JPH06271975A - High strength steel excellent in hydrogen embrittlement resistance and its production - Google Patents
High strength steel excellent in hydrogen embrittlement resistance and its productionInfo
- Publication number
- JPH06271975A JPH06271975A JP6041093A JP6041093A JPH06271975A JP H06271975 A JPH06271975 A JP H06271975A JP 6041093 A JP6041093 A JP 6041093A JP 6041093 A JP6041093 A JP 6041093A JP H06271975 A JPH06271975 A JP H06271975A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen embrittlement
- steel
- strength steel
- embrittlement resistance
- martensite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、焼入れ・焼戻し処理を
しなくとも高い強度を有し且つ耐水素脆化特性に優れた
鋼材およびその製法に関し、この鋼材は、潮風等の腐食
環境に曝される橋梁用等の高強度ボルト鋼等として有用
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material having high strength and excellent hydrogen embrittlement resistance even if it is not hardened and tempered, and its manufacturing method. The steel material is exposed to a corrosive environment such as sea breeze. It is useful as a high-strength bolt steel for bridges.
【0002】[0002]
【従来の技術】金属材料に応力が作用してからある時間
経過後に生じる遅れ破壊は、腐食性環境下で起こるもの
と非腐食性環境下で起こるものがあり、それらの原因は
複雑に絡み合って作用しているため、上記破壊原因を特
定することは難しい。しかし大部分の鋼材の遅れ破壊に
は水素脆化現象が何らかの形で作用していると言われて
いる。2. Description of the Related Art There are two types of delayed fracture that occur in a corrosive environment and a non-corrosive environment, which occur after a certain period of time has elapsed since a metal material was stressed, and their causes are complicatedly entangled. Since it is working, it is difficult to identify the cause of the destruction. However, it is said that the hydrogen embrittlement phenomenon acts in some way on the delayed fracture of most steel materials.
【0003】一方水素脆化を抑制するための制御因子と
しては、焼戻し温度、金属組織、材料硬さ、結晶粒度、
合金元素の種類や含有量等の関与が一応認められている
ものの、それらの影響度が定量化されている訳ではな
く、現実には鋼材の種類等に応じてその都度試行錯誤的
に水素脆化防止手段を講じているのが実情である。On the other hand, as control factors for suppressing hydrogen embrittlement, tempering temperature, metal structure, material hardness, grain size,
Although the types of alloying elements and their contents are tentatively recognized, their degree of influence is not quantified.In reality, hydrogen embrittlement occurs on a trial and error basis depending on the type of steel. The reality is that measures are being taken to prevent this.
【0004】水素脆化を主原因とする遅れ破壊が問題と
なる代表的なものとして、橋梁用等に用いられる高強度
ボルト鋼が挙げられ、これら高強度ボルト鋼を含めた引
張強さが120kgf/mm2 程度以上の焼戻し鋼材では、遅
れ破壊がしばしば大きな問題となる。このため、例えば
特開昭58−113317号公報、特開平1−1917
62号公報等には、焼戻し処理を行なうことを前提とし
て鋼材の成分組成や熱処理法等に工夫を加える技術が提
案されているが、これらの方法でも水素脆化による遅れ
破壊の危険が完全に払拭される訳ではなく、しかもそれ
らの適用は狭い範囲に限定される。しかもこれらの方法
は、いずれも加工後の焼入れ・焼戻しの熱処理を前提と
する方法であり、各種加工品のコストを低減する意味か
ら、焼入れ・焼戻しの熱処理を省略した場合でも優れた
耐水素脆化特性を示す様な高強度鋼材の開発が求められ
ている。As a typical example of delayed fracture mainly caused by hydrogen embrittlement, there is high strength bolt steel used for bridges and the like, and the tensile strength including these high strength bolt steel is 120 kgf. Delayed fracture is often a major problem in tempered steels with a hardness of about / mm 2 or more. Therefore, for example, Japanese Patent Laid-Open No. 58-113317 and Japanese Patent Laid-Open No. 1-1917
Japanese Patent Laid-Open No. 62-62, etc. proposes a technique in which the composition of the steel material, the heat treatment method, and the like are devised on the premise that tempering treatment is performed. However, even with these methods, the risk of delayed fracture due to hydrogen embrittlement is completely eliminated. It is not wiped out, and their application is limited to a narrow range. Moreover, all of these methods are premised on heat treatment for quenching and tempering after processing, and in order to reduce the cost of various processed products, they are excellent in hydrogen embrittlement resistance even if the heat treatment for quenching and tempering is omitted. Development of high-strength steel materials that exhibit chemical properties is required.
