Nothing Special   »   [go: up one dir, main page]

JPH06273442A - Capacitance-type semiconductor acceleration sensor and its manufacture as well as mounting structure of the sensor - Google Patents

Capacitance-type semiconductor acceleration sensor and its manufacture as well as mounting structure of the sensor

Info

Publication number
JPH06273442A
JPH06273442A JP5085366A JP8536693A JPH06273442A JP H06273442 A JPH06273442 A JP H06273442A JP 5085366 A JP5085366 A JP 5085366A JP 8536693 A JP8536693 A JP 8536693A JP H06273442 A JPH06273442 A JP H06273442A
Authority
JP
Japan
Prior art keywords
fixed electrode
acceleration sensor
electrode
type semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5085366A
Other languages
Japanese (ja)
Inventor
Masatoshi Oba
正利 大場
Katsumi Hosoya
克己 細谷
Takayuki Haruyama
隆之 春山
Masakazu Shiiki
正和 椎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP5085366A priority Critical patent/JPH06273442A/en
Publication of JPH06273442A publication Critical patent/JPH06273442A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To provide an acceleration sensor where the inside of the sensor is hermetically sealed completely, the production process is simple and the sensor can be mounted easily on a circuit board or the like. CONSTITUTION:A connection hole 9 is made in a glass cover 6, a connection cover 7 is installed so as to seal the connection hole 9, gaps 13 are formed on both the right and left sides of the connection cover 7 so as not to be connected electrically to the connection cover 7, nonconductive covers 8 are pasted respectively on the glass cover 6 by an anodic bonding method. Then, a fixed electrode 5 is formed integrally on the glass cover 6 and a thinfilm conductive part 10 is formed integrally on the connection hole 9 by a sputtering method, and the fixed electrode 5 is connected electrically to the connection cover 7. This assembly and another assembly of the same constitution are pasted, by the anodic bonding method, on the surface and the rear surface of a silicon frame 1 on which a mask 3 and the like have been formed, a cutout part 12 is formed in the glass cover 6 and the nonconductive cover 8, and a movable- electrode extraction part 11 is formed on the frame 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、静電容量型半導体加速
度センサ及びその製造方法並びに当該静電容量型半導体
加速度センサの実装構造に関する。具体的には、加速度
や振動によって生じるマス部の変位を静電容量変化とし
て検出する静電容量型半導体加速度センサ及びその製造
方法並びに当該静電容量型半導体加速度センサの実装構
造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance type semiconductor acceleration sensor, a method of manufacturing the same, and a mounting structure of the capacitance type semiconductor acceleration sensor. Specifically, the present invention relates to a capacitance type semiconductor acceleration sensor that detects displacement of a mass portion caused by acceleration or vibration as a capacitance change, a manufacturing method thereof, and a mounting structure of the capacitance type semiconductor acceleration sensor.

【0002】[0002]

【従来の技術】図9に従来の静電容量型の加速度センサ
Eの断面図を示す。この加速度センサEは、例えば自動
車の加速度や衝撃を検出する用途に用いることができる
ものであって、シリコン基板よりなる角枠状をしたフレ
ーム41の開口部分の中央にマス部43が配設されてお
り、マス部43は2本のビーム42によって片持ち状に
フレーム41に支持されている。マス部43は、ビーム
42の弾性変形によってマス部43の厚さ方向に自由に
微小変位できるようになっており、マス部43の上下両
面はそれぞれ可動電極44となっている。
2. Description of the Related Art FIG. 9 shows a sectional view of a conventional capacitance type acceleration sensor E. This acceleration sensor E can be used, for example, for detecting acceleration and impact of an automobile, and a mass portion 43 is arranged at the center of an opening portion of a frame 41 having a rectangular frame shape made of a silicon substrate. The mass portion 43 is cantilevered by the frame 41 by the two beams 42. The mass portion 43 can be freely displaced minutely in the thickness direction of the mass portion 43 by elastic deformation of the beam 42, and the upper and lower surfaces of the mass portion 43 are movable electrodes 44, respectively.

【0003】フレーム41の上下面にはガラス基板46
が重ねられ、ガラス基板46の周辺部は陽極接合法によ
りフレーム41に接合されている。フレーム41上下面
のガラス基板46の内面には、マス部43の可動電極4
4と微小なギャップをへだてて固定電極45が設けられ
ており、マス部43の可動電極44と固定電極45との
間にコンデンサが形成されている。
A glass substrate 46 is provided on the upper and lower surfaces of the frame 41.
And the peripheral portion of the glass substrate 46 is bonded to the frame 41 by the anodic bonding method. On the inner surface of the glass substrate 46 above and below the frame 41, the movable electrode 4 of the mass portion 43 is formed.
4, a fixed electrode 45 is provided with a small gap between the fixed electrode 45 and the movable electrode 44 of the mass portion 43, and a capacitor is formed between the fixed electrode 45.

【0004】さらに、フレーム41の上下面のガラス基
板46の外側には、シリコン基板47が重ねられてい
る。上下のガラス基板46にはそれぞれ接続孔48が設
けられ、接続孔48に封入された導電性樹脂によって電
極接続部49が形成され、電極接続部49は固定電極4
5と電気的に接続されている。また、シリコン基板47
にはあらかじめエッチングにより接続孔48の開口径よ
り大きな開口径を有するエッチング孔50が設けられて
おり、このエッチング孔50の内周面に導電材料部51
を形成して導電材料部51を電極接続部49に導通させ
ることで、固定電極45を外部に引き出す構造になって
いる。
Further, a silicon substrate 47 is laminated on the upper and lower surfaces of the frame 41 and outside the glass substrate 46. A connection hole 48 is provided in each of the upper and lower glass substrates 46, and an electrode connection portion 49 is formed by the conductive resin sealed in the connection hole 48, and the electrode connection portion 49 is a fixed electrode 4.
5 is electrically connected. In addition, the silicon substrate 47
In advance, an etching hole 50 having an opening diameter larger than that of the connection hole 48 is provided by etching, and the conductive material portion 51 is formed on the inner peripheral surface of the etching hole 50.
Is formed and the conductive material portion 51 is electrically connected to the electrode connecting portion 49, so that the fixed electrode 45 is drawn to the outside.

【0005】ところで、この加速度センサEを作製する
にあたっては、まず、ガラス基板46に接続孔48を形
成し、この接続孔48に導電性樹脂を充填して電極接続
部49を形成し、ガラス基板46に形成された固定電極
45を電極接続部49と接続する。ついで、エッチング
孔50を形成したシリコン基板47とガラス基板46と
を陽極接合法にて接合した後に、これをフレーム41の
表面に接合し、最後にエッチング孔50内に金属薄膜等
からなる導電材料部51を形成し、電極接続部49及び
導電材料部51を介して固定電極45をシリコン基板4
7に電気的に接続し、固定電極45を外部に引き出すよ
うにしている。
When manufacturing the acceleration sensor E, first, a connection hole 48 is formed in the glass substrate 46, and the connection hole 48 is filled with a conductive resin to form an electrode connection portion 49. The fixed electrode 45 formed on 46 is connected to the electrode connecting portion 49. Then, after the silicon substrate 47 having the etching holes 50 formed therein and the glass substrate 46 are joined by an anodic bonding method, this is joined to the surface of the frame 41, and finally, a conductive material made of a metal thin film or the like is formed in the etching holes 50. The portion 51 is formed, and the fixed electrode 45 is formed on the silicon substrate 4 via the electrode connecting portion 49 and the conductive material portion 51.
7 is electrically connected to the fixed electrode 45 to be drawn to the outside.

【0006】ここで、一体に接合されたガラス基板46
及びシリコン基板47をフレーム41に陽極接合する場
合、エッチング孔50に導電材料部51を形成して固定
電極45と導通させた後にフレーム41及びシリコン基
板47間に電圧を加えて陽極接合すると、小さなギャッ
プを隔てて対向している可動電極44と固定電極45が
静電吸引力によって電気的に短絡していまい、加速度セ
ンサEの歩留りが低下してしまう。そこで、上述のよう
にシリコン基板47にエッチング孔50を開口すること
で電極接続部49とシリコン基板47とが接触しないよ
うにし、シリコン基板47から固定電極45に至る電気
的な経路を断った状態でフレーム41にガラス基板46
及びシリコン基板47を陽極接合し、接合し終えた後に
エッチング孔50内に導電性材料部51を設けてシリコ
ン基板47を固定電極45に導通させ、可動電極44と
固定電極45とが短絡して歩留りが低下するのを防いで
いる。
Here, the glass substrate 46 integrally bonded
When the anodic bonding of the silicon substrate 47 to the frame 41 is performed, a conductive material portion 51 is formed in the etching hole 50 to conduct the fixed electrode 45 and then a voltage is applied between the frame 41 and the silicon substrate 47 to perform anodic bonding. The movable electrode 44 and the fixed electrode 45 facing each other across the gap are electrically short-circuited by the electrostatic attraction force, and the yield of the acceleration sensor E is reduced. Therefore, as described above, the etching hole 50 is opened in the silicon substrate 47 so that the electrode connecting portion 49 and the silicon substrate 47 do not come into contact with each other, and the electrical path from the silicon substrate 47 to the fixed electrode 45 is cut off. Glass frame 46 on frame 41
After the anodic bonding of the silicon substrate 47 and the bonding is completed, the conductive material portion 51 is provided in the etching hole 50 to electrically connect the silicon substrate 47 to the fixed electrode 45, and the movable electrode 44 and the fixed electrode 45 are short-circuited. It prevents the yield from decreasing.

【0007】[0007]

【発明が解決しようとする課題】この従来の加速度セン
サEの構造のように、導電性樹脂により接続孔48を封
止して形成された電極接続部49では、外部からの異物
の侵入を防ぐことができるが、その導電性樹脂の劣化等
のため、マス部43が形成されたセンサ内部52を完全
に、しかも、長期に亘りその気密性を保持することがで
きない。このため、センサ内部52の気密を保ちながら
内部の固定電極45を外部へ取り出すことが困難となっ
ており、腐食ガス雰囲気中で使用された場合には、マス
部やビームに変質や劣化が生じ、加速度センサの安定性
に問題があった。
As in the structure of the conventional acceleration sensor E, the electrode connection portion 49 formed by sealing the connection hole 48 with the conductive resin prevents foreign matter from entering from the outside. However, due to deterioration of the conductive resin or the like, the airtightness of the sensor interior 52 in which the mass portion 43 is formed cannot be maintained completely and for a long period of time. Therefore, it is difficult to take out the internal fixed electrode 45 to the outside while maintaining the airtightness of the sensor interior 52, and when used in a corrosive gas atmosphere, the mass portion and the beam are deteriorated or deteriorated. There was a problem with the stability of the acceleration sensor.

