長λ0 =550〜570nm)が提案されてい
る。As an example, in Japanese Patent Laid-Open No. Sho 60-98401, a quarter-wave film (hereinafter referred to as "λ") made of SiO on the surface of an acrylic lens has a refractive index n of 1.55 or more and a thickness of 89 nm or less. / 4 film ”) is deposited and M is deposited on it.
A two-layer antireflection film formed by laminating λ / 4 films made of gF 2 and having a refractive index n = 1.38 has been proposed, and Japanese Patent Laid-Open No. 60-225101 discloses SiO 2 as the first layer. 2
A thin film having a refractive index n = 1.47, a film thickness d = 354 nm, and an optical film thickness nd = λ 0 is formed by vacuum vapor deposition, and a refractive index n = 2.05 made of Ta 2 O 5 is sequentially formed on the thin film. ,
Optical film thickness nd = a thin film of 0.057λ 0, the refractive index n = 1.47, which consists of SiO 2, a thin film of an optical film thickness d = 0.11λ 0, the refractive index n = 2 consisting of Ta 2 O 5. 05, an antireflection film composed of a five-layer film in which a thin film having an optical film thickness nd = 0.538λ 0 and a thin film made of SiO 2 having a refractive index n = 1.47 and an optical film thickness nd = 0.258λ 0 are laminated. Have been proposed (design wavelength λ 0 = 520 nm), and
-116101, a methacrylic resin cast substrate has a refractive index n = 1.60 made of SiO x as a first layer,
Optical film thickness nd = (λ 0/4) × 20% (d = 17~18
(nm) thin film is formed by vacuum evaporation, and T
Refractive index of iO 2 n = 1.95, optical film thickness nd =
(Λ 0/4) × 20% of the film, the refractive index n = 1.45, which consists of SiO 2, the optical thickness nd = (λ 0/4) × 40%
A thin film of a refractive index n = 2.0 consisting of TiO 2, the optical thickness nd = (λ 0/4) × 70% of the film, the refractive index n = 1.45, which consists of SiO 2, an optical film thickness nd = (λ 0/4)
There has been proposed an antireflection film (design wavelength λ 0 = 550 to 570 nm) composed of a five-layer film in which thin films of × 95% are laminated.
【0004】[0004]
【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、いずれも居住用空間等の限られた環境
で用いる場合は著しく性能が劣化するおそれはないが、
屋外等において厳しい温度条件に曝されたり、温度や湿
度の変化の大きい環境で長期にわたって使用されると、
耐摩耗性や耐薬品性が劣化したり、合成樹脂の母材の熱
歪等によって反射防止膜にクラック(膜割れ)が発生
し、ひどい時には膜剥離を起すおそれがある。However, according to the above-mentioned conventional techniques, there is no fear that the performance is significantly deteriorated when used in a limited environment such as a living space.
When exposed to severe temperature conditions outdoors or used for a long time in an environment where temperature and humidity change greatly,
Abrasion resistance and chemical resistance may be deteriorated, and cracks (film cracks) may occur in the antireflection film due to thermal strain of the base material of the synthetic resin and the like, and in extreme cases, film peeling may occur.
【0005】また、後述する品質評価テストの結果、前
述の特開昭60−98401号公報および特開平3−1
16101号公報に記載された反射防止膜は、成膜直後
からその耐摩耗性や耐薬品性が不充分であることが判明
し、特開昭60−225101号公報に記載された反射
防止膜は、可視域の光に対して3%程度の吸収性を有
し、その光学特性に難点があることが判明した。As a result of a quality evaluation test described later, the above-mentioned Japanese Patent Laid-Open No. 60-98401 and Japanese Patent Laid-Open No. 3-1.
The antireflection film described in Japanese Patent No. 16101 was found to have insufficient abrasion resistance and chemical resistance immediately after film formation, and the antireflection film described in Japanese Patent Application Laid-Open No. 60-225101 It has been found that it has an absorptivity of about 3% with respect to light in the visible region and has a problem in its optical characteristics.
【0006】本発明は上記従来の技術の未解決の課題に
鑑みてなされたものであり、耐摩耗性や耐薬品性および
光学特性にすぐれており、かつ、厳しい温度条件や湿度
条件、あるいは、温度や湿度が大きく変化する環境で長
時間使用しても、前述の特性が劣化したり、クラックや
膜剥離を起こすおそれのない合成樹脂製光学部品の反射
防止膜を提供することを目的とするものである。The present invention has been made in view of the above-mentioned unsolved problems of the prior art, is excellent in abrasion resistance, chemical resistance and optical characteristics, and is under severe temperature and humidity conditions, or It is an object of the present invention to provide an antireflection film for synthetic resin optical parts that does not cause the above-mentioned characteristics to deteriorate or cause cracks or film peeling even when used for a long time in an environment where the temperature and humidity greatly change. It is a thing.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に本発明の反射防止膜は、合成樹脂製光学部品の表面に
成膜されたケイ素酸化物SiOx (2>x>1)を主成
分とする膜厚200nmないし300nmのアンダーコ
ートと、該アンダーコートの上に成膜された反射防止特
性を有する繰返し多層膜からなることを特徴とする。In order to achieve the above object, the antireflection film of the present invention mainly comprises a silicon oxide SiO x (2>x> 1) formed on the surface of a synthetic resin optical component. It is characterized by comprising an undercoat having a film thickness of 200 nm to 300 nm as a component, and a repeating multilayer film having an antireflection property formed on the undercoat.
