Nothing Special   »   [go: up one dir, main page]

JPH06268259A - Gallium nitride compound semiconductor light emitting element - Google Patents

Gallium nitride compound semiconductor light emitting element

Info

Publication number
JPH06268259A
JPH06268259A JP7904693A JP7904693A JPH06268259A JP H06268259 A JPH06268259 A JP H06268259A JP 7904693 A JP7904693 A JP 7904693A JP 7904693 A JP7904693 A JP 7904693A JP H06268259 A JPH06268259 A JP H06268259A
Authority
JP
Japan
Prior art keywords
type
layer
gallium nitride
compound semiconductor
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7904693A
Other languages
Japanese (ja)
Other versions
JP2778405B2 (en
Inventor
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13678969&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06268259(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP7904693A priority Critical patent/JP2778405B2/en
Publication of JPH06268259A publication Critical patent/JPH06268259A/en
Application granted granted Critical
Publication of JP2778405B2 publication Critical patent/JP2778405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To enable a gallium nitride compound semiconductor light emitting element to be lessened in forward potential and improved in emission efficiency by a method wherein a P-type GaN contact layer is formed on a specific Mg- doped clad layer. CONSTITUTION:A buffer layer 2 is grown on a sapphire substrate 1, and then an Si-doped N-type GaN layer 3 is made to grow thereon. Thereafter, an Si- doped Ga0.86Al0.14N layer is grown as an N-type clad layer 4, and furthermore an Si-doped In0.01Ga0.99N layer is grown as an N-type active layer 5. Then, an Mg-doped P-type GaN layer is grown as a P-type contact layer 6. Thereafter, the substrate 1 is taken out of a reaction oven and annealed to lessen a P-type GaAl layer 6 and a P-type GaN contact layer 7 in resistance. The wafer obtained as above is etched to make the N-type GaN layer 3 exposed, an Au electrode 8 is provided to the P-type GaN contact layer 7, an Al electrode 9 is provided onto the N-type GaN layer 3, and then the wafer is annealed again and then cut into chips.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化ガリウム系化合物半
導体を用いた発光素子に係り、特に順方向電圧(Vf)
が低く、さらに発光出力が高い窒化ガリウム系化合物半
導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using a gallium nitride compound semiconductor, and more particularly to a forward voltage (Vf).
And a gallium nitride-based compound semiconductor light emitting device having a high emission output.

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移
を有し、バンドギャップが1.95eV〜6eVまで変
化するため、発光ダイオード、レーザダイオード等、発
光素子の材料として有望視されている。現在、この材料
を用いた発光素子には、n型窒化ガリウム系化合物半導
体の上に、p型ドーパントをドープした高抵抗なi型の
窒化ガリウム系化合物半導体を積層したいわゆるMIS
構造の青色発光ダイオードが知られている。
2. Description of the Related Art GaN, GaAlN, InGaN, In
Since gallium nitride-based compound semiconductors such as AlGaN have a direct transition and the bandgap changes from 1.95 eV to 6 eV, they are regarded as promising materials for light emitting devices such as light emitting diodes and laser diodes. At present, a light emitting device using this material is a so-called MIS in which a high-resistance i-type gallium nitride compound semiconductor doped with a p-type dopant is stacked on an n-type gallium nitride compound semiconductor.
Blue light emitting diodes with a structure are known.

【0003】MIS構造の発光素子は、一般に発光出力
が非常に低く、実用化するには未だ不十分であった。高
抵抗なi型を低抵抗なp型とし、発光出力を向上させた
p−n接合の発光素子を実現するための技術として、例
えば特開平3−218325号公報において、i型窒化
ガリウム系化合物半導体層に電子線照射する技術が開示
されている。また、我々は、特願平3−357046号
でi型窒化ガリウム系化合物半導体層を400℃以上で
アニーリングすることにより低抵抗なp型とする技術を
提案した。
A light emitting device having a MIS structure generally has a very low light emission output, which is still insufficient for practical use. As a technique for realizing a pn junction light emitting device in which a high resistance i-type is changed to a low resistance p-type and a light emission output is improved, for example, in JP-A-3-218325, an i-type gallium nitride compound is disclosed. A technique of irradiating a semiconductor layer with an electron beam is disclosed. In addition, in Japanese Patent Application No. 3-357046, we proposed a technique of making a low resistance p-type by annealing an i-type gallium nitride compound semiconductor layer at 400 ° C. or higher.