【0008】また、この加速度センサEの作製にあたっ
ては、ガラス基板46にエッチング孔50を開口し、陽
極接合後に再びエッチング孔50に導電性材料部51を
形成しなければならず、固定電極45を外部に引き出す
ための工程に手間が掛かっていた。
Further, in manufacturing the acceleration sensor E, it is necessary to open the etching hole 50 in the glass substrate 46, and to form the conductive material portion 51 in the etching hole 50 again after the anodic bonding. It took time and effort to pull it out.

【0009】また、可動電極44の外部への引出し方法
が考慮されていなかった。
Further, the method of drawing out the movable electrode 44 to the outside has not been considered.

【0010】本発明は叙上の従来例の欠点に鑑みてなさ
れたものであり、その目的とするところは、センサ内部
を完全に密封しながら内部の電極を外部へ引き出すこと
ができると同時に、その製造工程が簡単で、しかも、回
路基板等への実装が容易な加速度センサとその製造方法
等を提供することにある。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and an object of the present invention is to make it possible to pull out the internal electrodes to the outside while completely sealing the inside of the sensor. An object of the present invention is to provide an acceleration sensor which has a simple manufacturing process and can be easily mounted on a circuit board and a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】本発明による第1の静電
容量型半導体加速度センサは、弾性を有するビームによ
って支持されたマス部を支持体に設け、当該支持体の両
面にそれぞれ絶縁性基板を接合し、可動電極となるマス
部と対向させて少なくとも一方の絶縁性基板の内面に固
定電極を設けた静電容量型半導体加速度センサにおい
て、前記固定電極を設けられた絶縁性基板に貫通させて
接続孔を設けると共に当該接続孔を封止するように当該
絶縁性基板の外面に半導体基板を接合し、少なくとも当
該接続孔の内周面を含む領域に形成された薄膜導電体に
よって前記固定電極と前記半導体基板とを電気的に接続
したことを特徴としている。
In a first capacitance type semiconductor acceleration sensor according to the present invention, a mass portion supported by a beam having elasticity is provided on a support, and insulating substrates are provided on both surfaces of the support, respectively. In a capacitance type semiconductor acceleration sensor in which a fixed electrode is provided on the inner surface of at least one of the insulating substrates, the fixed electrode is penetrated through the provided insulating substrate. A semiconductor substrate is bonded to the outer surface of the insulating substrate so as to seal the connection hole, and the fixed electrode is formed by a thin film conductor formed in a region including at least the inner peripheral surface of the connection hole. And the semiconductor substrate are electrically connected to each other.

【0012】前記第1の静電容量型半導体加速度センサ
においては、前記半導体基板を、薄膜導電体を介して前
記固定電極と導通した領域と、前記固定電極と電気的に
絶縁されている領域とに分割形成することができ、さら
には、固定電極と導通した前記領域の表面を、固定電極
と電気的に絶縁された前記領域の表面よりも内側へ引っ
込ませてもよい。また、固定電極と導通した前記領域の
表面には絶縁体膜を形成してもよい。その場合には、固
定電極と導通した前記領域と固定電極と電気的に絶縁さ
れた前記領域とを結線して検出電極としてもよく、ある
いは、固定電極と導通した前記領域を検出電極とし、固
定電極と電気的に絶縁された前記領域を接地電極として
もよい。
In the first capacitance type semiconductor acceleration sensor, the semiconductor substrate has a region electrically connected to the fixed electrode through a thin film conductor and a region electrically insulated from the fixed electrode. Further, the surface of the region electrically connected to the fixed electrode may be recessed inward from the surface of the region electrically insulated from the fixed electrode. Further, an insulating film may be formed on the surface of the region that is electrically connected to the fixed electrode. In that case, the region electrically connected to the fixed electrode and the region electrically insulated from the fixed electrode may be connected as a detection electrode, or the region electrically connected to the fixed electrode may be used as the detection electrode and fixed. The region electrically insulated from the electrode may be a ground electrode.

【0013】また、上記第1の静電容量型半導体加速度
センサにおいては、固定電極及び薄膜導電体を同一材料
及び同一形成手段で形成してもよい。また、半導体基板
の少なくとも一方の面に高濃度不純物拡散層を設けるこ
ととしてもよい。
In the first capacitance type semiconductor acceleration sensor, the fixed electrode and the thin film conductor may be formed of the same material and the same forming means. Further, a high concentration impurity diffusion layer may be provided on at least one surface of the semiconductor substrate.

【0014】さらに、絶縁性基板及び半導体基板を貫通
する引出し孔を設け、あるいは、支持体の表面に設けた
電極引き出し部を絶縁性基板及び半導体基板から露出さ
せることにより、可動電極を外部へ電気的に引き出して
もよい。
Further, the movable electrode is electrically connected to the outside by providing a lead-out hole penetrating the insulating substrate and the semiconductor substrate or exposing an electrode lead portion provided on the surface of the support from the insulating substrate and the semiconductor substrate. You may withdraw it.

【0015】本発明による第2の静電容量型半導体加速
度センサは、弾性を有するビームによって支持されたマ
ス部を支持体に設け、当該支持体の両面にそれぞれ絶縁
性基板を接合し、可動電極となるマス部と対向させて少
なくとも一方の絶縁性基板の内面に固定電極を設けた静
電容量型半導体加速度センサにおいて、前記固定電極を
設けられた絶縁性基板に貫通させて接続孔を設けると共
に当該接続孔を封止するように当該絶縁性基板の外面に
厚膜導電体を形成し、少なくとも当該接続孔の内周面を
含む領域に形成された薄膜導電体によって前記固定電極
と前記厚膜導電体とを電気的に接続したことを特徴とし
ている。
In the second capacitance type semiconductor acceleration sensor according to the present invention, a mass portion supported by an elastic beam is provided on a support body, and an insulating substrate is bonded to both surfaces of the support body to form a movable electrode. In a capacitance type semiconductor acceleration sensor in which a fixed electrode is provided on the inner surface of at least one of the insulative substrates facing the mass part to be formed, a connection hole is provided by penetrating the insulative substrate provided with the fixed electrode. A thick film conductor is formed on an outer surface of the insulating substrate so as to seal the connection hole, and the fixed electrode and the thick film are formed by a thin film conductor formed in a region including at least an inner peripheral surface of the connection hole. It is characterized in that it is electrically connected to a conductor.

【0016】前記第2の静電容量型半導体加速度センサ
においては、前記厚膜導電体を、薄膜導電体を介して前
記固定電極と導通した領域と、前記固定電極と電気的に
絶縁されている領域とに分割形成することができる。そ
の場合、固定電極と導通した前記領域と固定電極と電気
的に絶縁された前記領域とを結線して検出電極としても
よく、あるいは、固定電極と導通した前記領域を検出電
極とし、固定電極と電気的に絶縁された前記領域を接地
電極としてもよい。
In the second capacitance type semiconductor acceleration sensor, the thick film conductor is electrically insulated from the fixed electrode and a region where the thick film conductor is electrically connected to the fixed electrode through the thin film conductor. It can be divided into regions and regions. In that case, the region electrically connected to the fixed electrode and the region electrically insulated from the fixed electrode may be connected as a detection electrode, or the region electrically connected to the fixed electrode may be used as the detection electrode and the fixed electrode The electrically insulated region may be used as a ground electrode.

【0017】また、第2の静電容量型半導体加速度セン
サにおいては、固定電極及び薄膜導電体を同一材料及び
同一形成手段で形成してもよい。さらに、絶縁性基板を
貫通する引出し孔を設け、あるいは、支持体の表面に設
けた電極引き出し部を絶縁性基板から露出させることに
より、可動電極を外部へ電気的に引き出してもよい。
In the second capacitance type semiconductor acceleration sensor, the fixed electrode and the thin film conductor may be formed of the same material and the same forming means. Further, the movable electrode may be electrically pulled out to the outside by providing a lead-out hole penetrating the insulating substrate or exposing the electrode lead-out portion provided on the surface of the support from the insulating substrate.

【0018】また、第1及び第2の静電容量型半導体加
速度センサにおいては、支持体及び絶縁性基板に囲まれ
た空間を真空状態、減圧状態若しくはガス封入状態で封
止してもよい。さらに、これらの静電容量型半導体加速
度センサは、回路基板に形成された回路パターン部に前
記半導体基板もしくは厚膜導電体を接合させて回路基板
に固定し、同時に、固定電極を回路パターン部に接続さ
せてもよい。
Further, in the first and second capacitance type semiconductor acceleration sensors, the space surrounded by the support and the insulating substrate may be sealed in a vacuum state, a reduced pressure state or a gas filled state. Further, in these capacitance type semiconductor acceleration sensors, the semiconductor substrate or the thick film conductor is bonded to the circuit pattern portion formed on the circuit board and fixed to the circuit board, and at the same time, the fixed electrode is formed on the circuit pattern portion. You may connect.

【0019】上記第1の静電容量型半導体加速度センサ
を製造するための第1の方法は、絶縁性基板に貫通させ
て接続孔を設けた後、この接続孔を封止するように当該
絶縁性基板の外面に半導体基板を接合し、当該絶縁性基
板の内面に固定電極を形成すると共に少なくとも接続孔
の内周面を含む領域に薄膜導電体を形成し、当該薄膜導
電体によって固定電極と半導体基板とを電気的に接続し
てカバーを作製する工程と、前記固定電極をマス部と対
向させて前記支持体の少なくとも一方の面に前記カバー
を接合させる工程とを含むことを特徴としている。
A first method for manufacturing the first capacitance type semiconductor acceleration sensor is to provide a connection hole through an insulating substrate and then to seal the connection hole. A semiconductor substrate is bonded to the outer surface of the insulating substrate, a fixed electrode is formed on the inner surface of the insulating substrate, and a thin film conductor is formed in a region including at least the inner peripheral surface of the connection hole. The method is characterized by including a step of electrically connecting to a semiconductor substrate to produce a cover, and a step of facing the fixed electrode to a mass portion and joining the cover to at least one surface of the support body. .

【0020】上記第1の静電容量型半導体加速度センサ
を製造するための第2の方法は、絶縁性基板の外面に半
導体基板を接合した後、当該絶縁性基板を貫通すると共
に当該半導体基板によって封止されるようにして接続孔
を設け、当該絶縁性基板の内面に固定電極を形成すると
共に少なくとも接続孔の内周面を含む領域に薄膜導電体
を形成し、当該薄膜導電体によって固定電極と半導体基
板とを電気的に接続してカバーを作製する工程と、前記
固定電極をマス部と対向させて前記支持体の少なくとも
一方の面に前記カバーを接合させる工程とを含むことを
特徴としている。
The second method for manufacturing the first capacitance type semiconductor acceleration sensor is to bond the semiconductor substrate to the outer surface of the insulating substrate, then pierce the insulating substrate and use the semiconductor substrate. A connection hole is provided so as to be sealed, a fixed electrode is formed on the inner surface of the insulating substrate, and a thin film conductor is formed in a region including at least the inner peripheral surface of the connection hole, and the fixed electrode is formed by the thin film conductor. And a semiconductor substrate are electrically connected to each other to produce a cover, and a step of joining the cover to at least one surface of the support with the fixed electrode facing the mass portion There is.