【0008】また、繰返し多層膜がTiO2 またはZr
O2 またはこれらの混合物を主成分とする高屈折率材料
からなる薄膜と、SiOx (2≧x≧1)を主成分とす
る低屈折率材料からなる薄膜を交互に積層したものであ
るとよい。Further, the repeating multilayer film is made of TiO 2 or Zr.
A thin film composed of a high refractive index material containing O 2 or a mixture thereof as a main component and a thin film composed of a low refractive index material containing SiO x (2 ≧ x ≧ 1) as a main component are alternately laminated. Good.
【0009】[0009]
【作用】上記装置によれば、硬度が高く、耐薬品性や合
成樹脂に対する密着性にすぐれたケイ素酸化物SiOx
(2>x>1)を主成分とする薄膜を、反射防止特性に
関与しないアンダーコートとして用いることによって、
反射防止膜の耐摩耗性や耐薬品性および合成樹脂に対す
る密着性を向上させる。アンダーコートの膜厚を200
nm以上にすることで、上記の耐摩耗性、耐薬品性を充
分に向上させ、加えて、屋外等の温度、湿度の厳しい環
境における耐久性も向上させることができる。また、ア
ンダーコートの膜厚が300nm以下であれば、前記の
厳しい環境において長期間使用しても反射防止膜のクラ
ックや膜剥離を生じるおそれがない。According to the above apparatus, a silicon oxide SiO x having high hardness, excellent chemical resistance and adhesiveness to synthetic resin.
By using a thin film containing (2>x> 1) as a main component as an undercoat that does not contribute to the antireflection property,
Improves wear resistance and chemical resistance of antireflection film and adhesion to synthetic resin. Undercoat thickness of 200
When the thickness is not less than nm, the above-mentioned abrasion resistance and chemical resistance can be sufficiently improved, and in addition, durability in an environment such as outdoors where temperature and humidity are severe can be improved. Further, if the thickness of the undercoat is 300 nm or less, there is no risk of cracking or peeling of the antireflection film even after long-term use in the severe environment.
【0010】[0010]
【実施例】本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described with reference to the drawings.
【0011】図1は一実施例を示す模式断面図であっ
て、本実施例の合成樹脂製光学部品の反射防止膜E1
は、ポリメタクリル酸メチル(PMMA)で作られたプ
ラスチックレンズ1の表面1aに蒸着されたアンダーコ
ート2と、これに積層された繰返し多層膜である多層膜
3からなり、アンダーコート2は前述の合成樹脂製材料
に対して良好な密着性を有し、かつ、耐薬品性、および
耐摩耗性にすぐれたケイ素酸化物SiOx (2>x>
1)を主成分とする屈折率n=1.49〜1.59の低
屈折率材料からなる膜厚d=200nm〜300nmの
薄膜であり、多層膜3は、酸化チタンTiO2 または酸
化ジルコニウムZrO2 またはこれらの混合物を主成分
とする高屈折率材料からなる第1層の薄膜(以下、「第
1層」という。)3aと、ケイ素酸化物SiOx (2≧
x≧1)を主成分とする低屈折率材料からなる第2層の
薄膜(以下、「第2層」という。)3bと、酸化チタン
TiO2または酸化ジルコニウムZrO2 またはこれら
の混合物を主成分とする高屈折率材料からなる第3層の
薄膜(以下、「第3層」という。)3cと、ケイ素酸化
物SiOx (2≧x≧1)を主成分とする低屈折率材料
からなる第4層の薄膜(以下、「第4層」という。)3
dによって構成されている。FIG. 1 is a schematic cross-sectional view showing one embodiment, which is an antireflection film E1 of the synthetic resin optical component of this embodiment.
Is composed of an undercoat 2 deposited on the surface 1a of a plastic lens 1 made of polymethylmethacrylate (PMMA) and a multilayer film 3 which is a repeating multilayer film laminated on the undercoat 2. Silicon oxide SiO x (2>x>), which has good adhesion to synthetic resin materials and excellent chemical resistance and wear resistance.
1) is a thin film made of a low refractive index material having a refractive index n = 1.49 to 1.59 as a main component and a film thickness d = 200 nm to 300 nm, and the multilayer film 3 is made of titanium oxide TiO 2 or zirconium oxide ZrO 2. 2 or a thin film of a first layer (hereinafter, referred to as “first layer”) 3a made of a high refractive index material containing a mixture of these as a main component, and a silicon oxide SiO x (2 ≧).
x ≧ 1) as a main component, a second layer thin film (hereinafter referred to as “second layer”) 3b made of a low refractive index material, and titanium oxide TiO 2 or zirconium oxide ZrO 2 or a mixture thereof as a main component. And a third layer thin film (hereinafter referred to as “third layer”) 3c made of a high refractive index material and a low refractive index material containing silicon oxide SiO x (2 ≧ x ≧ 1) as a main component. Thin film of the fourth layer (hereinafter referred to as "fourth layer") 3
It is constituted by d.