【0004】p−n接合の窒化ガリウム系化合物半導体
を利用した発光素子として、例えば特開平4−2429
85号公報において、ダブルへテロ構造のレーザー素子
が提案されており、また特開平4−209577号公報
ではInGaAlNを発光層とするダブルへテロ構造の
発光ダイオードが提案されている。
As a light emitting device using a pn junction gallium nitride compound semiconductor, for example, Japanese Patent Application Laid-Open No. 4-2429.
Japanese Laid-Open Patent Publication No. 85-8595 proposes a laser device having a double-hetero structure, and Japanese Laid-Open Patent Publication No. 4-209577 proposes a light-emitting diode having a double-hetero structure having InGaAlN as a light emitting layer.

【0005】[0005]

【発明が解決しようとする課題】p−n接合の半導体発
光素子は、ホモ構造よりもダブルへテロ構造の方が発光
出力が大きく、またレーザー素子は少なくともへテロ構
造でなければ実現できないことは知られている。しかし
ながら、ダブルヘテロ構造の窒化ガリウム系化合物半導
体発光素子を実現した場合、用いられる窒化ガリウム系
化合物半導体の種類、組成比等の要因により、窒化ガリ
ウム系化合物半導体の結晶性が著しく異なってくるので
発光出力に大きな差が現れる。極端な場合には全く発光
を示さない素子ができてしまうのが現実である。しか
も、実際に電極を設けて素子構造とした場合、窒化ガリ
ウム系化合物半導体のp型結晶と、そのp型結晶に形成
する電極とがオーミック接触していないため、定められ
た順方向電流に対し、順方向電圧(Vf)が高くなり、
発光効率が低下するという問題がある。このため、未だ
窒化ガリウム系化合物半導体発光素子では、ヘテロ構造
の発光ダイオードは製品化されておらず、レーザー素子
に至っては発振さえしていないのが実状である。
In the semiconductor light emitting device having the pn junction, the double hetero structure has a larger light emission output than the homo structure, and the laser device can be realized only at least in the hetero structure. Are known. However, when a gallium nitride-based compound semiconductor light-emitting device having a double hetero structure is realized, the crystallinity of the gallium nitride-based compound semiconductor remarkably differs depending on factors such as the type and composition ratio of the gallium nitride-based compound semiconductor used. A big difference appears in the output. In the extreme case, the reality is that an element that does not emit light is formed. Moreover, when an electrode is actually provided to form an element structure, the p-type crystal of the gallium nitride-based compound semiconductor and the electrode formed on the p-type crystal are not in ohmic contact with each other. , The forward voltage (Vf) becomes high,
There is a problem that the luminous efficiency is reduced. Therefore, in the gallium nitride-based compound semiconductor light emitting device, a light emitting diode having a heterostructure has not yet been commercialized, and even a laser device does not even oscillate.

【0006】従って、本発明の第1の目的は、p型結晶
とオーミック接触が得られる窒化ガリウム系化合物半導
体の構造を提供することによりVfを低下させ、発光効
率を向上させることにある。また、第2の目的はその窒
化ガリウム系化合物半導体を用いて、新規なダブルヘテ
ロ構造の発光素子の構造を提供することにより、発光素
子の発光出力を向上させることにある。
Therefore, it is a first object of the present invention to provide a structure of a gallium nitride-based compound semiconductor capable of making ohmic contact with a p-type crystal to reduce Vf and improve luminous efficiency. A second object is to improve the light emission output of the light emitting device by providing a novel double hetero structure light emitting device structure using the gallium nitride compound semiconductor.

【0007】[0007]