【0021】上記第1の静電容量型半導体加速度センサ
を製造するための第3の方法は、前記絶縁性基板に貫通
させて接続孔を設けた後、当該絶縁性基板の内面に固定
電極を形成すると共に接続孔の内周面から当該絶縁性基
板の外面にかけて薄膜導電体を形成し、この接続孔を封
止するように当該絶縁性基板の外面に半導体基板を接合
し、当該薄膜導電体によって固定電極と半導体基板とを
電気的に接続してカバーを作製する工程と、前記固定電
極をマス部と対向させて前記支持体の少なくとも一方の
面に前記カバーを接合させる工程とを含むことを特徴と
している。
A third method for manufacturing the first electrostatic capacity type semiconductor acceleration sensor is to provide a fixed electrode on the inner surface of the insulating substrate after forming a connection hole through the insulating substrate. Forming and forming a thin film conductor from the inner peripheral surface of the connection hole to the outer surface of the insulating substrate, and bonding the semiconductor substrate to the outer surface of the insulating substrate to seal the connection hole, the thin film conductor A step of electrically connecting the fixed electrode and the semiconductor substrate with each other to form a cover, and a step of facing the fixed electrode to the mass part and joining the cover to at least one surface of the support. Is characterized by.

【0022】[0022]

【作用】本発明の加速度センサにあっては、絶縁性基板
に設けた接続孔に形成された薄膜導電体を介して内部の
固定電極と外部の半導体基板もしくは厚膜導電体とを電
気的に接続している。しかも、該接続孔は外面の半導体
基板若しくは厚膜導電体によって確実に封止されてい
る。従って、当該加速度センサにあっては、センサ内部
を確実に密封しながら内部の固定電極を外部へ取り出す
ことができる。しかも、半導体基板や厚膜導電体で接続
孔を封止しているので材質の劣化が少なく、センサ内部
を長期にわたって密閉状態に保つことができる。このた
め、例えば、腐食雰囲気ガスから保護するためにセンサ
内部を完全密封構造とし、センサ内部を真空にしたり、
減圧したり、ガスを封止した場合でも、真空度が低下し
たり、ガスが漏れたりするのを防止でき、静電容量型半
導体加速度センサの耐久性を向上させることができる。
また、外部電極となる半導体基板や厚膜導電体によって
接続孔を封止しているので、接続孔を封止するための別
途部材が必要なく、構造を簡単にすることができる。
In the acceleration sensor of the present invention, the fixed electrode inside and the external semiconductor substrate or thick film conductor are electrically connected via the thin film conductor formed in the connection hole provided in the insulating substrate. Connected. Moreover, the connection hole is surely sealed by the semiconductor substrate or the thick film conductor on the outer surface. Therefore, in the acceleration sensor, the fixed electrode inside can be taken out to the outside while surely sealing the inside of the sensor. Moreover, since the connection hole is sealed with the semiconductor substrate or the thick film conductor, the deterioration of the material is small, and the inside of the sensor can be kept in a sealed state for a long period of time. Therefore, for example, in order to protect from corrosive atmosphere gas, the inside of the sensor has a completely sealed structure, and the inside of the sensor is vacuumed,
Even when the pressure is reduced or the gas is sealed, it is possible to prevent the degree of vacuum from being lowered and the gas from leaking, and it is possible to improve the durability of the capacitance type semiconductor acceleration sensor.
Moreover, since the connection hole is sealed by the semiconductor substrate or the thick film conductor serving as an external electrode, a separate member for sealing the connection hole is not required, and the structure can be simplified.

【0023】また、半導体基板を、固定電極と導通した
領域と、絶縁されている領域とに分割形成した加速度セ
ンサにあっては、半導体基板及び絶縁性基板を支持体に
陽極接合する場合には、固定電極と絶縁されている領域
を陽極接合用電極として支持体との間に陽極接合のため
の電圧を印加し、接合させることができる。このとき、
半導体基板の固定電極と導通している領域には、陽極接
合用の電圧は印加されないので、固定電極と可動電極と
が短絡する恐れがない。一方、固定電極の電位は固定電
極と導通した領域から外部へ取り出すことができる。従
って、陽極接合後に従来のように導電材料部等を設ける
必要がなく、加速度センサの製造も容易になる。厚膜導
電体を固定電極と導通した領域と、絶縁されている領域
とに分割形成した場合も、同様にして陽極接合時におけ
る可動電極と固定電極との短絡を防ぐことができる。
Further, in the acceleration sensor in which the semiconductor substrate is divided into a region electrically connected to the fixed electrode and an insulated region, when the semiconductor substrate and the insulating substrate are anodically bonded to the support, By using a region insulated from the fixed electrode as an anodic bonding electrode, a voltage for anodic bonding can be applied to the support for bonding. At this time,
Since the voltage for anodic bonding is not applied to the region of the semiconductor substrate that is electrically connected to the fixed electrode, there is no risk of short circuit between the fixed electrode and the movable electrode. On the other hand, the potential of the fixed electrode can be taken out to the outside from a region that is electrically connected to the fixed electrode. Therefore, it is not necessary to provide a conductive material part or the like after the anodic bonding as in the conventional case, and the acceleration sensor can be easily manufactured. Even when the thick film conductor is divided into a region that is electrically connected to the fixed electrode and a region that is insulated, short circuit between the movable electrode and the fixed electrode during anodic bonding can be similarly prevented.

【0024】さらに、半導体基板の固定電極と導通した
領域の表面を半導体基板の固定電極から絶縁された領域
よりも引っ込めたり、固定電極と導通した領域の表面に
絶縁体膜を形成したりすれば、陽極接合用の接合電極が
固定電極と導通した領域に接触するのを防止することが
でき、簡単な形状の接合電極によって陽極接合を行なう
ことができる。
Further, if the surface of the region of the semiconductor substrate that is electrically connected to the fixed electrode is recessed from the region of the semiconductor substrate that is insulated from the fixed electrode, or if an insulator film is formed on the surface of the region of the semiconductor substrate that is electrically connected to the fixed electrode. It is possible to prevent the bonding electrode for anodic bonding from coming into contact with a region electrically connected to the fixed electrode, and it is possible to perform anodic bonding with a bonding electrode having a simple shape.

【0025】また、固定電極と導通した領域と固定電極
と絶縁した領域とを結線して検出電極とすれば、両領域
を同電位にすることができるので、両領域の間に発生す
る浮遊容量を低減させることができる。また、固定電極
と絶縁した領域を接地電極とすることにより、固定電極
と絶縁した領域に発生する浮遊容量を低減することがで
きる。
Further, if the region electrically connected to the fixed electrode and the region insulated from the fixed electrode are connected to form the detection electrode, both regions can be made to have the same potential, so that the stray capacitance generated between both regions can be made. Can be reduced. Further, by using the region insulated from the fixed electrode as the ground electrode, it is possible to reduce the stray capacitance generated in the region insulated from the fixed electrode.

【0026】この加速度センサで固定電極及び薄膜導電
体を同一材料及び同一形成手段で形成すれば、固定電極
と半導体基板等との電気的な接続を容易に行なうことが
でき、しかも、固定電極と薄膜導電体とを同時に形成す
ることができるので、加速度センサの製造工程の簡略化
を図ることができる。
If the fixed electrode and the thin film conductor are formed of the same material and the same forming means in this acceleration sensor, the fixed electrode and the semiconductor substrate can be easily electrically connected, and the fixed electrode and the thin film conductor can be easily connected. Since the thin film conductor can be formed at the same time, the manufacturing process of the acceleration sensor can be simplified.

【0027】また、半導体基板の少なくとも一方の面、
例えば内面に高濃度不純物拡散層を設けると、薄膜導電
体と半導体基板との電気的な接続をさらに確実にするこ
とができる。
At least one surface of the semiconductor substrate,
For example, if a high-concentration impurity diffusion layer is provided on the inner surface, the electrical connection between the thin film conductor and the semiconductor substrate can be further ensured.

【0028】また、可動電極は、絶縁性基板や半導体基
板に貫通して設けた引出し孔から引き出したり、可動電
極の電極引き出し部を絶縁性基板等から露出させれば、
可動電極を固定電極とともに回路基板へ容易に接続する
ことができる。また、多数の加速度センサをウエハ上に
形成する場合には、ウエハの状態で各加速度センサの特
性をチェックすることができる。
Further, the movable electrode can be drawn out from a lead-out hole penetrating the insulating substrate or the semiconductor substrate, or the electrode lead-out portion of the movable electrode can be exposed from the insulating substrate or the like.
The movable electrode and the fixed electrode can be easily connected to the circuit board. When a large number of acceleration sensors are formed on the wafer, the characteristics of each acceleration sensor can be checked in the wafer state.

【0029】また、回路基板に形成された回路パターン
部に前記半導体基板もしくは厚膜導電体を接合させて加
速度センサを回路基板に固定し、同時に、固定電極を回
路パターン部に接続させれば、加速度センサを回路基板
に実装することによって固定電極を結線することがで
き、加速度センサの結線作業を容易にすることができ
る。
If the semiconductor substrate or the thick film conductor is bonded to the circuit pattern portion formed on the circuit board to fix the acceleration sensor to the circuit board, and at the same time, the fixed electrode is connected to the circuit pattern portion, By mounting the acceleration sensor on the circuit board, the fixed electrode can be connected, and the work of connecting the acceleration sensor can be facilitated.

【0030】本発明の第1及び第2の製造方法は、第1
の製造方法のように、絶縁性基板と半導体基板を接合し
た後、絶縁性基板によって封止されるように接続孔を設
けるか、また、第2の製造方法のように、絶縁性基板に
接続孔を設けた後に接続孔を封止するように半導体基板
を接合し、ついで絶縁性基板に固定電極を形成すると共
に接続孔を含む領域に薄膜導電体を形成し、当該薄膜導
電体により固定電極と半導体基板とを接続してカバーを
作製している。このようにして、カバーを作製すれば、
簡単に接続孔を封止し、固定電極を半導体基板を通じて
外部に引出すことができるので、製造工程の簡略化を図
ることができる。
The first and second manufacturing methods of the present invention include the first
After joining the insulating substrate and the semiconductor substrate as in the manufacturing method of 1), a connection hole is provided so as to be sealed by the insulating substrate, or connected to the insulating substrate as in the second manufacturing method. After forming the hole, the semiconductor substrate is bonded so as to seal the connection hole, then the fixed electrode is formed on the insulating substrate and the thin film conductor is formed in the region including the connection hole, and the fixed electrode is formed by the thin film conductor. And the semiconductor substrate are connected to form a cover. In this way, if you make a cover,
Since the connection hole can be easily sealed and the fixed electrode can be pulled out to the outside through the semiconductor substrate, the manufacturing process can be simplified.