【0012】アンダーコート2の材料として屈折率n=
1.49〜1.59のケイ素酸化物を主成分とする低屈
折率材料を選んだ理由は、合成樹脂製光学部品の材料と
して多用されるポリメタクリル酸メチル(PMMA)や
ポリカーボネート(PC)やポリスチレン(PS)の屈
折率が上記の範囲にあること、および、上記低屈折率材
料が、耐薬品性や耐摩耗性にすぐれており、上記の合成
樹脂に対して良好な密着性を有し、かつ、アンダーコー
トとして用いた場合に光散乱量および光吸収量が少いた
めである。As a material for the undercoat 2, a refractive index n =
The reason why the low refractive index material containing silicon oxide as a main component of 1.49 to 1.59 is selected is polymethyl methacrylate (PMMA) or polycarbonate (PC), which is often used as a material for synthetic resin optical parts. The refractive index of polystyrene (PS) is within the above range, and the low refractive index material has excellent chemical resistance and abrasion resistance, and has good adhesion to the above synthetic resin. In addition, the amount of light scattering and the amount of light absorption when used as an undercoat are small.
【0013】また、アンダーコート2の膜厚が200n
m以下であると、充分な耐薬品性や耐摩耗性を得ること
ができず、300nm以上である場合は逆にクラックが
発生しやすいことが実験によって判明している。なお、
多層膜3の第1層3aと第2層3bは高屈折率材料と低
屈折率材料からなる等価薄膜を構成し、多層膜3の基本
的な膜構成は、設計波長λに対して前記等価薄膜の膜厚
がλ/4、第3層3cの膜厚がλ/4またはλ/2、第
4層3dの膜厚がλ/4である。また、多層膜3の各層
3a〜3dの屈折率nおよび光学膜厚ndは以下の範囲
であるのが望ましい。The thickness of the undercoat 2 is 200n.
It has been proved by experiments that when it is m or less, sufficient chemical resistance and abrasion resistance cannot be obtained, and when it is 300 nm or more, cracks are likely to occur. In addition,
The first layer 3a and the second layer 3b of the multilayer film 3 constitute an equivalent thin film made of a high refractive index material and a low refractive index material, and the basic film configuration of the multilayer film 3 is the equivalent to the design wavelength λ. The thickness of the thin film is λ / 4, the thickness of the third layer 3c is λ / 4 or λ / 2, and the thickness of the fourth layer 3d is λ / 4. Further, the refractive index n and the optical film thickness nd of each of the layers 3a to 3d of the multilayer film 3 are preferably in the following ranges.
【0014】 屈折率n 光学膜厚nd 第1層3a 1.95〜2.15 0.05λ〜0.13λ 第2層3b 1.43〜1.55 0.03λ〜0.07λ 第3層3c 1.95〜2.15 0.21λ〜0.49λ 第4層3d 1.43〜1.55 0.20λ〜0.28λ ここで、基本波長 λ=500nm 次に、本実施例の製造工程を説明する。Refractive index n Optical thickness nd First layer 3a 1.95 to 2.15 0.05λ to 0.13λ Second layer 3b 1.43 to 1.55 0.03λ to 0.07λ Third layer 3c 1.95 to 2.15 0.21λ to 0.49λ Fourth layer 3d 1.43 to 1.55 0.20λ to 0.28λ Here, fundamental wavelength λ = 500 nm Next, the manufacturing process of this example will be described. explain.
【0015】まず、ポリメタクリル酸メチル(PMM
A)のプラスチックレンズ1を公知の真空蒸着室に搬入
し、該真空蒸着室を排気して3×10-5torr以上の
高真空としたうえで、O2 ガスを導入し、真空蒸着室の
圧力を1.0×10-4torrに設定する。次に抵抗加
熱法あるいは電子ビーム加熱法によってケイ素酸化物S
iOx (2>x>1)を主成分とする蒸発材料を加熱蒸
発させ、プラスチックレンズ1の表面1aに光学膜厚n
d=330nmのアンダーコート2を形成する。このと
きの蒸着速度10Å/secであった。次いで、O2 ガ
ス導入量を制御して真空蒸着室の圧力を5×10-5to
rrに設定し、ZrO2 とTiO2 の混合物を主成分と
する蒸発材料を電子ビーム加熱法によって加熱蒸発さ
せ、蒸着速度5Å/secで光学膜厚nd=36nmの
多層膜3の第1層3aを形成する。さらに、O2 ガス導
入量を制御して真空蒸着室の圧力を1.0×10-4to
rrに設定し、SiO2 を主成分とする蒸発材料を電子
ビーム加熱法によって加熱蒸発させ、蒸着速度10Å/
secで光学膜厚nd=24nmの第2層3bを形成
し、次いで、O2 ガス導入量を制御して真空蒸着室の圧
力を5×10-5torrに設定し、ZrO2 とTiO2
の混合物を主成分とする蒸発材料を電子ビーム加熱法に
よって加熱蒸発させ、蒸着速度5Å/secで光学膜厚
nd=210nmの第3層3cを形成し、さらに、O2
ガス導入量を制御して真空蒸着室の圧力を1.0×10
-4torrに設定し、SiO2 を主成分とする蒸発材料
を電子ビーム加熱法によって加熱蒸発させ、蒸着速度1
0Å/secで光学膜厚nd=115nmの第4層3d
を形成したのち、O2 ガスの導入を停止して真空蒸着室
の圧力を一旦3×10-5torr以上の高真空に減圧し
たうえで大気圧まで昇圧し、真空蒸着室を開放して製品
を取出す。First, polymethylmethacrylate (PMM
The plastic lens 1 of A) is carried into a known vacuum vapor deposition chamber, the vacuum vapor deposition chamber is evacuated to a high vacuum of 3 × 10 −5 torr or more, and then O 2 gas is introduced to the vacuum vapor deposition chamber. Set the pressure to 1.0 × 10 −4 torr. Next, a silicon oxide S is formed by a resistance heating method or an electron beam heating method.