【課題を解決するための手段】我々は、特定のp型窒化
ガリウム系化合物半導体の上に積層したp型窒化ガリウ
ムに電極を形成することにより、電極とp型窒化ガリウ
ム層とのオーミック接触が得られ、発光効率が向上する
ことを新たに見いだした。さらにそのp型窒化ガリウム
系化合物半導体層を用いた発光素子を特定のダブルヘテ
ロ構造とし、ダブルヘテロ構造を構成する窒化ガリウム
系化合物半導体の種類を限定することにより、最も結晶
性に優れた窒化ガリウム系化合物半導体を積層した素子
が得られ、発光出力が向上することを見いだした。即
ち、本発明の窒化ガリウム系化合物半導体発光素子は、
p−n接合を有するダブルヘテロ構造の窒化ガリウム系
化合物半導体発光素子において、Mgがドープされたp
型Ga1-XAlXN(但し、Xは0<X<0.5)クラッド
層の上に、電極が形成されるべき層として、Mgがドー
プされたp型GaNコンタクト層を具備することを特徴
とし、さらに特定のダブルヘテロ構造の発光素子は、n
型窒化ガリウム系化合物半導体層の上に、n型Ga1-Y
AlYNクラッド層(但し、Yは0<Y<1)と、n型I
ZGa1-ZN活性層(但し、Zは0<Z<1)と、前記p
型Ga1-XAlXNクラッド層と、前記p型GaNコンタ
クト層とが積層されていることを特徴とする。
By forming an electrode on p-type gallium nitride laminated on a specific p-type gallium nitride-based compound semiconductor, we have established ohmic contact between the electrode and the p-type gallium nitride layer. It was newly found that the obtained luminous efficiency was improved. Further, the light emitting element using the p-type gallium nitride compound semiconductor layer has a specific double hetero structure, and by limiting the types of gallium nitride compound semiconductors forming the double hetero structure, gallium nitride having the best crystallinity is obtained. It has been found that a device in which a compound semiconductor is laminated is obtained and the light emission output is improved. That is, the gallium nitride-based compound semiconductor light emitting device of the present invention,
In a double heterostructure gallium nitride-based compound semiconductor light emitting device having a pn junction, Mg-doped p
A p-type GaN contact layer doped with Mg is provided as a layer on which an electrode is to be formed on a cladding layer of Ga 1 -X Al X N type (where X is 0 <X <0.5). And a specific double-heterostructure light emitting element is
On the n-type gallium nitride-based compound semiconductor layer, n-type Ga 1 -Y
Al Y N cladding layer (where Y is 0 <Y <1) and n-type I
n Z Ga 1-Z N active layer (where Z is 0 <Z <1), and
It is characterized in that a type Ga 1-x Al x N cladding layer and the p-type GaN contact layer are laminated.

【0008】本発明の窒化ガリウム系化合物半導体発光
素子の構造を示す断面図を図1に示す。下から順に、基
板1の上に、バッファ層2と、n型窒化ガリウム系化合
物半導体層3と、n型Ga1-YAlYNクラッド層4(0
<Y<1)と、n型InZGa 1-ZN(0<Z<1)活性層
5と、Mgドープp型Ga1-XAlXN(0<X<0.
5)クラッド層6と、Mgドープp型GaNコンタクト
層7とが順に積層された構造を有する。なお、8はMg
ドープp型GaNコンタクト層7に設けられた電極、9
はn型窒化ガリウム系化合物半導体層3に設けられた電
極である。基板1にはサファイア、ZnO、SiC、S
i等が使用される。バッファ層2にはAlN、GaN、
GaAlN等が使用される。
Gallium Nitride Compound Semiconductor Light Emission of the Present Invention
A sectional view showing the structure of the element is shown in FIG. From bottom to top
On the plate 1, the buffer layer 2 and the n-type gallium nitride-based compound
Semiconductor layer 3 and n-type Ga1-YAlYN cladding layer 4 (0
<Y <1) and n-type InZGa 1-ZN (0 <Z <1) active layer
5 and Mg-doped p-type Ga1-XAlXN (0 <X <0.
5) Cladding layer 6 and Mg-doped p-type GaN contact
It has a structure in which the layer 7 and the layer 7 are sequentially stacked. In addition, 8 is Mg
An electrode provided on the doped p-type GaN contact layer 7, 9
Is an electrode provided on the n-type gallium nitride-based compound semiconductor layer 3.
It is a pole. Substrate 1 has sapphire, ZnO, SiC, S
i, etc. are used. The buffer layer 2 has AlN, GaN,
GaAlN or the like is used.

【0009】前記、窒化ガリウム系化合物半導体発光素
子において、n型窒化ガリウム系化合物半導体層3の種
類は特に限定するものなく、GaN、GaAlN、In
GaN、InAlGaN等、ノンドープ(無添加)の窒
化ガリウム系化合物半導体、またはノンドープの窒化ガ
リウム系化合物半導体に、例えばSi、Ge、Te、S
e等のn型ドーパントをドープしてn型特性を示すよう
に成長した層を用いることができる。
In the above-mentioned gallium nitride-based compound semiconductor light emitting device, the type of the n-type gallium nitride-based compound semiconductor layer 3 is not particularly limited, and includes GaN, GaAlN, In.
For example, Si, Ge, Te, S is added to a non-doped (non-added) gallium nitride-based compound semiconductor such as GaN or InAlGaN, or a non-doped gallium nitride-based compound semiconductor.
A layer grown by doping with an n-type dopant such as e so as to show n-type characteristics can be used.