【0005】[0005]
【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、従来
例の様に焼入れ・焼戻しの熱処理をしなくとも優れた耐
水素脆化特性を発揮し得る様な高強度鋼およびその製法
を提供しようとするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to obtain excellent hydrogen resistance without heat treatment such as quenching and tempering as in the conventional example. An object of the present invention is to provide a high-strength steel capable of exhibiting embrittlement characteristics and a manufacturing method thereof.
【0006】[0006]
【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る高強度鋼の構成は、C:0.01
〜0.3%(以下、特記しない限り重量%を意味す
る)、Si:0.01〜2.5%、Mn:0.01〜
3.0%およびAl:0.005〜0.1%を含有し、
残部が鉄および不可避不純物からなり、組織がマルテン
サイトまたはベイナイトもしくはそれらの混合組織であ
るところに要旨を有するものである。The structure of the high-strength steel according to the present invention, which was able to solve the above-mentioned problems, has a composition of C: 0.01.
To 0.3% (hereinafter, unless otherwise specified, means% by weight), Si: 0.01 to 2.5%, Mn: 0.01 to
3.0% and Al: 0.005-0.1%,
The balance is composed of iron and unavoidable impurities, and the main point is that the structure is martensite, bainite, or a mixed structure thereof.
【0007】尚、上記の鋼材として、更に他の元素とし
て、Cu:0.1〜3.0%、Ni:0.1〜3.0
%、Cr:0.1〜3.0%、Mo:0.05〜1.0
%、Nb:0.01〜0.2%、V:0.01〜0.5
%、Ti:0.01〜0.2%およびB:0.0003
〜0.005%よりなる群から選択される少なくも1種
の元素を含み、あるいはPとSが夫々0.02%以下に
制限されたものは一段と優れた耐水素脆化特性を示す。
また該鋼材の組織形態がラス状を呈し、ラス間に体積率
で1〜30%の残留オーステナイトを含むものは、優れ
た耐水素脆化特性をより確実に発揮すると共に、強度に
おいても非常に優れたものとなる。As the above steel materials, Cu: 0.1 to 3.0% and Ni: 0.1 to 3.0 are added as other elements.
%, Cr: 0.1 to 3.0%, Mo: 0.05 to 1.0
%, Nb: 0.01 to 0.2%, V: 0.01 to 0.5
%, Ti: 0.01 to 0.2% and B: 0.0003
A material containing at least one element selected from the group consisting of .about.0.005% or having P and S each limited to 0.02% or less exhibits further excellent hydrogen embrittlement resistance.
Further, a steel material having a lath-like structure and containing retained austenite in a volume ratio of 1 to 30% between the laths more reliably exhibits excellent hydrogen embrittlement resistance and is very strong. It will be excellent.
【0008】また、本発明に係る高強度鋼の製法とは、
上記成分組成の要件を満たす鋼材を使用し、熱間圧延あ
るいはその後の熱間鍛造または熱処理を行なった後、連
続冷却し、或は恒温変態することにより、組織の主体を
マルテンサイトまたはベイナイトもしくはそれらの混合
組織とするところに要旨を有するものである。The method for producing high-strength steel according to the present invention is
Using a steel material satisfying the requirements of the above component composition, after hot rolling or hot forging or heat treatment after that, continuous cooling, or by isothermal transformation, the main constituent of the structure martensite or bainite or those It has a gist in the place where it is a mixed tissue of.
【0009】[0009]
【作用】まず本発明に係る鋼材の成分組成を定めた理由
を説明する。 C:0.01〜0.3% Cは強化元素として欠くことのできない成分であり、1
20kgf/mm2 レベル以上の強度を確保するには0.01
%以上含有させなければならない。しかし多過ぎると非
常に脆弱なレンズ状マルテンサイトが生成して靭性が悪
くなるので0.3%以下に抑えなければならない。Cの
より好ましい含有量は0.03〜0.25%の範囲であ
る。The function of the composition of the steel material according to the present invention will be described first. C: 0.01 to 0.3% C is a component essential as a strengthening element, and 1
0.01 to secure strength above 20kgf / mm 2 level
% Must be contained. However, if it is too much, very brittle lenticular martensite is formed and the toughness deteriorates, so it must be suppressed to 0.3% or less. The more preferable content of C is in the range of 0.03 to 0.25%.