The evaporation material containing iO x (2>x> 1) as a main component is heated and evaporated to form an optical film thickness n on the surface 1 a of the plastic lens 1.
The undercoat 2 with d = 330 nm is formed. The vapor deposition rate at this time was 10Å / sec. Then, the amount of O 2 gas introduced is controlled to adjust the pressure in the vacuum deposition chamber to 5 × 10 −5 to
The first layer 3a of the multilayer film 3 having an optical film thickness nd = 36 nm at a vapor deposition rate of 5Å / sec by evaporating an evaporation material containing a mixture of ZrO 2 and TiO 2 as a main component by heating with an electron beam heating method. To form. Further, the amount of O 2 gas introduced is controlled to control the pressure in the vacuum deposition chamber to 1.0 × 10 −4 to
rr is set, and the evaporation material containing SiO 2 as the main component is heated and evaporated by the electron beam heating method, and the evaporation rate is 10Å /
The second layer 3b having an optical film thickness nd = 24 nm is formed in sec, then the amount of O 2 gas introduced is controlled to set the pressure in the vacuum deposition chamber to 5 × 10 −5 torr, and ZrO 2 and TiO 2 are added.
Mixture evaporated material mainly vaporized by heating by an electron beam heating method, an optical film thickness nd = 210 nm of the third layer 3c is formed at a deposition rate of 5 Å / sec, further, O 2
Control the amount of gas introduced and set the pressure in the vacuum deposition chamber to 1.0 x 10
-4 torr, the evaporation material mainly composed of SiO 2 is heated and evaporated by the electron beam heating method, and the evaporation rate is 1
Fourth layer 3d having an optical film thickness nd = 115 nm at 0Å / sec
After forming the, by stopping the introduction of O 2 gas pressurized to atmospheric pressure upon the pressure was reduced to once 3 × 10 -5 torr or more high vacuum pressure in the vacuum deposition chamber, opening the vacuum deposition chamber Product Take out.
【0016】このようにして製作された反射防止膜E1
の材料構成、各薄膜の屈折率n、膜厚dおよび光学膜厚
ndを表1に示し、また、その反射防止特性を図2に示
す。The antireflection film E1 thus manufactured
Table 1 shows the material constitution, the refractive index n, the film thickness d and the optical film thickness nd of each thin film, and FIG. 2 shows the antireflection property thereof.
【0017】[0017]
【表1】 次に、上記の製造工程の一部および反射防止膜またはプ
ラスチックレンズの材料の一部を変更して第1ないし第
3の変形例の反射防止膜E2〜E4を製作した。第1変
形例の反射防止膜E2の製造工程においては、アンダー
コートを蒸着する際の真空蒸着室のO2 ガス雰囲気の圧
力を1.5×10-4torrとし、多層膜の第2層と第
4層はSiOx (2≧x≧1)を主成分とした低屈折率
材料を公知の抵抗加熱法または電子ビーム加熱法で加熱
蒸発させ、真空蒸着室のO2 ガス雰囲気の圧力をアンダ
ーコートを蒸着するときと同じ1.5×10-4torr
に設定し、また多層膜の第1層と第3層はTiO2 を主
成分とする高屈折率材料を公知の抵抗加熱法または電子
ビーム加熱法で加熱蒸発させた。他の点は本実施例の反
射防止膜E1の製造工程と同様であるので説明は省略す
る。[Table 1] Next, part of the manufacturing process and part of the material of the antireflection film or the plastic lens were changed to manufacture the antireflection films E2 to E4 of the first to third modifications. In the manufacturing process of the antireflection film E2 of the first modified example, the pressure of the O 2 gas atmosphere in the vacuum deposition chamber at the time of depositing the undercoat is set to 1.5 × 10 −4 torr, and the second layer of the multilayer film is formed. The fourth layer is formed by heating and evaporating a low-refractive index material containing SiO x (2 ≧ x ≧ 1) as a main component by a known resistance heating method or electron beam heating method to keep the pressure of the O 2 gas atmosphere in the vacuum deposition chamber under. Same as when depositing coat 1.5 × 10 -4 torr
For the first and third layers of the multilayer film, a high refractive index material containing TiO 2 as a main component was heated and evaporated by a known resistance heating method or electron beam heating method. Since the other points are the same as the manufacturing process of the antireflection film E1 of the present embodiment, description thereof will be omitted.