【0010】次に、n型Ga1-YAlYNクラッド層4
は、その組成をInを含まない三元混晶の窒化ガリウム
アルミニウムとする必要がある。なぜなら、n型Ga
1-YAlYNクラッド層4に新たにインジウムを含有させ
ると、クラッド層4の結晶性が悪くなり、発光出力が低
下するからである。また、n型Ga1-YAlYNクラッド
層のY値を0<Y<1の範囲とすることにより、n型クラ
ッド層として作用し好ましいダブルヘテロ構造とするこ
とができる。さらに好ましくは、Y値を0.5以下とす
ることにより格子欠陥が少なく結晶性のよいn型クラッ
ド層4が得られる。n型Ga1-YAlYNクラッド層4に
は、前記したように、ノンドープのGa1-YAlYN、ま
たはn型ドーパントをドープしてn型特性を示すように
成長したGa1-YAlYNを用いることができる。
Next, the n-type Ga 1 -Y Al Y N cladding layer 4 is formed.
Must have a composition of ternary mixed crystal gallium aluminum nitride containing no In. Because n-type Ga
This is because if the 1-Y Al Y N clad layer 4 is newly made to contain indium, the crystallinity of the clad layer 4 is deteriorated and the light emission output is reduced. Further, by setting the Y value of the n-type Ga 1 -Y Al Y N cladding layer within the range of 0 <Y <1, it is possible to act as an n-type cladding layer and form a preferable double hetero structure. More preferably, by setting the Y value to 0.5 or less, the n-type cladding layer 4 having few lattice defects and good crystallinity can be obtained. The n-type Ga 1-Y Al Y N cladding layer 4, as described above, were grown to indicate the non-doped Ga 1-Y Al Y N or n-type dopant by doping n-type characteristics, Ga 1- Y Al Y N can be used.

【0011】次に、n型InZGa1-ZN活性層5は、そ
の組成をAlを含まない三元混晶の窒化インジウムガリ
ウムとする必要がある。なぜなら、活性層は発光層であ
り、この発光層にAlを含有させると深い準位の発光が
現れ、InGaNのバンド間発光を阻害する傾向にある
ため、活性層として使用することは好ましくない。n型
InZGa1-ZN活性層5は、そのZ値を0<Z<1の範囲
にすることにより、発光波長を紫色から赤色にまで変換
させることができるため、非常に有利である。n型In
ZGa1-ZN活性層は、前記したように、ノンドープのI
ZGa1-ZN層、またはn型ドーパントをドープしてn
型特性を示すように成長したInZGa1-Z層が使用でき
る。また、発光中心としてMg、Zn、Cd、Be、C
a等のp型ドーパントをドープしてn型特性を示すよう
に成長したInZGa1-ZN層を使用することもできる。
さらにn型ドーパント、およびp型ドーパントをドープ
してn型特性を示すように成長したInZGa1-Z層も使
用できる。これらのドーパントをドープしてn型とする
ことにより、発光色の色純度をよくし、発光出力を向上
させることができる。
Next, the n-type In Z Ga 1 -Z N active layer 5 must have a composition of ternary mixed crystal indium gallium nitride containing no Al. This is because the active layer is a light emitting layer, and when Al is contained in this light emitting layer, deep level light emission appears, which tends to hinder the interband light emission of InGaN, and therefore it is not preferable to use it as an active layer. n-type In Z Ga 1-Z N active layer 5, by the range and the Z value 0 <Z <1, and for the emission wavelengths can be converted from purple to red is highly advantageous . n-type In
As described above, the Z Ga 1-Z N active layer is made of non-doped I
n Z Ga 1-Z N layer or n-type dopant doped with n
In Z Ga 1-Z layer grown as indicating the type characteristic may be used. Further, as emission centers, Mg, Zn, Cd, Be, C
It is also possible to use In Z Ga 1-Z N layer grown as an n-type characteristics by doping p-type dopant in a like.
Further n-type dopant, and In Z Ga 1-Z layer grown as a p-type dopant by doping an n-type characteristics can be used. By doping these dopants to make them n-type, the color purity of the emission color can be improved and the emission output can be improved.