【0010】Si:0.01〜2.5% Siは脱酸剤として作用する他、強化元素としても有効
な元素であり、それらの効果を有効に発揮させるには
0.01%以上含有させなければならない。しかし多く
なり過ぎると靭性に悪影響が現れてくるので2.5%を
上限として定めた。Siのより好ましい含有率は0.1
〜1.0の範囲である。Si: 0.01 to 2.5% Si acts as a deoxidizing agent and is also an effective element as a strengthening element. To effectively exert these effects, Si is contained in an amount of 0.01% or more. There must be. However, if too much, the toughness will be adversely affected, so 2.5% was set as the upper limit. The more preferable content rate of Si is 0.1.
The range is from 1.0 to 1.0.
【0011】Mn:0.01〜3.0% Mnは、上記Siと同様に溶製時の脱酸剤として作用す
るほか強化元素としても作用するものであり、0.01
%以上含有させる必要がある。しかし多過ぎると介在物
量が増加し、特に被削性が悪化するので3.0%以下に
抑えなければならない。Mnのより好ましい含有量は
0.1〜2.5%の範囲である。Mn: 0.01 to 3.0% Mn acts as a deoxidizing agent during melting as well as Si, and acts as a strengthening element.
% Or more must be contained. However, if it is too large, the amount of inclusions increases, and especially machinability deteriorates, so it must be suppressed to 3.0% or less. The more preferable content of Mn is in the range of 0.1 to 2.5%.
【0012】Al:0.005〜0.1% Alはオーステナイト結晶粒の粗大化を防止すると共
に、Nを固定して歪時効による脆化を防止するのに有効
であり、それらの効果は0.005%以上含有させるこ
とによって有効に発揮される。しかしそれらの効果は
0.1%で飽和する。Al: 0.005 to 0.1% Al is effective for preventing coarsening of austenite crystal grains and for fixing N to prevent embrittlement due to strain aging. It is effectively exhibited by containing 0.005% or more. However, their effects saturate at 0.1%.
【0013】本発明に係る鋼材の必須成分は上記の通り
であり、残部は鉄と不可避不純物であるが、上記成分に
加えてCu:0.1〜3.0%、Ni:0.1〜3.0
%、Cr:0.1〜3.0%、Mo:0.05〜1.0
%、Nb:0.01〜0.2%、V:0.01〜0.5
%、Ti:0.01〜0.2%およびB:0.0003
〜0.005%よりなる群から選択される少なくも1種
を含有させることにより、物性を更に改善することが可
能である。The essential components of the steel material according to the present invention are as described above, and the balance is iron and inevitable impurities. In addition to the above components, Cu: 0.1-3.0%, Ni: 0.1-0.1%. 3.0
%, Cr: 0.1 to 3.0%, Mo: 0.05 to 1.0
%, Nb: 0.01 to 0.2%, V: 0.01 to 0.5
%, Ti: 0.01 to 0.2% and B: 0.0003
By incorporating at least one selected from the group consisting of 0.005%, it is possible to further improve the physical properties.
【0014】即ちCu,Ni,Cr,Moは焼入れ性の
向上に有効であると共に、強度、靭性、耐食性の向上に
も有効であり、特に厚肉材や太径材の場合にそれらの効
果が顕著に発揮され、こうした効果はCu,Ni,Cr
は夫々0.1%以上、Moは0.05%以上含有させる
ことによって有効に発揮される。しかしこうした効果
は、Cu,Ni,Crの場合夫々3.0%、Moは1.
0%で飽和する。また、Nb、Vは、それぞれ0.01
%以上含有させることによってオーステナイト結晶粒の
粗大化防止や焼入れ性向上に有効であり、強度や靭性を
高める作用も有しており、更に炭窒化物の析出により耐
水素脆化特性を高める上でも有効に作用する。しかしそ
れらの効果は、Nbは0.2%、Vは0.5%で飽和す
るのでそれ以上の添加は経済的に無駄である。That is, Cu, Ni, Cr, and Mo are effective not only for improving hardenability but also for improving strength, toughness, and corrosion resistance. Particularly, in the case of thick-walled materials and large-diameter materials, those effects are effective. Remarkably exerted, and such effects are Cu, Ni, Cr
Are effectively exhibited by containing 0.1% or more and Mo by 0.05% or more, respectively. However, such an effect is 3.0% for Cu, Ni and Cr, and 1.