【0031】また、固定電極が半導体基板に接続された
カバーをマス部等が形成された支持体に接合しているの
で、例えば、支持体の両面の絶縁性基板に固定電極を形
成した差動構造の静電容量型半導体加速度センサにあっ
ても、支持体両側の固定電極を同時に外部に引出すこと
ができる。
Further, since the cover in which the fixed electrode is connected to the semiconductor substrate is joined to the support having the mass portion and the like formed thereon, for example, a differential electrode in which the fixed electrode is formed on the insulating substrates on both sides of the support is used. Even in the electrostatic capacity type semiconductor acceleration sensor having the structure, the fixed electrodes on both sides of the support can be simultaneously drawn to the outside.

【0032】また、本発明の第3の製造方法のように、
絶縁性基板に固定電極を形成すると共に接続孔から絶縁
性基板の外面にかけて薄膜導電体を形成することにすれ
ば、さらに、固定電極と半導体基板との接続を確実なも
のにすることもできる。
Further, as in the third manufacturing method of the present invention,
If the fixed electrode is formed on the insulating substrate and the thin film conductor is formed from the connection hole to the outer surface of the insulating substrate, the connection between the fixed electrode and the semiconductor substrate can be further ensured.

【0033】[0033]

【実施例】図1は本発明による静電容量型の加速度セン
サAの断面図である。加速度センサAは、軸棒状若しく
は薄肉状をした2本のビーム2によって片持ち状にフレ
ーム1に支持されたマス部3が角枠状をしたフレーム1
の中央に配設され、マス部3は、ビーム2の弾性変形に
よってマス部3の厚さ方向に自由に微小変位できるよう
になっている。また、フレーム1とビーム2およびマス
部3は、結晶シリコンウエハを半導体製造プロセスを用
いて一体として形成されており、マス部3の固定電極5
に対向する面3aは、可動電極4として機能するように
なっている。
1 is a cross-sectional view of a capacitance type acceleration sensor A according to the present invention. The acceleration sensor A includes a frame 1 having a square frame-shaped mass portion 3 supported by a frame 1 in a cantilevered manner by two beams 2 having a shaft rod shape or a thin wall shape.
The mass portion 3 is arranged at the center of the mass portion 3 and can be freely and minutely displaced in the thickness direction of the mass portion 3 by elastic deformation of the beam 2. Further, the frame 1, the beam 2, and the mass portion 3 are integrally formed by using a crystalline silicon wafer using a semiconductor manufacturing process, and the fixed electrode 5 of the mass portion 3 is formed.
The surface 3a opposed to is functioning as the movable electrode 4.

【0034】フレーム1の上下面には、ガラスカバー6
が接合され、それぞれのガラスカバー6の内面には、マ
ス部3の可動電極4と微小なギャップをへだてて固定電
極5が設けられており、可動電極4と固定電極5とによ
りコンデンサが形成されている。また、フレーム1上下
面のガラスカバー6には、固定電極5を外部へ引き出す
ための接続孔9が設けられている。
A glass cover 6 is provided on the upper and lower surfaces of the frame 1.
Are bonded to each other, and a fixed electrode 5 is provided on the inner surface of each glass cover 6 so as to form a minute gap with the movable electrode 4 of the mass portion 3. The movable electrode 4 and the fixed electrode 5 form a capacitor. ing. Further, the glass cover 6 on the upper and lower surfaces of the frame 1 is provided with a connection hole 9 for drawing out the fixed electrode 5 to the outside.

【0035】さらに、フレーム1上下面のガラスカバー
6の外側には、接続孔9を封止するようにシリコン製の
接続カバー7がそれぞれ接合されている。また、接続カ
バー7の左右にはそれぞれわずかに隙間13を設けて接
続カバー7と電気的に接続されないよう、ガラスカバー
6の両側にシリコン製の非接続カバー8が接合されてい
る。このように接続孔9を接続カバー7で封止してマス
部3等をセンサ内部に密封しているので、センサ内部は
真空にしたり、減圧しておいたり、あるいはガスを充填
させておいてもよい。
Further, on the outside of the glass cover 6 on the upper and lower surfaces of the frame 1, silicon connection covers 7 are joined so as to seal the connection holes 9. Further, a slight gap 13 is provided on each of the left and right sides of the connection cover 7, and a silicon non-connection cover 8 is joined to both sides of the glass cover 6 so as not to be electrically connected to the connection cover 7. In this way, the connection hole 9 is sealed by the connection cover 7 and the mass portion 3 and the like are sealed inside the sensor. Therefore, the inside of the sensor is evacuated, depressurized, or filled with gas. Good.

【0036】また、接続孔9には、AuやAlなどの導
電性物質による薄膜状の薄膜導電部10が、固定電極5
とともに一体としてスパッタリングにより形成され、固
定電極5は薄膜導電部10によって接続カバー7に電気
的に接続され、外部へ引き出されている。なお、薄膜導
電部10と接続カバー7との電気的接続を確実にするた
め、接続カバー7の内面(あるいは、接続カバー7及び
非接続カバー8の内面)にはp+拡散層を形成してあ
る。
Further, in the connection hole 9, a thin film-shaped conductive portion 10 made of a conductive material such as Au or Al is attached to the fixed electrode 5.
In addition, the fixed electrode 5 is integrally formed by sputtering, and the fixed electrode 5 is electrically connected to the connection cover 7 by the thin film conductive portion 10 and is drawn to the outside. In order to ensure electrical connection between the thin-film conductive portion 10 and the connection cover 7, a p + diffusion layer is formed on the inner surface of the connection cover 7 (or the inner surfaces of the connection cover 7 and the non-connection cover 8). is there.

【0037】一方、マス部3の可動電極4は、ガラスカ
バー6及び非接続カバー8に切り欠き部12を設けてフ
レーム1上に露出された可動電極引出し部11により、
外部に引き出されている。そして、固定電極5及び可動
電極4とにより構成されるコンデンサは、加速度センサ
Aが実装されている回路基板上の検知回路等に接続さ
れ、その静電容量の変化を検出される。
On the other hand, the movable electrode 4 of the mass portion 3 is provided with the notch 12 in the glass cover 6 and the non-connecting cover 8 and the movable electrode lead-out portion 11 exposed on the frame 1
It has been pulled out. The capacitor composed of the fixed electrode 5 and the movable electrode 4 is connected to a detection circuit or the like on the circuit board on which the acceleration sensor A is mounted, and the change in capacitance thereof is detected.

【0038】しかして、加速度センサAに加速度が加わ
ると、慣性力によってマス部3がビーム2を弾性的に撓
ませながら変位し、マス部3に生じた変位により当該コ
ンデンサの静電容量が変化し、この変化を検知すること
により、加速度センサAに加わった加速度の大きさを知
ることができる。
However, when acceleration is applied to the acceleration sensor A, the mass portion 3 is displaced by the inertial force while elastically bending the beam 2, and the displacement of the mass portion 3 changes the capacitance of the capacitor. However, by detecting this change, the magnitude of the acceleration applied to the acceleration sensor A can be known.

【0039】図2に、加速度センサAの作製方法の一例
を示す。以下、加速度センサAの作製方法について、図
2に従って説明する。まず、図2(a)に示すように接
続カバー7及び非接続カバー8を作製するための板状の
シリコン基板21とガラスカバー6を作製するための板
状のガラス基板22とを陽極接合法にて接合する。次
に、接合したガラス基板22に、超音波加工法などによ
り固定電極5を引出すための接続孔9を設け、カバー原
盤20を作製する。なお、別な作製方法においては、シ
リコン基板21と予め接続孔9を設けられたガラス基板
22とを接合してカバー原盤20を作製することとして
もよい。
FIG. 2 shows an example of a method of manufacturing the acceleration sensor A. Hereinafter, a method of manufacturing the acceleration sensor A will be described with reference to FIG. First, as shown in FIG. 2A, a plate-shaped silicon substrate 21 for manufacturing the connection cover 7 and the non-connection cover 8 and a plate-shaped glass substrate 22 for manufacturing the glass cover 6 are anodically bonded. Join at. Next, the bonded glass substrate 22 is provided with the connection hole 9 for drawing out the fixed electrode 5 by an ultrasonic processing method or the like, and the cover master 20 is manufactured. Note that, in another manufacturing method, the cover master 20 may be manufactured by joining the silicon substrate 21 and the glass substrate 22 provided with the connection holes 9 in advance.

【0040】次に、カバー原盤20のシリコン基板21
にダイシングソーにてガラス基板22に達するまでダイ
シング溝23を設け、接続カバー7及び非接続カバー8
をそれぞれ形成する。また、ガラス基板22には別な幅
の広いダイシング溝24を設ける(可動電極4を引出す
ための切り欠き部12を形成することになる)。次い
で、図示はしないが、スパッタリングにより、ガラス基
板22の下面に固定電極5並びにガラス基板22の接続
孔9にAu又はAlなどの薄膜導電部10を一体として
形成し、固定電極5と接続カバー7とを電気的に接続
し、第1のカバー基板25aを作製する〔図2
(b)〕。
Next, the silicon substrate 21 of the cover master 20.
A dicing groove 23 is provided on the substrate with a dicing saw until reaching the glass substrate 22, and the connecting cover 7 and the non-connecting cover 8 are provided.
Are formed respectively. Further, another wide dicing groove 24 is provided in the glass substrate 22 (the cutout 12 for drawing out the movable electrode 4 will be formed). Next, although not shown, the fixed electrode 5 is formed on the lower surface of the glass substrate 22 and the thin film conductive portion 10 such as Au or Al is integrally formed in the connection hole 9 of the glass substrate 22 by sputtering, and the fixed electrode 5 and the connection cover 7 are formed. Are electrically connected to each other to form the first cover substrate 25a [FIG.
(B)].