【0018】第2変形例の反射防止膜E3の製造工程に
おいては、多層膜の第1層と第3層を蒸着するときの真
空蒸着室のO2 ガス雰囲気の圧力を1×10-4torr
に設定し、蒸着速度は2〜3Å/secで成膜した。そ
の他の点は本実施例の反射防止膜E1の製造工程と同様
である。In the manufacturing process of the antireflection film E3 of the second modification, the pressure of the O 2 gas atmosphere in the vacuum deposition chamber when depositing the first layer and the third layer of the multilayer film is 1 × 10 −4 torr.
The deposition rate was 2 to 3Å / sec. Other points are the same as the manufacturing process of the antireflection film E1 of the present embodiment.
【0019】第3変形例の反射防止膜E4は、プラスチ
ックレンズの材料にポリカーボネート(PC)を用いて
製作した。製造工程は本実施例の反射防止膜E1と同様
である。The antireflection film E4 of the third modification is manufactured by using polycarbonate (PC) as the material of the plastic lens. The manufacturing process is the same as that of the antireflection film E1 of this embodiment.
【0020】このようにして製作された第1ないし第3
の変形例の反射防止膜E2〜E4の材料構成、各薄膜の
屈折率n、膜厚dおよび光学膜厚ndをそれぞれ表2な
いし表4に示し、また、その反射防止特性をそれぞれ図
3ないし図5に示す。The first to third parts manufactured in this way
Tables 2 to 4 show the material configurations of the antireflection films E2 to E4, the refractive index n, the film thickness d, and the optical film thickness nd of each thin film, and their antireflection characteristics are shown in FIGS. As shown in FIG.
【0021】[0021]
【表2】 [Table 2]
【0022】[0022]
【表3】 [Table 3]
【0023】[0023]
【表4】 また、比較のために、アンダーコートの膜厚dを180
nmとして本実施例の反射防止膜E1と同じ製造工程に
よって第1比較例の反射防止膜E5を製作し、さらに、
アンダーコートの膜厚dを310nmとして反射防止膜
E1と同じ製造工程によって第2の比較例の反射防止膜
E6を製作した。両者の材料構成、各薄膜の屈折率n、
膜厚dおよび光学膜厚ndをそれぞれ表5,6に示し、
また反射防止特性をそれぞれ図6,7に示す。[Table 4] For comparison, the thickness d of the undercoat is set to 180
The antireflection film E5 of the first comparative example is manufactured by the same manufacturing process as that of the antireflection film E1 of the present embodiment.
An antireflection film E6 of the second comparative example was manufactured by the same manufacturing process as that of the antireflection film E1 with the thickness d of the undercoat being 310 nm. Material composition of both, refractive index n of each thin film,
The film thickness d and the optical film thickness nd are shown in Tables 5 and 6, respectively.
The antireflection characteristics are shown in FIGS.
【0024】[0024]
【表5】 [Table 5]
【0025】[0025]
【表6】 次に、各反射防止膜E1〜E6および前述の特開昭60
−98401号公報の反射防止膜を従来例1、特開昭6
0−25101号公報の反射防止膜を従来例2、特開平
3−16101号公報の反射防止膜を従来例3として、
それぞれの品質を評価する品質評価テストを行った結果
を表7に示す。[Table 6] Next, the antireflection films E1 to E6 and the above-mentioned JP-A-60
The antireflection film disclosed in Japanese Patent Application Laid-Open No. 98401 has been disclosed in Japanese Patent Laid-Open No.
The antireflection film of 0-25101 is referred to as Conventional Example 2 and the antireflection film of JP-A-3-16101 is referred to as Conventional Example 3,
Table 7 shows the result of a quality evaluation test for evaluating each quality.
【0026】[0026]
【表7】 表7から、本実施例の反射防止膜E1およびその変形例
の反射防止膜E2〜E4はいずれも密着性、耐摩耗性お
よび耐薬品性においてすぐれており、また、これらの特
性は、高温高湿の厳しい環境においてもあるいは厳しい
温度変化のある環境においても大きく損なわれるおそれ
がないことが判る。なお、第1比較例の反射防止膜E5
はアンダーコートの膜厚が不足したために耐薬品性が不
充分であり、第2の比較例の反射防止膜E6はアンダー
コートの膜厚が大きすぎるためにクラックが発生しやす
いことが判る。また、前述のように、従来例1および3
は成膜直後からその耐摩耗性や耐薬品性が不充分であ
り、従来例2は光学特性に難点があることが判る。[Table 7] From Table 7, the antireflection film E1 of the present example and the antireflection films E2 to E4 of the modified examples thereof are all excellent in adhesion, abrasion resistance and chemical resistance. It can be seen that there is no possibility of significant damage even in an environment with severe humidity or an environment with severe temperature change. The antireflection film E5 of the first comparative example
It can be seen that since the undercoat film thickness is insufficient, the chemical resistance is insufficient, and the antireflection film E6 of the second comparative example is prone to cracks because the undercoat film thickness is too large. Further, as described above, the conventional examples 1 and 3
It was found that the film of Example 2 had insufficient abrasion resistance and chemical resistance immediately after the film formation, and that the conventional example 2 had a difficulty in optical characteristics.
【0027】表7における(1)密着性、(2)耐摩耗
性、(3)耐薬品性、(4)耐環境性は以下のテスト方
法で評価した。The following test methods evaluated (1) adhesion, (2) wear resistance, (3) chemical resistance, and (4) environment resistance in Table 7.