Saturate at 0%. Nb and V are each 0.01
% Is effective in preventing coarsening of austenite grains and improving hardenability, and also has an effect of increasing strength and toughness. Further, in order to enhance hydrogen embrittlement resistance by precipitation of carbonitride, It works effectively. However, these effects saturate at 0.2% of Nb and 0.5% of V, so that addition of more than that is economically wasteful.
【0015】Tiは窒素をオーステナイト中で固定し、
B添加による焼入れ性を高めるほかTi炭窒化物の析出
により耐水素脆化感受性を向上させる作用を有してお
り、それらの効果は0.01%以上含有させることによ
って有効に発揮される。しかし0.2%を超えると巨大
な窒化物や炭化物が生成して靭性を悪化させる。Ti fixes nitrogen in austenite,
In addition to improving the hardenability by adding B, it has the effect of improving the hydrogen embrittlement susceptibility by the precipitation of Ti carbonitride, and these effects are effectively exhibited by containing 0.01% or more. However, if it exceeds 0.2%, huge nitrides and carbides are formed to deteriorate the toughness.
【0016】Bは、亜共析鋼において焼入れ性を向上さ
せるのに有効であり、特にオーステナイト粒径が小さい
時の焼入れ性向上に有効に作用する。そしてこうした効
果が最も有効に発揮されるのは、Bの含有量を0.00
03〜0.005%の範囲に設定したときである。B is effective for improving the hardenability of the hypoeutectoid steel, and particularly effective for improving the hardenability when the austenite grain size is small. And such an effect is most effectively exhibited when the content of B is 0.00
It is when it is set in the range of 03 to 0.005%.
【0017】ところで本発明に係る鋼材中には不可避不
純物としてP、S、N、O等が微量含まれるが、これら
のうちP、Nは結晶粒界に偏析して鋼材の脆化を促進せ
しめ、多量に含まれるときは耐水素脆化特性を著しく悪
化させるので、夫々0.02%以下に抑えることが望ま
れる。The steel material according to the present invention contains trace amounts of P, S, N, O, etc. as unavoidable impurities. Of these, P and N segregate at the grain boundaries to promote embrittlement of the steel material. When contained in a large amount, the hydrogen embrittlement resistance is significantly deteriorated, so it is desirable to suppress the content to 0.02% or less.
【0018】上記成分組成の要件を満たす鋼材の熱間圧
延後あるいはその後の熱処理後の組織は、冷却条件、素
材の大きさ等によって様々に変化する。しかし本発明者
等が研究によって確認したところによると、上記成分組
成の鋼材は炭素量が少ないため、組織中に初析フェライ
トが含まれる時は十分な強度を発揮し得なくなり、この
様な低炭素量でも十分な強度を確保するには、組織の主
体をマルテンサイトまたはベイナイト若しくはそれらの
混合組織にしなければならないことが明らかとなった。
またこの金属組織のうち、ラス状組織で該ラス間に体積
率で1〜30%の範囲のオーステナイトを含むものは、
水素による亀裂伝播を阻止する作用をすと共に、該残留
オーステナイトは水素の吸収サイトとなり、耐水素脆化
特性の向上に優れた効果を発揮することが分かった。The structure of the steel material satisfying the above-mentioned compositional requirements after hot rolling or after the subsequent heat treatment varies variously depending on the cooling conditions, the size of the material and the like. However, according to the results of the research conducted by the present inventors, the steel having the above composition has a small amount of carbon, so that when the pro-eutectoid ferrite is contained in the structure, sufficient strength cannot be exerted, and such low composition It was clarified that the main constituent of the structure must be martensite, bainite, or a mixed structure thereof in order to secure sufficient strength even with the carbon content.
Further, among the metallographic structures, a lath-shaped structure containing austenite in a volume ratio of 1 to 30% between the laths is
It was found that the retained austenite acts as an absorption site for hydrogen and has an excellent effect in improving the hydrogen embrittlement resistance, as well as preventing crack propagation due to hydrogen.