【0041】この第1のカバー基板25aのガラス基板
22面に、あらかじめビーム2とマス部3及びフレーム
1を多数形成したフレーム基板26を陽極接合する〔図
2(c)〕。この時、非接続カバー8には、フレーム基
板26に対して負となるように電圧を印加し、接続カバ
ー7には、フレーム基板26と同電位となるように電圧
を印加し(もしくは、電圧を印加せず)陽極接合をす
る。このように電圧を印加すれば、可動電極4と固定電
極5との短絡を防ぎ、可動電極4が固定電極5に固着す
るのを防ぐことができる。また、フレーム基板26には
ビーム2の厚みに相当する厚さ分だけn層を拡散形成さ
せ、電気化学的エッチング手法を用いてビーム2等を精
度よく形成させておくとよい。
On the surface of the glass substrate 22 of the first cover substrate 25a, a frame substrate 26 having a large number of beams 2, mass portions 3 and frames 1 previously formed is anodically bonded [FIG. 2 (c)]. At this time, a voltage is applied to the non-connection cover 8 so as to be negative with respect to the frame substrate 26, and a voltage is applied to the connection cover 7 so as to have the same potential as the frame substrate 26 (or voltage. Anodic bonding). By applying the voltage in this way, it is possible to prevent a short circuit between the movable electrode 4 and the fixed electrode 5 and prevent the movable electrode 4 from sticking to the fixed electrode 5. In addition, it is preferable that the frame substrate 26 is formed by diffusing n layers by a thickness corresponding to the thickness of the beam 2 and the beam 2 and the like are accurately formed by using an electrochemical etching method.

【0042】次に、第2のカバー基板25bをフレーム
基板26の他方の面に陽極接合する。第2のカバー基板
25bは、次のようにして、第1のカバー基板25aと
ほぼ同様にして作製される。図2(a)のカバー原盤2
0のシリコン基板21にダイシング溝23を設け、接続
カバー7と非接続カバー8を作製する。次いで、スパッ
タリングにより、固定電極5及び薄膜導電部10を一体
として形成し、固定電極5と接続カバー7とを電気的に
接続し、第2のカバー基板25bを作製する。この第2
のカバー基板25bを第1のカバー基板25aを陽極接
合したのと同様に電圧を印加して陽極接合を行なう〔図
2(d)〕。
Next, the second cover substrate 25b is anodically bonded to the other surface of the frame substrate 26. The second cover substrate 25b is manufactured in substantially the same manner as the first cover substrate 25a as follows. Cover master 2 of FIG. 2 (a)
The dicing groove 23 is provided in the silicon substrate 21 of 0, and the connection cover 7 and the non-connection cover 8 are manufactured. Next, the fixed electrode 5 and the thin-film conductive portion 10 are integrally formed by sputtering, the fixed electrode 5 and the connection cover 7 are electrically connected, and the second cover substrate 25b is manufactured. This second
The cover substrate 25b is subjected to anodic bonding by applying a voltage in the same manner as the first cover substrate 25a is anodically bonded [FIG. 2 (d)].

【0043】続いて、第1のカバー基板25aの非接続
カバー8に、ダイシング溝24と同じ位置にダイシング
溝27を設けた後、ダイシング溝24に露出している可
動電極引き出し部11と接続カバー7とから各加速度セ
ンサAの特性をチェックし、最後に図2(e)に示す破
線の位置で切断することにより、一度に複数個の加速度
センサAを作製することができる〔図2(e)〕。
Subsequently, after the dicing groove 27 is provided at the same position as the dicing groove 24 in the non-connecting cover 8 of the first cover substrate 25a, the movable electrode lead-out portion 11 exposed in the dicing groove 24 and the connecting cover. 7 to check the characteristics of each acceleration sensor A, and finally cut at the position of the broken line shown in FIG. 2E to produce a plurality of acceleration sensors A at a time [FIG. )].

【0044】図3に、本発明の別な実施例である加速度
センサBの断面図を示す。加速度センサBにおいては、
接続カバー7の表面には合成樹脂などの絶縁性物質によ
る絶縁体膜14が形成され、接続孔9からガラスカバー
6の外側にかけて、薄膜状の接触電極15が設けられて
いる。この接触電極15は、薄膜導電部10と固定電極
5と共に一体としてスパッタリングにより形成されてい
る。また、フレーム1上の可動電極引出し部11はガラ
スカバー6及び非接続カバー8に設けられた引出し孔1
6を通じて、回路基板等に設けた検知回路等に接続でき
るようになっている。この加速度センサBによれば、接
触電極15により接触面積を大きくすることができるの
で、接続カバー7と薄膜導電部10との間の電気抵抗を
小さくすることができる。
FIG. 3 shows a sectional view of an acceleration sensor B which is another embodiment of the present invention. In the acceleration sensor B,
An insulating film 14 made of an insulating material such as synthetic resin is formed on the surface of the connection cover 7, and a thin-film contact electrode 15 is provided from the connection hole 9 to the outside of the glass cover 6. The contact electrode 15 is integrally formed with the thin film conductive portion 10 and the fixed electrode 5 by sputtering. In addition, the movable electrode lead-out portion 11 on the frame 1 is a lead-out hole 1 provided in the glass cover 6 and the non-connection cover 8.
6, it can be connected to a detection circuit or the like provided on a circuit board or the like. According to the acceleration sensor B, since the contact area can be increased by the contact electrode 15, the electric resistance between the connection cover 7 and the thin film conductive portion 10 can be reduced.

【0045】この加速度センサBを作製する場合には、
まず、ガラスカバー6となるガラス基板22に接続孔9
を設け、スパッタリングによりガラス基板22の一方の
面に固定電極5を、別な面には接触電極15を形成する
とともに接続孔9に薄膜導電部10を一体として形成す
る。次にシリコン基板21を陽極接合にて貼り合わせて
カバー原盤20を作製し、可動電極4を引き出すための
引出し孔16を設けた後、以下加速度センサAと同様に
作製すればよい。
When manufacturing this acceleration sensor B,
First, the connection hole 9 is formed in the glass substrate 22 that will be the glass cover 6.
Then, the fixed electrode 5 is formed on one surface of the glass substrate 22 by sputtering, the contact electrode 15 is formed on the other surface, and the thin film conductive portion 10 is integrally formed in the connection hole 9. Next, after the silicon substrate 21 is bonded by anodic bonding to produce the cover master 20, the extraction holes 16 for extracting the movable electrode 4 are provided, and thereafter, the same process as in the acceleration sensor A may be performed.

【0046】図4に、本発明の別な実施例である加速度
センサCの断面図を示す。加速度センサCは、接続カバ
ー7にエッチング処理が施され、非接続カバー8の厚さ
に比べ薄くなるように作製されている。
FIG. 4 shows a sectional view of an acceleration sensor C which is another embodiment of the present invention. The acceleration sensor C is manufactured so that the connection cover 7 is subjected to an etching process and is thinner than the non-connection cover 8.

【0047】図5は、第1のカバー基板25a又は第2
のカバー基板25bとフレーム基板26とを陽極接合す
る際の接合電極28の電極配置を示す説明図である。加
速度センサAにおいては、接続カバー7の外面と非接続
カバー8の外面とは同一平面上にあるため、フレーム基
板26と陽極接合する場合には、図5(a)に示すよう
に、接合電極28に凹部29を設けるか、また、図5
(b)に示すように接合電極28を分割するかして、可
動電極4と固定電極5との短絡を防ぐ必要があった。し
かし、加速度センサCの構造にしておけば、図5(c)
に示すように、接合電極28に凹部29を設けたり、接
合電極28を分割する必要がなく、簡単な形状の接合電
極28を用いて接合電極28を接続カバー7に接触させ
ることなく陽極接合を行なうことができる。したがっ
て、可動電極4と固定電極5との短絡や固着を起こすこ
となく陽極接合をすることができる。また、図3に示し
た加速度センサBのように、接続カバー7に絶縁体膜1
4を設けることによっても、同様に簡単な形状の接合電
極28を用いて陽極接合することができる。また、図示
はしないが、接続カバー7にエッチング処理を施して接
続カバー7の外面を非接続カバー8の外面よりも引っ込
ませた後、絶縁体膜14を接続カバー7の外面に設ける
こととしてもよい。
FIG. 5 shows the first cover substrate 25a or the second cover substrate 25a.
FIG. 7 is an explanatory view showing an electrode arrangement of bonding electrodes 28 when the cover substrate 25b and the frame substrate 26 of FIG. In the acceleration sensor A, since the outer surface of the connection cover 7 and the outer surface of the non-connection cover 8 are on the same plane, when the frame substrate 26 is anodically bonded, as shown in FIG. 28 is provided with a recess 29, or FIG.
It is necessary to prevent the short circuit between the movable electrode 4 and the fixed electrode 5 by dividing the bonding electrode 28 as shown in (b). However, if the structure of the acceleration sensor C is used, FIG.
As shown in FIG. 4, it is not necessary to provide the concave portion 29 in the bonding electrode 28 or divide the bonding electrode 28, and the anodic bonding can be performed using the bonding electrode 28 having a simple shape without contacting the bonding electrode 28 with the connection cover 7. Can be done. Therefore, anodic bonding can be performed without causing a short circuit or sticking between the movable electrode 4 and the fixed electrode 5. Further, like the acceleration sensor B shown in FIG. 3, the insulating film 1 is formed on the connection cover 7.
By providing 4 as well, it is possible to perform anodic bonding using the bonding electrode 28 having a similarly simple shape. Although not shown, the insulating film 14 may be provided on the outer surface of the connection cover 7 after the outer surface of the connection cover 7 is recessed from the outer surface of the non-connection cover 8 by performing an etching process on the connection cover 7. Good.

【0048】図6は、本発明によるさらに別な実施例で
ある加速度センサDを示す断面図である。加速度センサ
Dは、マス部3やビーム2が形成されたフレーム1の上
下面にガラスカバー6を接合されている。ガラスカバー
6には接続孔9が設けられ、接続孔9には固定電極5と
ガラスカバー6の外側に形成された接続厚膜部31とを
接続するように導電薄膜部10が、スパッタリングによ
り固定電極5と一体として形成されている。また、接続
厚膜部31の両側には、接続厚膜部31と電気的に接続
されないよう隙間33を設けて、非接続厚膜部32が形
成されている。接続厚膜部31及び非接続厚膜部32
は、厚膜導電材により形成されている。これは、例えば
AuやAgなどの微粒子を有機バインダによりペースト
状としたものを、スクリーン印刷等によりガラスカバー
6上に塗布させたのち、これを焼成して金属化すること
により形成されたものである。このとき、所望する厚み
を得るために、重ね印刷を行なうことも可能である。な
お、この実施例では、切り欠き部12から可動電極引き
出し部11を露出させているが、図3の実施例と同様、
ガラスカバー6及び非接続厚膜部32に設けた引き出し
孔16から可動電極4を引き出すようにしてもよい。
FIG. 6 is a sectional view showing an acceleration sensor D which is still another embodiment of the present invention. The acceleration sensor D has a glass cover 6 joined to the upper and lower surfaces of the frame 1 on which the mass portion 3 and the beam 2 are formed. A connection hole 9 is provided in the glass cover 6, and a conductive thin film portion 10 is fixed to the connection hole 9 by sputtering so as to connect the fixed electrode 5 and a connection thick film portion 31 formed outside the glass cover 6. It is formed integrally with the electrode 5. Further, on both sides of the connection thick film portion 31, a non-connection thick film portion 32 is formed with a gap 33 provided so as not to be electrically connected to the connection thick film portion 31. Connection thick film portion 31 and non-connection thick film portion 32
Is formed of a thick film conductive material. This is formed by, for example, applying fine particles of Au, Ag or the like in a paste form with an organic binder onto the glass cover 6 by screen printing or the like, and then firing and metallizing the same. is there. At this time, it is also possible to perform overprinting to obtain a desired thickness. In addition, in this embodiment, the movable electrode lead-out portion 11 is exposed from the notch portion 12, but like the embodiment of FIG.
The movable electrode 4 may be drawn out from the drawing hole 16 provided in the glass cover 6 and the non-connection thick film portion 32.