【0028】(1)密着性 反射防止膜の表面に、セロファンテープを貼り、膜面に
対し垂直方向にテープを瞬時に引剥し、目視にて膜剥離
の有無を観察する。膜剥離が起きていない場合のみを良
好とした。(1) Adhesion property A cellophane tape is attached to the surface of the antireflection film, the tape is instantly peeled in the direction perpendicular to the film surface, and the presence or absence of film peeling is visually observed. Only when the film peeling did not occur was evaluated as good.
【0029】(2)耐摩耗性 反射防止膜の表面に、シルボン紙を当て荷重300gに
て、往復50回こすり、目視にて傷の有無を観察する。
膜傷が発生していない場合のみを良好とした。(2) Abrasion resistance Silbon paper is rubbed on the surface of the antireflection film with a load of 300 g and rubbed back and forth 50 times, and visually inspected for scratches.
Only when there were no film scratches was considered good.
【0030】(3)耐薬品性 反射防止膜の表面に、エチルエーテルを浸したシルボン
紙を当て荷重300gにて、往復50回こすり、目視に
て膜浮きや膜傷等の有無を観察する。膜浮きや膜傷等が
発生していない場合のみを良好とした。(3) Chemical resistance The surface of the antireflection film is rubbed with ethyl ether-soaked sillbon paper for 50 times with a load of 300 g and reciprocally rubbed, and the presence or absence of film floating or film scratches is visually observed. Only when the film was not lifted or scratched was considered good.
【0031】(4)耐環境性 (4−1)高温高湿加速試験 反射防止膜を形成したプラスチックレンズを70℃−8
5%RHに設定された恒温槽内に500時間放置した
後、目視にて膜外観を観察し、異常が認められない場合
のみを良好とした。さらに、前記の(1)密着性、
(2)耐摩耗性、(3)耐薬品性の評価テストを実施し
た。(4) Environmental resistance (4-1) Acceleration test at high temperature and high humidity A plastic lens having an antireflection film formed thereon was 70 ° C.-8.
After leaving for 500 hours in a thermostat set to 5% RH, the appearance of the film was visually observed, and only when no abnormality was observed, it was judged as good. Further, the above (1) adhesion,
Evaluation tests of (2) abrasion resistance and (3) chemical resistance were performed.
【0032】(4−2)熱衝撃試験 反射防止膜を形成したプラスチックレンズを−30℃/
60℃−60%RHに各2時間のサイクルを10サイク
ル実施した後、目視にて膜外観を観察し、異常が認めら
れない場合のみを良好とした。さらに、前記の(1)密
着性、(2)耐摩耗性、(3)耐薬品性の評価テストを
実施した。(4-2) Thermal shock test A plastic lens having an antireflection film formed thereon was -30 ° C /
After 10 cycles of 2 hours each at 60 ° C.-60% RH, the appearance of the film was visually observed, and only when no abnormality was observed, it was judged as good. Furthermore, the above-mentioned (1) adhesion, (2) abrasion resistance, and (3) chemical resistance evaluation tests were carried out.
【0033】[0033]
【発明の効果】本発明は、上述のとおり構成されている
ので、以下に記載するような効果を奏する。Since the present invention is configured as described above, it has the following effects.
【0034】耐摩耗性や耐薬品性および光学特性にすぐ
れており、かつ、屋外等の厳しい温度条件や湿度条件、
あるいは温度や湿度が大きく変化する環境で長時間使用
しても、前述の特性が劣化したり、クラックや膜剥離を
起すおそれのない合成樹脂製光学部品の反射防止膜を実
現する。その結果、屋外等ですぐれた耐久性を示す反射
の少ない合成樹脂製光学部品を実現できる。It has excellent wear resistance, chemical resistance and optical characteristics, and is exposed to severe temperature and humidity conditions such as outdoors.
Alternatively, it is possible to realize an antireflection film of a synthetic resin optical component that is free from the possibility of deterioration of the above-mentioned characteristics, cracking, and film peeling even when used for a long time in an environment where the temperature and humidity greatly change. As a result, it is possible to realize an optical component made of synthetic resin, which has excellent durability outdoors and has little reflection.
【図1】一実施例を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an example.
【図2】図1の反射防止膜の反射防止特性を示すグラフ
である。FIG. 2 is a graph showing antireflection characteristics of the antireflection film of FIG.
【図3】第1変形例の反射防止膜の反射防止特性を示す
グラフである。FIG. 3 is a graph showing antireflection characteristics of an antireflection film of a first modified example.
【図4】第2変形例の反射防止膜の反射防止特性を示す
グラフである。FIG. 4 is a graph showing antireflection characteristics of an antireflection film of a second modified example.
【図5】第3変形例の反射防止膜の反射防止特性を示す
グラフである。FIG. 5 is a graph showing antireflection characteristics of an antireflection film of a third modified example.
【図6】第1比較例の反射防止膜の反射防止特性を示す
グラフである。FIG. 6 is a graph showing antireflection characteristics of the antireflection film of the first comparative example.
【図7】第2比較例の反射防止膜の反射防止特性を示す
グラフである。FIG. 7 is a graph showing antireflection characteristics of the antireflection film of the second comparative example.