【0019】この様に本発明では、鋼材の成分組成を特
定すると共に、熱間圧延後またはその後の熱間鍛造もし
は熱処理後の組織をマルテンサイトまたはベイナイトも
しくはそれらの混合組織とし、更に好ましくは、該金属
組織形態がラス状を呈し、ラス間に体積率で1〜30%
の残留オーステナイトを含むものとすることによって、
耐水素脆化特性を改善し、焼入れ・焼戻し処理なしでも
非常に優れた耐遅れ割れ性を発揮する高強度鋼材を提供
し得ることになった。As described above, in the present invention, the composition of the steel material is specified, and the structure after hot rolling or after hot forging or heat treatment is made into martensite or bainite or a mixed structure thereof, and more preferably , The metal structure has a lath shape, and the volume ratio between the laths is 1 to 30%.
By including the retained austenite of
It has become possible to provide a high-strength steel material having improved hydrogen embrittlement resistance and exhibiting extremely excellent delayed crack resistance even without quenching / tempering treatment.
【0020】次に、上記金属組織を有する鋼材の製造条
件について説明する。本発明を実施するに当たっては、
上記成分組成を満足する鋼材を、圧延後連続冷却あるい
は等温変態処理する。また熱間圧延後の冷却に当たって
は、圧延材の肉厚や合金元素添加量に応じて直接、水、
油あるいは空気もしくはこれらに近い冷却能を有する冷
却媒体中で連続冷却するか、あるいは鉛、塩浴もしくは
流動層またはそれらに近い冷却能を有する冷却媒体中で
等温変態せしめ、組織の主体をマルテンサイトもしくは
ベイナイトあるいはそれらの混合組織とする。Next, the manufacturing conditions of the steel material having the above metal structure will be described. In carrying out the present invention,
A steel material satisfying the above component composition is subjected to continuous cooling or isothermal transformation after rolling. When cooling after hot rolling, depending on the thickness of the rolled material and the amount of alloying elements added, water,
Continuous cooling in oil or air or a cooling medium having a cooling capacity close to these, or isothermal transformation in lead, a salt bath or a fluidized bed or a cooling medium having a cooling capacity close to them, the main constituent of the structure is martensite Alternatively, bainite or a mixed structure thereof is used.
【0021】また、通常の熱間圧延処理によりオーステ
ナイト化処理した後、圧延材の肉厚や合金元素の添加量
等に応じて上記の連続冷却或は等温変態処理を行ない、
組織の主体をマルテンサイトもしくはベイナイトあるい
はそれらの混合組織とすることも可能である。更に、熱
間圧延材や熱処理材共に転位密度を極端に減らさない限
度で焼戻し処理を加えることもできる。更に、耐水素脆
化特性を一段と高めるため、組織形態がラス状で且つラ
ス間に体積率で1〜30%の範囲の残留オーステナイト
を含む組織が得られる様な冷却速度を採用することが好
ましい。Further, after the austenitizing treatment by the usual hot rolling treatment, the above-mentioned continuous cooling or isothermal transformation treatment is carried out depending on the thickness of the rolled material, the added amount of alloying elements, etc.
The main body of the structure can be martensite, bainite, or a mixed structure thereof. Further, tempering treatment can be applied to both the hot-rolled material and the heat-treated material as long as the dislocation density is not extremely reduced. Furthermore, in order to further improve the hydrogen embrittlement resistance, it is preferable to adopt a cooling rate such that a structure having a lath shape and a structure containing retained austenite in a volume ratio of 1 to 30% between the laths can be obtained. .
【0022】次に本発明の実施例を示すが、本発明はも
とより下記実施例によって制限を受けるものではなく、
前後記の趣旨に適合し得る範囲で適当に変更を加えて実
施することはいずれも本発明の技術的範囲に含まれる。Next, examples of the present invention will be shown. However, the present invention is not limited to the following examples, and
It is within the technical scope of the present invention to make appropriate modifications and implement them within a range that is compatible with the spirit of the preceding and following statements.