【0049】このように、厚膜導電材により接続厚膜部
31を形成させることにより、ガラスカバー6の接続孔
9を密封することもできる。また、例えば、厚膜導電材
により接続厚膜部31及び非接続厚膜部32を図7に示
すようにパターン形成することにより、陽極接合時には
非接続厚膜部32及び接続厚膜部31を陽極接合用の接
合電極として使用することができ、図5(a)(b)の
ように特別な接合電極28が必要なくなり、簡単に陽極
接合することができる。
By thus forming the connection thick film portion 31 of the thick film conductive material, the connection hole 9 of the glass cover 6 can be sealed. Further, for example, by patterning the connection thick film portion 31 and the non-connection thick film portion 32 with a thick film conductive material as shown in FIG. 7, the non-connection thick film portion 32 and the connection thick film portion 31 are formed at the time of anodic bonding. It can be used as a bonding electrode for anodic bonding, and a special bonding electrode 28 as shown in FIGS. 5 (a) and 5 (b) is not required, and anodic bonding can be easily performed.

【0050】図8は、回路基板34に実装された加速度
センサAの側面図である。図8に示すように、加速度セ
ンサAがハンダのような導電性固定材35により回路基
板34の回路パターン36上に実装されている。上側の
ガラスカバー6の固定電極5は、上側の接続カバー7か
ら回路パターン36上の接続パッド37に、また、可動
電極4は、フレーム1上の可動電極引出し部11から別
な接続パッド37にそれぞれボンディングワイヤ38で
接続されている。下側のガラスカバー6の固定電極5
は、下側の接続カバー7と導電性固定材35により回路
パターン36に直接接続されている。また、上側及び下
側の非接続カバー8は、それぞれ接続カバー7と同電位
になるように接続して検知電極を構成されている。この
ように、接続カバー7と非接続カバー8を同電位になる
ように接続し、回路基板34に実装することで加速度セ
ンサAに発生する浮遊容量を低減することができる。
FIG. 8 is a side view of the acceleration sensor A mounted on the circuit board 34. As shown in FIG. 8, the acceleration sensor A is mounted on the circuit pattern 36 of the circuit board 34 by a conductive fixing material 35 such as solder. The fixed electrode 5 of the upper glass cover 6 is connected to the connection pad 37 on the circuit pattern 36 from the upper connection cover 7, and the movable electrode 4 is connected to another connection pad 37 from the movable electrode lead-out portion 11 on the frame 1. Each is connected by a bonding wire 38. Fixed electrode 5 on the lower glass cover 6
Are directly connected to the circuit pattern 36 by the lower connection cover 7 and the conductive fixing material 35. Further, the upper and lower non-connection covers 8 are connected to each other so as to have the same potential as the connection cover 7 to form a detection electrode. In this way, the connecting cover 7 and the non-connecting cover 8 are connected so as to have the same potential and mounted on the circuit board 34, whereby the stray capacitance generated in the acceleration sensor A can be reduced.

【0051】なお、他の加速度センサも同様にして回路
基板に実装することができることはいうまでもない。ま
た、図示しないが、別な実装形態としては、接続カバー
7と非接続カバー8とを接続せず、接続カバー7だけを
検知電極とし、非接続カバー8は回路基板34のアース
ラインに接続して接地することとしてもよい。
Needless to say, other acceleration sensors can be similarly mounted on the circuit board. Although not shown, as another mounting mode, the connection cover 7 and the non-connection cover 8 are not connected, only the connection cover 7 is used as a detection electrode, and the non-connection cover 8 is connected to the ground line of the circuit board 34. It may be grounded.

【0052】[0052]

【発明の効果】本発明の静電容量型半導体加速度センサ
において、固定電極を外部へ電気的に引き出すための接
続孔は、半導体基板若しくは厚膜導電体によって封止さ
れているので、センサ内部を長期にわたり、密封状態を
保つことができる。このため、例えば、腐食雰囲気ガス
から保護するためにセンサ内部を完全密封構造とし、セ
ンサ内部を真空にしたり、減圧したり、ガスを封止した
場合でも、真空度が低下したり、ガスが漏れたりするの
を防止でき、静電容量型半導体加速度センサの耐久性を
向上させることができる。
In the capacitance type semiconductor acceleration sensor of the present invention, the connection hole for electrically drawing out the fixed electrode to the outside is sealed by the semiconductor substrate or the thick film conductor, so that the inside of the sensor is The sealed state can be maintained for a long period of time. Therefore, for example, even if the inside of the sensor is completely sealed to protect it from corrosive atmosphere gas and the inside of the sensor is evacuated or decompressed or the gas is sealed, the degree of vacuum is reduced or gas leaks. Can be prevented, and the durability of the capacitance type semiconductor acceleration sensor can be improved.

【0053】また、固定電極は、半導体基板や厚膜導電
体により外部へ引き出し、また、可動電極は、半導体基
板や絶縁性基板に設けられた引出し孔や半導体基板や絶
縁性基板から電極引き出し部を露出させて支持体上から
外部へ引き出すこととしているので、両電極ともに回路
基板への接続を容易に行なうことができる。
Further, the fixed electrode is drawn to the outside by a semiconductor substrate or a thick film conductor, and the movable electrode is a lead hole provided in the semiconductor substrate or the insulating substrate, or an electrode lead portion from the semiconductor substrate or the insulating substrate. Since the electrodes are exposed and drawn out from the support body, both electrodes can be easily connected to the circuit board.

【0054】また、固定電極と薄膜導電体は、同一材料
および同一形成手段で形成することとしているので、固
定電極と半導体基板や厚膜導電体との接続を容易かつ確
実にすることができ、また、製造工程も簡略化すること
ができる。また、高濃度不純物拡散層が形成された半導
体基板を用いることにしているので、薄膜導電体と半導
体基板との電気的な接続を確実にすることできる。
Further, since the fixed electrode and the thin film conductor are formed by the same material and the same forming means, the fixed electrode can be easily and surely connected to the semiconductor substrate or the thick film conductor, Also, the manufacturing process can be simplified. In addition, since the semiconductor substrate on which the high-concentration impurity diffusion layer is formed is used, the electrical connection between the thin film conductor and the semiconductor substrate can be ensured.

【0055】また、半導体基板又は厚膜導電体をそれぞ
れ、固定電極と接続された領域と固定電極と絶縁された
領域とに分割形成しているので、固定電極と可動電極と
が短絡することなく簡単に陽極接合することができ、静
電容量型半導体加速度センサの歩留りを容易に向上させ
ることができる。
Further, since the semiconductor substrate or the thick film conductor is separately formed into the region connected to the fixed electrode and the region insulated from the fixed electrode, the fixed electrode and the movable electrode are not short-circuited. The anodic bonding can be easily performed, and the yield of the capacitance type semiconductor acceleration sensor can be easily improved.

【0056】さらに、半導体基板の固定電極と導通した
領域を固定電極と絶縁された領域よりも内側へ引っ込む
ようにしたり、固定電極と導通した領域の表面に絶縁体
膜を形成すれば、陽極接合時の接合電極に工夫を施すこ
とを不要にでき、簡単な形状の接合電極を用いることが
できる。また、固定電極と導通した領域は、それぞれ陽
極接合時の接合電極として用いることもできるので、陽
極接合をさらに簡単にすることができる。
Further, if the region of the semiconductor substrate which is electrically connected to the fixed electrode is recessed inward from the region of the semiconductor substrate which is insulated from the fixed electrode, or an insulator film is formed on the surface of the region electrically connected to the fixed electrode, the anodic bonding is performed. It is not necessary to devise a bonding electrode at that time, and a bonding electrode having a simple shape can be used. Further, since the regions electrically connected to the fixed electrodes can be used as the bonding electrodes at the time of anodic bonding, the anodic bonding can be further simplified.

【0057】さらに、固定電極と導通した領域と絶縁さ
れた領域とはそれぞれ結線して同電位にするか、あるい
は、固定電極と絶縁されている領域を接地電極とするこ
とにより、浮遊容量を低減することができる。
Further, the region electrically connected to the fixed electrode and the region insulated from each other are connected to have the same potential, or the region insulated from the fixed electrode is used as a ground electrode to reduce the stray capacitance. can do.

【0058】本発明の製造方法にあっては、簡単に接続
孔を封止し、固定電極を簡単に半導体基板を通じて外部
に引出すことができるので、静電容量型半導体加速度セ
ンサの製造工程を簡略化することができる。また、例え
ば、支持体両側の絶縁性基板にそれぞれ固定電極を形成
した差動構造の静電容量型半導体加速度センサにあって
も、支持体両側の固定電極を同時に外部に引出すことも
できる。また、絶縁性基板に接続孔から絶縁性基板の外
面にかけて薄膜導電体を形成すれば、薄膜導電体と半導
体基板との接触面積を増加させることができ、接触抵抗
を小さくして接続を確実なものにできる。
In the manufacturing method of the present invention, since the connection hole can be easily sealed and the fixed electrode can be easily pulled out to the outside through the semiconductor substrate, the manufacturing process of the capacitance type semiconductor acceleration sensor is simplified. Can be converted. Further, for example, even in a capacitance type semiconductor acceleration sensor having a differential structure in which fixed electrodes are formed on insulating substrates on both sides of the support, the fixed electrodes on both sides of the support can be simultaneously drawn to the outside. Further, by forming the thin film conductor on the insulating substrate from the connection hole to the outer surface of the insulating substrate, the contact area between the thin film conductor and the semiconductor substrate can be increased, and the contact resistance can be reduced to ensure the connection. It can be something.