1 プラスチックレンズ 2 アンダーコート 3 多層膜 3a 第1層 3b 第2層 3c 第3層 3d 第4層 1 Plastic Lens 2 Undercoat 3 Multilayer Film 3a 1st Layer 3b 2nd Layer 3c 3rd Layer 3d 4th Layer
Claims (4)
ケイ素酸化物SiOx (2>x>1)を主成分とする膜
厚200nmないし300nmのアンダーコートと、該
アンダーコートの上に成膜された反射防止特性を有する
繰返し多層膜からなることを特徴とする合成樹脂製光学
部品の反射防止膜。1. An undercoat having a film thickness of 200 nm to 300 nm containing silicon oxide SiO x (2>x> 1) as a main component formed on the surface of a synthetic resin optical component, and an undercoat formed on the undercoat. An antireflection film for optical parts made of synthetic resin, which is formed of a repeated multilayer film having an antireflection property formed.
主成分とするアンダーコートの屈折率が1.49ないし
1.59であることを特徴とする請求項1記載の合成樹
脂製光学部品の反射防止膜。2. The synthetic resin according to claim 1, wherein the undercoat containing silicon oxide SiO x (2>x> 1) as a main component has a refractive index of 1.49 to 1.59. Anti-reflection film for optical parts.
またはこれらの混合物を主成分とする高屈折率材料から
なる薄膜と、SiOx (2≧x≧1)を主成分とする低
屈折率材料からなる薄膜を交互に積層したものであるこ
とを特徴とする請求項1または2記載の合成樹脂製光学
部品の反射防止膜。3. The repeating multilayer film comprises TiO 2 or ZrO 2
Alternatively, a thin film made of a high refractive index material containing a mixture of these as a main component and a thin film made of a low refractive index material containing a SiO x (2 ≧ x ≧ 1) as a main component are alternately laminated. The antireflection film of the synthetic resin optical component according to claim 1.
層の薄膜のそれぞれの屈折率および光学膜厚が以下の範
囲に設定されていることを特徴とする請求項2または3
記載の合成樹脂製光学部品の反射防止膜。 1.95≦n1 ≦2.15 0.05λ≦n1 d
1 ≦0.13λ 1.43≦n2 ≦1.55 0.03λ≦n2 d
2 ≦0.07λ 1.95≦n3 ≦2.15 0.21λ≦n3 d
3 ≦0.49λ 1.43≦n4 ≦1.55 0.20λ≦n4 d
4 ≦0.28λ ここでλ:設計波長(500nm) n1 :第1層の薄膜の屈折率 n2 :第2層の薄膜の屈折率 n3 :第3層の薄膜の屈折率 n4 :第4層の薄膜の屈折率 n1 d1 :第1層の薄膜の光学膜厚 n2 d2 :第2層の薄膜の光学膜厚 n3 d3 :第3層の薄膜の光学膜厚 n4 d4 :第4層の薄膜の光学膜厚 ただし、合成樹脂製光学部品の表面に近い方の薄膜から
順に第1層ないし第4層の薄膜とした。4. The repeating multilayer film comprises four thin films, each of which has a refractive index and an optical film thickness set within the following ranges.
An antireflection film for the synthetic resin optical component described. 1.95 ≦ n 1 ≦ 2.15 0.05λ ≦ n 1 d
1 ≦ 0.13λ 1.43 ≦ n 2 ≦ 1.55 0.03λ ≦ n 2 d
2 ≤ 0.07λ 1.95 ≤ n 3 ≤ 2.15 0.21 λ n 3 d
3 ≦ 0.49λ 1.43 ≦ n 4 ≦ 1.55 0.20 λ ≦ n 4 d
4 ≦ 0.28λ where λ: design wavelength (500 nm) n 1 : refractive index of thin film of first layer n 2 : refractive index of thin film of second layer n 3 : refractive index of thin film of third layer n 4 : Refractive index of fourth layer thin film n 1 d 1 : optical thickness of first layer thin film n 2 d 2 : optical thickness of second layer thin film n 3 d 3 : optical thickness of third layer thin film n 4 d 4 : Optical thickness of the thin film of the fourth layer However, the thin films of the first to fourth layers were formed in order from the thin film closer to the surface of the synthetic resin optical component.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08409293A JP3221764B2 (en) | 1993-03-18 | 1993-03-18 | Anti-reflection coating for optical parts made of synthetic resin |
US08/754,475 US5725959A (en) | 1993-03-18 | 1996-11-22 | Antireflection film for plastic optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08409293A JP3221764B2 (en) | 1993-03-18 | 1993-03-18 | Anti-reflection coating for optical parts made of synthetic resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06273601A true JPH06273601A (en) | 1994-09-30 |
JP3221764B2 JP3221764B2 (en) | 2001-10-22 |
Family
ID=13820871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08409293A Expired - Lifetime JP3221764B2 (en) | 1993-03-18 | 1993-03-18 | Anti-reflection coating for optical parts made of synthetic resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3221764B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6866431B2 (en) | 2002-02-19 | 2005-03-15 | Canon Kabushiki Kaisha | Light amount adjustment apparatus, manufacturing method, and photographing apparatus |
US7016129B2 (en) | 2003-05-28 | 2006-03-21 | Canon Kabushiki Kaisha | Optical filter, method of making optical filter, light amount adjusting apparatus and optical equipment |
US7070344B2 (en) | 2003-06-26 | 2006-07-04 | Canon Kabushiki Kaisha | Production process of light amount adjustment member, light amount adjustment device and photographing apparatus |
US7189014B2 (en) | 2003-08-05 | 2007-03-13 | Canon Kabushiki Kaisha | Production process of light amount-adjusting member, light amount-adjusting member, light amount-adjusting device and photographing apparatus |
US7815966B2 (en) | 2002-02-19 | 2010-10-19 | Canon Kabushiki Kaisha | Production process of light amount adjustment member, light amount adjustment member, light amount adjustment device and photographing apparatus |