【0023】[0023]
【実施例】表1に示す成分組成の鋼材を常法により溶
解、鍛造し、圧延用素材とした。尚、表1中の従来鋼
は、熱間圧延または熱間鍛造後焼入れ・焼戻し処理を施
して使用される調質鋼である。この圧延素材を熱間圧延
により15〜30mm厚に圧延した後、水冷して得たもの
の引張強さと耐水素脆化特性を表2に示す。但し、水素
脆化特性は切欠係数10を有する供試材を純水中で応力
付加し、100時間の遅れ破壊強さで評価した。[Examples] Steel materials having the compositions shown in Table 1 were melted and forged by a conventional method to prepare a material for rolling. The conventional steel in Table 1 is a heat-treated steel that is used after being subjected to quenching / tempering treatment after hot rolling or hot forging. Table 2 shows the tensile strength and hydrogen embrittlement resistance of the rolled material obtained by hot rolling to a thickness of 15 to 30 mm and then water cooling. However, the hydrogen embrittlement property was evaluated by applying a stress to a test material having a notch coefficient of 10 in pure water and by delaying the fracture strength for 100 hours.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【表2】 [Table 2]
【0026】表1、2からも明らかである様に、本発明
の要件を満たす実施例鋼は、従来鋼及び比較鋼に較べて
同等もしくはそれ以上の耐遅れ破壊特性を有しており、
特に高強度側でその効果が著しい。前記表1、2に示し
た鋼材のうちNo.3,14,20の鋼材について、ミ
クロ組織および製造条件を変えた時の引張強さ並びに遅
れ破壊強さを調べ、表3に示す結果を得た。As is clear from Tables 1 and 2, the example steels satisfying the requirements of the present invention have delayed fracture resistance equivalent to or higher than that of the conventional steel and the comparative steel,
The effect is particularly remarkable on the high strength side. Of the steel materials shown in Tables 1 and 2, No. With respect to the steel materials Nos. 3, 14, and 20, the tensile strength and the delayed fracture strength when the microstructure and the manufacturing conditions were changed were examined, and the results shown in Table 3 were obtained.
【0027】[0027]
【表3】 [Table 3]
【0028】表3からも明らかである様に、本発明鋼材
は、圧延材、熱間圧延材、熱処理材のいずれにおいても
優れた耐遅れ破壊特性を有していることが分かる。ま
た、ミクロ組織がラス状である場合は、粒状組織の場合
に較べて同一引張強さレベルで比較した耐遅れ破壊特性
に優れたものであることが分かる。As is clear from Table 3, the steel material of the present invention has excellent delayed fracture resistance in any of rolled material, hot rolled material and heat treated material. Further, it can be seen that when the microstructure is lath-shaped, it has superior delayed fracture resistance compared at the same tensile strength level as compared with the case of a granular structure.
【0029】[0029]
【発明の効果】本発明は以上の様に構成されており、鋼
材の成分組成を特定すると共に、熱間圧延、熱間鍛造ま
たは熱処理後の組織の主体を低炭素量のマルテンサイト
またはベイナイトもしくはそれらの混合組織とし、より
好ましくは組織形態がラス状で且つ該ラス間に体積率で
1〜30%の範囲の残留オーステナイトを含む組織とす
ることによって、焼入れ・焼戻しの熱処理なしでも、従
来鋼に較べて優れた耐水素脆化特性を有する鋼材を提供
し得ることになった。EFFECT OF THE INVENTION The present invention is constituted as described above, and the composition of the steel material is specified, and the main body of the structure after hot rolling, hot forging or heat treatment is martensite or bainite of low carbon content or By forming a mixed structure thereof, more preferably a structure having a lath shape and containing retained austenite in the range of 1 to 30% by volume between the laths, a conventional steel can be obtained even without heat treatment for quenching and tempering. Therefore, a steel material having excellent hydrogen embrittlement resistance can be provided.
Claims (6)
ない限り重量%を意味する)、Si:0.01〜2.5
%、Mn:0.01〜3.0%およびAl:0.005
〜0.1%を含有し、残部が鉄および不可避不純物から
なり、組織がマルテンサイトまたはベイナイトもしくは
それらの混合組織であることを特徴とする耐水素脆化特
性に優れた高強度鋼。1. C: 0.01 to 0.3% (hereinafter referred to as weight% unless otherwise specified), Si: 0.01 to 2.5.
%, Mn: 0.01 to 3.0% and Al: 0.005
A high-strength steel excellent in hydrogen embrittlement resistance, characterized by containing 0.1% by weight, the balance being iron and inevitable impurities, and having a structure of martensite, bainite, or a mixed structure thereof.