【0059】また、回路基板に形成された回路パターン
部に前記半導体基板もしくは厚膜導電体を接合させて加
速度センサを回路基板に固定し、同時に、固定電極を回
路パターン部に接続させれば、加速度センサを回路基板
に実装することによって固定電極を結線することがで
き、加速度センサの結線作業を容易にすることができ
る。
If the semiconductor substrate or the thick film conductor is joined to the circuit pattern portion formed on the circuit board to fix the acceleration sensor to the circuit board, and at the same time, the fixed electrode is connected to the circuit pattern portion. By mounting the acceleration sensor on the circuit board, the fixed electrode can be connected, and the work of connecting the acceleration sensor can be facilitated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である静電容量型加速度セン
サの断面図である。
FIG. 1 is a sectional view of a capacitance type acceleration sensor according to an embodiment of the present invention.

【図2】(a)(b)(c)(d)(e)は、同上の静
電容量型加速度センサの製造方法を示す断面図である。
2 (a), (b), (c), (d), and (e) are cross-sectional views showing a method for manufacturing the same capacitive acceleration sensor.

【図3】本発明の別な実施例である静電容量型加速度セ
ンサの断面図である。
FIG. 3 is a sectional view of a capacitance type acceleration sensor according to another embodiment of the present invention.

【図4】本発明のさらに別な実施例である静電容量型加
速度センサの断面図である。
FIG. 4 is a sectional view of a capacitance type acceleration sensor which is another embodiment of the present invention.

【図5】(a)(b)(c)は、陽極接合時の電極配置
を示す説明図である。
5 (a), (b) and (c) are explanatory views showing an electrode arrangement during anodic bonding.

【図6】本発明のさらに別な実施例である静電容量型加
速度センサの断面図である。
FIG. 6 is a cross-sectional view of a capacitance type acceleration sensor which is another embodiment of the present invention.

【図7】厚膜導電体部のパターンの一例を示す平面図で
ある。
FIG. 7 is a plan view showing an example of a pattern of a thick film conductor portion.

【図8】本発明の実装方法の一実施例を示す側面図であ
る。
FIG. 8 is a side view showing an embodiment of a mounting method of the present invention.

【図9】従来例である静電容量型加速度センサの断面図
である。
FIG. 9 is a cross-sectional view of a capacitance type acceleration sensor which is a conventional example.

【符号の説明】[Explanation of symbols]

3 マス部 5 固定電極 6 ガラスカバー 7 接続カバー 10 薄膜導電部 31 接続厚膜部 3 Mass part 5 Fixed electrode 6 Glass cover 7 Connection cover 10 Thin film conductive part 31 Connection thick film part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 椎木 正和 京都府京都市右京区花園土堂町10番地 オ ムロン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masakazu Shiiki, Omron Co., Ltd., No. 10, Hanazono Dodo-cho, Ukyo-ku, Kyoto City, Kyoto Prefecture

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 弾性を有するビームによって支持された
マス部を支持体に設け、当該支持体の両面にそれぞれ絶
縁性基板を接合し、可動電極となるマス部と対向させて
少なくとも一方の絶縁性基板の内面に固定電極を設けた
静電容量型半導体加速度センサにおいて、 前記固定電極を設けられた絶縁性基板に貫通させて接続
孔を設けると共に当該接続孔を封止するように当該絶縁
性基板の外面に半導体基板を接合し、少なくとも当該接
続孔の内周面を含む領域に形成された薄膜導電体によっ
て前記固定電極と前記半導体基板とを電気的に接続した
ことを特徴とする静電容量型半導体加速度センサ。
1. A mass portion supported by a beam having elasticity is provided on a support body, and insulating substrates are bonded to both surfaces of the support body so as to face the mass portion to be a movable electrode and at least one of the insulating properties is provided. In a capacitance type semiconductor acceleration sensor having a fixed electrode provided on an inner surface of a substrate, the insulating substrate is provided so as to penetrate the insulating substrate provided with the fixed electrode to form a connection hole and to seal the connection hole. A semiconductor substrate is joined to the outer surface of the substrate, and the fixed electrode and the semiconductor substrate are electrically connected by a thin-film conductor formed in a region including at least the inner peripheral surface of the connection hole. Type semiconductor acceleration sensor.
【請求項2】 前記半導体基板を、薄膜導電体を介して
前記固定電極と導通した領域と、前記固定電極と電気的
に絶縁されている領域とに分割形成したことを特徴とす
る請求項1に記載の静電容量型半導体加速度センサ。
2. The semiconductor substrate is divided into a region electrically connected to the fixed electrode through a thin film conductor and a region electrically insulated from the fixed electrode. The electrostatic capacity type semiconductor acceleration sensor described in 1.
【請求項3】 固定電極と導通した前記領域の表面を、
固定電極と電気的に絶縁された前記領域の表面よりも内
側へ引っ込ませていることを特徴とする請求項2に記載
の静電容量型半導体加速度センサ。
3. A surface of the region which is electrically connected to the fixed electrode,
The electrostatic capacitance type semiconductor acceleration sensor according to claim 2, wherein the electrostatic capacitance type semiconductor acceleration sensor is retracted inward from a surface of the region electrically insulated from the fixed electrode.
【請求項4】 固定電極と導通した前記領域の表面に絶
縁体膜を形成したことを特徴とする請求項2又は3に記
載の静電容量型半導体加速度センサ。
4. The capacitance type semiconductor acceleration sensor according to claim 2, wherein an insulating film is formed on a surface of the region which is electrically connected to the fixed electrode.
【請求項5】 固定電極と導通した前記領域と固定電極
と電気的に絶縁された前記領域とを結線して検出電極と
したことを特徴とする請求項2,3又は4に記載の静電
容量型半導体加速度センサ。
5. The electrostatic according to claim 2, 3 or 4, wherein the region electrically connected to the fixed electrode and the region electrically insulated from the fixed electrode are connected to each other to form a detection electrode. Capacitive semiconductor acceleration sensor.
【請求項6】 固定電極と導通した前記領域を検出電極
とし、固定電極と電気的に絶縁された前記領域を接地電
極としたことを特徴とする請求項2,3又は4に記載の
静電容量型半導体加速度センサ。
6. The electrostatic capacitor according to claim 2, wherein the region electrically connected to the fixed electrode is a detection electrode, and the region electrically insulated from the fixed electrode is a ground electrode. Capacitive semiconductor acceleration sensor.
【請求項7】 同一材料及び同一形成手段により形成さ
れた前記固定電極及び前記薄膜導電体を有する請求項
1,2,3,4,5又は6に記載の静電容量型半導体加
速度センサ。
7. The capacitance type semiconductor acceleration sensor according to claim 1, wherein the fixed electrode and the thin film conductor are formed of the same material and the same forming means.
【請求項8】 前記半導体基板の少なくとも一方の面に
高濃度不純物拡散層を設けたことを特徴とする請求項
1,2,3,4,5,6又は7に記載の静電容量型半導
体加速度センサ。
8. The capacitance type semiconductor according to claim 1, wherein a high concentration impurity diffusion layer is provided on at least one surface of the semiconductor substrate. Acceleration sensor.
【請求項9】 前記可動電極は、前記絶縁性基板及び前
記半導体基板を貫通させて設けた引出し孔より電気的に
引き出されていることを特徴とする請求項1,2,3,
4,5,6,7又は8に記載の静電容量型半導体加速度
センサ。
9. The movable electrode is electrically drawn out from an extraction hole provided through the insulating substrate and the semiconductor substrate.
4. The capacitance type semiconductor acceleration sensor according to 4, 5, 6, 7 or 8.
【請求項10】 前記可動電極の電極引き出し部を前記
支持体の表面に設け、当該電極引き出し部を前記絶縁性
基板及び前記半導体基板から露出させていることを特徴
とする請求項1,2,3,4,5,6,7又は8に記載
の静電容量型半導体加速度センサ。
10. The electrode lead-out portion of the movable electrode is provided on the surface of the support, and the electrode lead-out portion is exposed from the insulating substrate and the semiconductor substrate. 3. A capacitance type semiconductor acceleration sensor according to 3, 4, 5, 6, 7 or 8.
【請求項11】 請求項1,2,3,4,5,6,7,
8,9又は10に記載の静電容量型半導体加速度センサ
を製造するための方法であって、 絶縁性基板に貫通させて接続孔を設けた後、この接続孔
を封止するように当該絶縁性基板の外面に半導体基板を
接合し、当該絶縁性基板の内面に固定電極を形成すると
共に少なくとも接続孔の内周面を含む領域に薄膜導電体
を形成し、当該薄膜導電体によって固定電極と半導体基
板とを電気的に接続してカバーを作製する工程と、 前記固定電極をマス部と対向させて前記支持体の少なく
とも一方の面に前記カバーを接合させる工程とを含む静
電容量型半導体加速度センサの製造方法。
11. Claims 1, 2, 3, 4, 5, 6, 7,
A method for manufacturing the capacitance type semiconductor acceleration sensor according to 8, 9, or 10, which comprises forming a connection hole by penetrating an insulating substrate and then sealing the connection hole. A semiconductor substrate is bonded to the outer surface of the insulating substrate, a fixed electrode is formed on the inner surface of the insulating substrate, and a thin film conductor is formed in a region including at least the inner peripheral surface of the connection hole. A capacitance type semiconductor including a step of electrically connecting to a semiconductor substrate to produce a cover, and a step of facing the fixed electrode to a mass portion and joining the cover to at least one surface of the support body. Acceleration sensor manufacturing method.
【請求項12】 請求項1,2,3,4,5,6,7,
8,9又は10に記載の静電容量型半導体加速度センサ
を製造するための方法であって、 絶縁性基板の外面に半導体基板を接合した後、当該絶縁
性基板を貫通すると共に当該半導体基板によって封止さ
れるようにして接続孔を設け、当該絶縁性基板の内面に
固定電極を形成すると共に少なくとも接続孔の内周面を
含む領域に薄膜導電体を形成し、当該薄膜導電体によっ
て固定電極と半導体基板とを電気的に接続してカバーを
作製する工程と、 前記固定電極をマス部と対向させて前記支持体の少なく
とも一方の面に前記カバーを接合させる工程とを含む静
電容量型半導体加速度センサの製造方法。
12. The method according to claim 1, 2, 3, 4, 5, 6, 7,
A method for manufacturing the capacitance type semiconductor acceleration sensor according to 8, 9, or 10, comprising: bonding a semiconductor substrate to an outer surface of an insulating substrate, penetrating the insulating substrate, and using the semiconductor substrate. A connection hole is provided so as to be sealed, a fixed electrode is formed on the inner surface of the insulating substrate, and a thin film conductor is formed in a region including at least the inner peripheral surface of the connection hole, and the fixed electrode is formed by the thin film conductor. And a semiconductor substrate are electrically connected to each other to form a cover, and a step of facing the fixed electrode to the mass portion and joining the cover to at least one surface of the support body is a capacitive type. Manufacturing method of semiconductor acceleration sensor.
【請求項13】 請求項1,2,3,4,5,6,7,
8,9又は10に記載の静電容量型半導体加速度センサ
を製造するための方法であって、 前記絶縁性基板に貫通させて接続孔を設けた後、当該絶
縁性基板の内面に固定電極を形成すると共に接続孔の内
周面から当該絶縁性基板の外面にかけて薄膜導電体を形
成し、この接続孔を封止するように当該絶縁性基板の外
面に半導体基板を接合し、当該薄膜導電体によって固定
電極と半導体基板とを電気的に接続してカバーを作製す
る工程と、 前記固定電極をマス部と対向させて前記支持体の少なく
とも一方の面に前記カバーを接合させる工程とを含む静
電容量型半導体加速度センサの製造方法。
13. The method according to claim 1, 2, 3, 4, 5, 6, 7,
A method for manufacturing the electrostatic capacity type semiconductor acceleration sensor according to 8, 9, or 10, wherein a fixed electrode is provided on an inner surface of the insulating substrate after the insulating substrate is provided with a connection hole. Forming and forming a thin film conductor from the inner peripheral surface of the connection hole to the outer surface of the insulating substrate, and bonding the semiconductor substrate to the outer surface of the insulating substrate to seal the connection hole, the thin film conductor A step of electrically connecting the fixed electrode and the semiconductor substrate with each other to produce a cover, and a step of facing the fixed electrode to the mass part and joining the cover to at least one surface of the support. Manufacturing method of capacitance type semiconductor acceleration sensor.
【請求項14】 弾性を有するビームによって支持され
たマス部を支持体に設け、当該支持体の両面にそれぞれ
絶縁性基板を接合し、可動電極となるマス部と対向させ
て少なくとも一方の絶縁性基板の内面に固定電極を設け
た静電容量型半導体加速度センサにおいて、 前記固定電極を設けられた絶縁性基板に貫通させて接続
孔を設けると共に当該接続孔を封止するように当該絶縁
性基板の外面に厚膜導電体を形成し、少なくとも当該接
続孔の内周面を含む領域に形成された薄膜導電体によっ
て前記固定電極と前記厚膜導電体とを電気的に接続した
ことを特徴とする静電容量型半導体加速度センサ。
14. A mass portion supported by a beam having elasticity is provided on a support body, and an insulating substrate is bonded to both surfaces of the support body so as to face the mass portion to be a movable electrode and at least one of the insulating properties is provided. In a capacitance type semiconductor acceleration sensor having a fixed electrode provided on an inner surface of a substrate, the insulating substrate is provided so as to penetrate the insulating substrate provided with the fixed electrode to form a connection hole and to seal the connection hole. A thick-film conductor is formed on the outer surface of, and the fixed electrode and the thick-film conductor are electrically connected by a thin-film conductor formed in a region including at least the inner peripheral surface of the connection hole, Capacitive semiconductor acceleration sensor.
【請求項15】 前記厚膜導電体を、薄膜導電体を介し
て前記固定電極と導通した領域と、前記固定電極と電気
的に絶縁されている領域とに分割形成したことを特徴と
する請求項14に記載の静電容量型半導体加速度セン
サ。
15. The thick film conductor is divided into a region electrically connected to the fixed electrode through a thin film conductor and a region electrically insulated from the fixed electrode. Item 15. The capacitance type semiconductor acceleration sensor according to Item 14.
【請求項16】 固定電極と導通した前記領域と固定電
極と電気的に絶縁された前記領域とを結線して検出電極
としたことを特徴とする請求項15に記載の静電容量型
半導体加速度センサ。
16. The capacitance type semiconductor acceleration according to claim 15, wherein the region electrically connected to the fixed electrode and the region electrically insulated from the fixed electrode are connected to form a detection electrode. Sensor.
【請求項17】 固定電極と導通した前記領域を検出電
極とし、固定電極と電気的に絶縁された前記領域を接地
電極としたことを特徴とする請求項15に記載の静電容
量型半導体加速度センサ。
17. The capacitance type semiconductor acceleration according to claim 15, wherein the region electrically connected to the fixed electrode is a detection electrode, and the region electrically insulated from the fixed electrode is a ground electrode. Sensor.
【請求項18】 同一材料及び同一形成手段により形成
された前記固定電極及び前記薄膜導電体を有する請求項
14,15,16又は17に記載の静電容量型半導体加
速度センサ。
18. The capacitance type semiconductor acceleration sensor according to claim 14, 15, 16 or 17, wherein the fixed electrode and the thin film conductor are formed of the same material and the same forming means.
【請求項19】 前記可動電極は、前記絶縁性基板を貫
通させて設けた引出し孔より電気的に引き出されている
ことを特徴とする請求項14,15,16,17又は1
8に記載の静電容量型半導体加速度センサ。
19. The movable electrode is electrically drawn out from an extraction hole provided through the insulating substrate.
8. A capacitance type semiconductor acceleration sensor according to item 8.
【請求項20】 前記可動電極の電極引き出し部を前記
支持体の表面に設け、当該電極引き出し部を前記絶縁性
基板から露出させていることを特徴とする請求項14,
15,16,17,18又は19に記載の静電容量型半
導体加速度センサ。
20. The electrode lead-out portion of the movable electrode is provided on the surface of the support, and the electrode lead-out portion is exposed from the insulating substrate.
15. A capacitance type semiconductor acceleration sensor according to 15, 16, 17, 18 or 19.
【請求項21】 前記支持体及び前記絶縁性基板に囲ま
れた空間を真空状態、減圧状態若しくはガス封入状態で
封止したことを特徴とする請求項1,2,3,4,5,
6,7,8,9,10,14,15,16,17,1
8,19又は20に記載の静電容量型半導体加速度セン
サ。
21. The space surrounded by the support and the insulating substrate is sealed in a vacuum state, a reduced pressure state or a gas filled state.
6,7,8,9,10,14,15,16,17,1
8. The capacitance type semiconductor acceleration sensor according to 8, 19, or 20.
【請求項22】 請求項1,2,3,4,5,6,7,
8,9,10,14,15,16,17,18,19,
20及び21に記載の静電容量型半導体加速度センサを
回路基板に実装した構造であって、 回路基板に形成された回路パターン部に前記半導体基板
もしくは厚膜導電体を接合させることにより、前記加速
度センサを回路基板に固定すると共に前記固定電極を回
路パターン部に接続させたことを特徴とする静電容量型
半導体加速度センサの実装構造。
22. Claims 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 14, 15, 16, 17, 18, 19,
20. A structure in which the capacitance type semiconductor acceleration sensor according to 20 or 21 is mounted on a circuit board, wherein the semiconductor substrate or the thick film conductor is bonded to a circuit pattern portion formed on the circuit board to obtain the acceleration. A mounting structure for a capacitance type semiconductor acceleration sensor, characterized in that the sensor is fixed to a circuit board and the fixed electrode is connected to a circuit pattern portion.
JP5085366A 1993-03-18 1993-03-18 Capacitance-type semiconductor acceleration sensor and its manufacture as well as mounting structure of the sensor Pending JPH06273442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5085366A JPH06273442A (en) 1993-03-18 1993-03-18 Capacitance-type semiconductor acceleration sensor and its manufacture as well as mounting structure of the sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5085366A JPH06273442A (en) 1993-03-18 1993-03-18 Capacitance-type semiconductor acceleration sensor and its manufacture as well as mounting structure of the sensor