US7901732B2 (en) | 2002-02-19 | 2011-03-08 | Canon Kabushiki Kaisha | Production process of light amount adjustment member, light amount adjustment member, light amount adjustment device and photographing apparatus |
US8971164B2 (en) | 2011-08-31 | 2015-03-03 | Hoya Corporation | Optical pick-up device and optical component for the same |
CN114438452A (en) * | 2022-02-09 | 2022-05-06 | 洛阳微米光电技术有限公司 | Manufacturing method of antireflection film on outer surfaces of infrared optical window and optical lens |
WO2024174373A1 (en) * | 2023-02-22 | 2024-08-29 | 辰瑞光学(常州)股份有限公司 | Optical lens and manufacturing method therefor |
-
1993
- 1993-03-18 JP JP08409293A patent/JP3221764B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6866431B2 (en) | 2002-02-19 | 2005-03-15 | Canon Kabushiki Kaisha | Light amount adjustment apparatus, manufacturing method, and photographing apparatus |
US7815966B2 (en) | 2002-02-19 | 2010-10-19 | Canon Kabushiki Kaisha | Production process of light amount adjustment member, light amount adjustment member, light amount adjustment device and photographing apparatus |
US7901732B2 (en) | 2002-02-19 | 2011-03-08 | Canon Kabushiki Kaisha | Production process of light amount adjustment member, light amount adjustment member, light amount adjustment device and photographing apparatus |
US7016129B2 (en) | 2003-05-28 | 2006-03-21 | Canon Kabushiki Kaisha | Optical filter, method of making optical filter, light amount adjusting apparatus and optical equipment |
US7070344B2 (en) | 2003-06-26 | 2006-07-04 | Canon Kabushiki Kaisha | Production process of light amount adjustment member, light amount adjustment device and photographing apparatus |
US7189014B2 (en) | 2003-08-05 | 2007-03-13 | Canon Kabushiki Kaisha | Production process of light amount-adjusting member, light amount-adjusting member, light amount-adjusting device and photographing apparatus |
US8971164B2 (en) | 2011-08-31 | 2015-03-03 | Hoya Corporation | Optical pick-up device and optical component for the same |
CN114438452A (en) * | 2022-02-09 | 2022-05-06 | 洛阳微米光电技术有限公司 | Manufacturing method of antireflection film on outer surfaces of infrared optical window and optical lens |
WO2024174373A1 (en) * | 2023-02-22 | 2024-08-29 | 辰瑞光学(常州)股份有限公司 | Optical lens and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP3221764B2 (en) | 2001-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5725959A (en) | Antireflection film for plastic optical element | |
AU8155201A (en) | Composition for vapor deposition, method for forming antireflection film using it, and optical element | |
JP3221764B2 (en) | Anti-reflection coating for optical parts made of synthetic resin | |
JPH07111484B2 (en) | Antireflection film for plastic optical parts and method for forming the same | |
JPS5860701A (en) | Reflection preventing film | |
JPH0462363B2 (en) | ||
JPH07104102A (en) | Water repellant reflection preventive film for glass-made optical parts and production thereof | |
JPS60130704A (en) | Antireflection film for plastic substrate | |
JP2005232565A (en) | Method of producing thin film | |
JP2776553B2 (en) | Anti-reflective coating | |
JPH10123303A (en) | Antireflection optical parts | |
JPH0553001A (en) | Multilayered antireflection film of optical parts made of synthetic resin | |
JPH0915402A (en) | Optical articles having antireflection film and its production | |
JP2693500B2 (en) | Anti-reflective coating | |
JP2894530B2 (en) | Optical member having antireflection film | |
JP3353944B2 (en) | Antireflection film for optical component and optical component formed with this antireflection film | |
JP3353931B2 (en) | Optical thin film, optical component formed with this optical thin film, antireflection film, and plastic optical component formed with this antireflection film | |
JPS6326603A (en) | Reflection mirror consisting of synthetic resin member | |
JPH01257801A (en) | Antireflection film | |
JPS60130702A (en) | Antireflection film for plastic substrate | |
JP2979327B2 (en) | Anti-reflective coating deposited on low melting point substrate | |
JPH0258002A (en) | Optical lens | |
JPH0474681B2 (en) | ||
JPH0836101A (en) | Antireflection film of optical parts made of synthetic resin | |
JPH04156501A (en) | Reflection preventing film for optical part made of synthetic resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070817 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080817 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080817 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090817 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090817 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110817 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120817 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 12 |