%、Ni:0.1〜3.0%、Cr:0.1〜3.0
%、Mo:0.05〜1.0%、Nb:0.01〜0.
2%、V:0.01〜0.5%、Ti:0.01〜0.
2%およびB:0.0003〜0.005%よりなる群
から選択される少なくも1種の元素を含むものである請
求項1記載の高強度鋼。2. As another element, Cu: 0.1 to 3.0
%, Ni: 0.1 to 3.0%, Cr: 0.1 to 3.0
%, Mo: 0.05 to 1.0%, Nb: 0.01 to 0.
2%, V: 0.01 to 0.5%, Ti: 0.01 to 0.
The high-strength steel according to claim 1, which contains at least one element selected from the group consisting of 2% and B: 0.0003 to 0.005%.
下に制限されたものである請求項1または2記載の高強
度鋼。3. The high-strength steel according to claim 1, wherein P: 0.02% or less and S: 0.02% or less.
率で1〜30%の残留オーステナイトを含むものである
請求項1〜3のいずれかに記載の高強度鋼。4. The high-strength steel according to any one of claims 1 to 3, wherein the microstructure is lath-like and contains 1-30% by volume of retained austenite between the laths.
分組成の鋼材を使用し、熱間圧延あるいはその後の熱間
鍛造または熱処理を行なった後、連続冷却または恒温変
態することにより、組織の主体をマルテンサイトまたは
ベイナイトもしくはそれらの混合組織とすることを特徴
とする耐水素脆化特性に優れた高強度鋼の製法。5. A steel material having the composition defined in any one of claims 1 to 3 is used, which is subjected to hot rolling or subsequent hot forging or heat treatment, followed by continuous cooling or isothermal transformation. A method for producing high-strength steel excellent in hydrogen embrittlement resistance, characterized in that the main constituent of the structure is martensite, bainite, or a mixed structure thereof.
体積率で1〜30%の残留オーステナイトを含むものと
する請求項5記載の製法。6. The method according to claim 5, wherein the microstructure is a lath-like structure, and the retained austenite is contained between the laths in a volume ratio of 1 to 30%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6041093A JPH06271975A (en) | 1993-03-19 | 1993-03-19 | High strength steel excellent in hydrogen embrittlement resistance and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6041093A JPH06271975A (en) | 1993-03-19 | 1993-03-19 | High strength steel excellent in hydrogen embrittlement resistance and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06271975A true JPH06271975A (en) | 1994-09-27 |
Family
ID=13141386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6041093A Withdrawn JPH06271975A (en) | 1993-03-19 | 1993-03-19 | High strength steel excellent in hydrogen embrittlement resistance and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06271975A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006207020A (en) * | 2004-12-28 | 2006-08-10 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance and workability |
JP2006207019A (en) * | 2004-12-28 | 2006-08-10 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance and workability |
JP2006207017A (en) * | 2004-12-28 | 2006-08-10 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance |
CN100410409C (en) * | 2004-12-28 | 2008-08-13 | 株式会社神户制钢所 | Ultrahigh-strength thin steel sheet excellent in hydrogen embrittlement resistance and workability |
JP2009221539A (en) * | 2008-03-17 | 2009-10-01 | Jfe Steel Corp | High-strength steel having excellent delayed cracking resistance |
DE202009009417U1 (en) | 2009-06-30 | 2009-12-03 | Hüttenes-Albertus Chemische Werke GmbH | granules |
EP2628807A1 (en) * | 2012-02-14 | 2013-08-21 | Swiss Steel AG | Tempered pin-shaped connection element and method for producing same |
CN103334055A (en) * | 2013-07-10 | 2013-10-02 | 南京钢铁股份有限公司 | Pipeline steel with resistance against carbon dioxide and hydrogen sulfide corrosion and preparation method thereof |
WO2015045951A1 (en) * | 2013-09-25 | 2015-04-02 | 株式会社神戸製鋼所 | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt |
CN111041165A (en) * | 2019-12-26 | 2020-04-21 | 钢铁研究总院 | Medium manganese oil well pipe steel and preparation method thereof |
-
1993
- 1993-03-19 JP JP6041093A patent/JPH06271975A/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4551815B2 (en) * | 2004-12-28 | 2010-09-29 | 株式会社神戸製鋼所 | Super high strength thin steel sheet with excellent hydrogen embrittlement resistance and workability |
JP2006207019A (en) * | 2004-12-28 | 2006-08-10 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance and workability |
JP2006207017A (en) * | 2004-12-28 | 2006-08-10 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance |
CN100410409C (en) * | 2004-12-28 | 2008-08-13 | 株式会社神户制钢所 | Ultrahigh-strength thin steel sheet excellent in hydrogen embrittlement resistance and workability |
JP2006207020A (en) * | 2004-12-28 | 2006-08-10 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance and workability |
JP2009221539A (en) * | 2008-03-17 | 2009-10-01 | Jfe Steel Corp | High-strength steel having excellent delayed cracking resistance |
DE202009009417U1 (en) | 2009-06-30 | 2009-12-03 | Hüttenes-Albertus Chemische Werke GmbH | granules |
EP2628807A1 (en) * | 2012-02-14 | 2013-08-21 | Swiss Steel AG | Tempered pin-shaped connection element and method for producing same |
CN103334055A (en) * | 2013-07-10 | 2013-10-02 | 南京钢铁股份有限公司 | Pipeline steel with resistance against carbon dioxide and hydrogen sulfide corrosion and preparation method thereof |
JP2015063739A (en) * | 2013-09-25 | 2015-04-09 | 株式会社神戸製鋼所 | Steel for high strength bolt excellent in delayed fracture resistance and bold moldability and bolt |
WO2015045951A1 (en) * | 2013-09-25 | 2015-04-02 | 株式会社神戸製鋼所 | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt |
EP3050987A4 (en) * | 2013-09-25 | 2017-05-31 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt |
US10060015B2 (en) | 2013-09-25 | 2018-08-28 | Kobe Steel, Ltd. | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt formability, and bolt |
CN111041165A (en) * | 2019-12-26 | 2020-04-21 | 钢铁研究总院 | Medium manganese oil well pipe steel and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900006605B1 (en) | Process for making a hogh strength stainless steel having excellent workability and free form weld softening | |
CN110468341B (en) | 1400 MPa-level delayed fracture-resistant high-strength bolt and manufacturing method thereof | |
EP1956108A1 (en) | High-strength steel excellent in delayed fracture resistance characteristics and metal bolts | |
JP3358135B2 (en) | High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same | |
EP0632138B1 (en) | High toughness and high strength untempered steel and processing method thereof | |
WO2001079567A1 (en) | Method for manufacturing high strength bolt excellent in resistance to delayed fracture and to relaxation | |
US4798634A (en) | Corrosion resistant wrought stainless steel alloys having intermediate strength and good machinability | |
JPH06271975A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JP4867638B2 (en) | High-strength bolts with excellent delayed fracture resistance and corrosion resistance | |
US3834897A (en) | Low-carbon,high-strength structural steel with good weldability | |
JPS625986B2 (en) | ||
JPH07188840A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
EP0498105B1 (en) | High strength and high toughness stainless steel and method of manufacturing the same | |
JPH0425344B2 (en) | ||
JPH05156409A (en) | High-strength martensite stainless steel having excellent sea water resistance and production thereof | |
JP2828754B2 (en) | Manufacturing method of low yield ratio 70kg / fmm / mm2 upper grade steel sheet with excellent weldability | |
JPH03243745A (en) | Steel for machine structural use excellent in delayed fracture resistance | |
JP3336877B2 (en) | Method for manufacturing thick high strength steel sheet with excellent brittle fracture arrestability and weldability | |
JPH02247360A (en) | Martensitic stainless steel having high strength and excellent corrosion resistance and stress corrosion cracking resistance and its manufacture | |
JPH04297548A (en) | High strength and high toughness non-heat treated steel and its manufacture | |
JPH0570890A (en) | Steel for high strength bolt excellent in delayed fracture resistance | |
JP3221309B2 (en) | Steel for machine structure and method of manufacturing the same | |
JPS61272316A (en) | Manufacture of high tension steel having more than 100kgf/mm2 yield strength and superior in stress corrosion cracking resistance | |
JPH04354852A (en) | High hardness shank material or barrel material for high speed steel tool | |
JP2546888B2 (en) | Manufacturing method of high-strength steel sheet with excellent weldability and toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000530 |