Publications (1)

Publication Number Publication Date
JPH06273442A true JPH06273442A (en) 1994-09-30

Family

ID=13856726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5085366A Pending JPH06273442A (en) 1993-03-18 1993-03-18 Capacitance-type semiconductor acceleration sensor and its manufacture as well as mounting structure of the sensor

Country Status (1)

Country Link
JP (1) JPH06273442A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215160A (en) * 2000-02-01 2001-08-10 Nagano Keiki Co Ltd Dynamic physical quantity converter
JP2010169535A (en) * 2009-01-22 2010-08-05 Akebono Brake Ind Co Ltd Physical quantity sensor and method of manufacturing the same
JP2010171203A (en) * 2009-01-22 2010-08-05 Akebono Brake Ind Co Ltd Processing device
WO2012102292A1 (en) * 2011-01-27 2012-08-02 パナソニック株式会社 Method for producing electrostatic capacitance device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215160A (en) * 2000-02-01 2001-08-10 Nagano Keiki Co Ltd Dynamic physical quantity converter
JP2010169535A (en) * 2009-01-22 2010-08-05 Akebono Brake Ind Co Ltd Physical quantity sensor and method of manufacturing the same
JP2010171203A (en) * 2009-01-22 2010-08-05 Akebono Brake Ind Co Ltd Processing device
WO2012102292A1 (en) * 2011-01-27 2012-08-02 パナソニック株式会社 Method for producing electrostatic capacitance device

Similar Documents

Publication Publication Date Title
US5095752A (en) Capacitance type accelerometer
JP2786321B2 (en) Semiconductor capacitive acceleration sensor and method of manufacturing the same
US6263735B1 (en) Acceleration sensor
JP2610464B2 (en) Capacitor type pressure sensor and pressure sensor group
EP0156757B1 (en) Capacitive pressure sensor with low parasitic capacitance
US6300676B1 (en) Small size electronic part and a method for manufacturing the same, and a method for forming a via hole for use in the same
JPH0688837A (en) Acceleration sensor
JP3205414B2 (en) Pressure micro sensor
US7799595B2 (en) Semiconductor physical quantity sensor of electrostatic capacitance type and method for manufacturing the same
JP2728237B2 (en) Capacitive acceleration sensor
JP3405108B2 (en) External force measuring device and manufacturing method thereof
JPH06273442A (en) Capacitance-type semiconductor acceleration sensor and its manufacture as well as mounting structure of the sensor
JPH07263709A (en) Dynamic quantity sensor and airbag system
JP3605846B2 (en) Capacitive acceleration sensor and capacitive pressure sensor
JPH10177034A (en) Capacitance type acceleration sensor and its manufacture
JP4356217B2 (en) Electronic component manufacturing method and electronic component
JPS63175482A (en) Pressure sensor
JP2000304764A (en) Semiconductor dynamic value sensor and its manufacture
JPH08254474A (en) Semiconductor sensor
JPH06289049A (en) Acceleration sensor
JPH06324077A (en) Semiconductor acceleration sensor and manufacture thereof
JPH1022512A (en) Capacitance type pressure sensor
JP2713241B2 (en) Acceleration sensor and method of manufacturing the same
JP2022071552A (en) Mems module and method for manufacturing the same
JPH07113817A (en) Acceleration sensor