【0012】次に、Mgドープp型Ga1-XAlXNクラ
ッド層6は、n型Ga1-YAlYNクラッド層4と同じ
く、その組成をInを含まない三元混晶の窒化ガリウム
アルミニウムとする必要がある。なぜなら、前記したよ
うにインジウムを含有させることにより、p型クラッド
層6の結晶性が悪くなり、p型特性を示しにくくなるか
らである。また、p型Ga1-XAlXNクラッド層6のX
値は0<X<0.5の範囲にする必要がある。0より大
きくすることにより、p型クラッド層として作用し好ま
しいダブルヘテロ構造とすることができ、0.5より小
さくすることにより格子欠陥が少なく結晶性のよいp型
クラッド層6が得られる。逆に0.5以上であると、p
型クラッド層6の上に積層するp型GaNコンタクト層
7の結晶性が悪くなり、コンタクト層7と電極8とのオ
ーミック接触が得られないため、0.5未満を限定値と
した。またさらに、このMgドープp型Ga1-XAlX
クラッド層6の膜厚は、10オングストローム以上、
0.2μm以下の範囲にすることが好ましい。10オン
グストロームより薄いと、その下に積層するn型InZ
Ga1-ZN活性層5と電気的に短絡しやすくなり、クラ
ッド層として作用しにくい。逆に0.2μmよりも厚い
と結晶にクラックが入りやすくなり結晶性が悪くなる傾
向にある。さらに、このp型Ga1-XAlXNクラッド層
において、重要なことはp型ドーパントをMgとして、
このMgによりp型特性を得ていることである。このM
gのかわりに他のp型ドーパント、例えばZn、Cd、
Be、Ca等のp型ドーパントをドープするとp型特性
が得られにくくなり、発光出力が低下する傾向にある。
Next, the Mg-doped p-type Ga 1-x Al x N cladding layer 6 has the same composition as the n-type Ga 1-y Al y N cladding layer 4 and is nitrided by a ternary mixed crystal containing no In. Must be gallium aluminum. This is because the inclusion of indium as described above deteriorates the crystallinity of the p-type cladding layer 6 and makes it difficult to exhibit p-type characteristics. In addition, X of the p-type Ga 1-X Al X N cladding layer 6
The value must be in the range 0 <X <0.5. When it is larger than 0, the double hetero structure can be obtained by acting as a p-type clad layer, and when it is smaller than 0.5, the p-type clad layer 6 having few lattice defects and good crystallinity can be obtained. Conversely, if it is 0.5 or more, p
The crystallinity of the p-type GaN contact layer 7 laminated on the type cladding layer 6 is deteriorated, and ohmic contact between the contact layer 7 and the electrode 8 cannot be obtained. Furthermore, this Mg-doped p-type Ga 1-X Al X N
The film thickness of the clad layer 6 is 10 angstroms or more,
The range is preferably 0.2 μm or less. If the thickness is less than 10 angstroms, the n-type In Z to be stacked underneath
It becomes easy to electrically short-circuit with the Ga 1 -Z N active layer 5, and it is difficult to act as a cladding layer. On the other hand, if the thickness is more than 0.2 μm, the crystal tends to be cracked and the crystallinity tends to deteriorate. Further, in this p-type Ga 1-x Al x N clad layer, what is important is to use Mg as the p-type dopant,
This is to obtain the p-type characteristic by this Mg. This M
Other p-type dopants instead of g, such as Zn, Cd,
Doping with a p-type dopant such as Be or Ca makes it difficult to obtain p-type characteristics and tends to reduce the light emission output.

【0013】次に、Mgドープp型GaNコンタクト層
7は、その組成をIn、Alを含まない二元混晶の窒化
ガリウムとする必要がある。なぜなら、インジウム、ア
ルミニウムを含有させることにより、電極8とオーミッ
ク接触が得られにくくなり、発光効率が低下するからで
ある。特に、そのp型GaNコンタクト層の膜厚は10
オングストローム以上、0.5μm以下に調整すること
が好ましい。10オングストロームよりも薄いと、p型
GaAlNクラッド層6と電気的に短絡しやすくなり、
コンタクト層として作用しにくい。また、三元混晶のG
aAlNクラッド層6の上に、組成の異なる二元混晶の
GaNコンタクト層を積層するため、逆にその膜厚を
0.5μmよりも厚くすると、結晶間のミスフィットに
よる格子欠陥がGaNコンタクト層7中に発生しやす
く、結晶性が低下する傾向にある。なお、コンタクト層
7の膜厚は薄いほどVfを低下させ発光効率を向上させ
ることができる。また、このp型GaNコンタクト層7
のp型ドーパントはMgである必要がある。Mgのかわ
りに他のp型ドーパントをドープするとp型特性が得ら
れにくくなる傾向にあり、またオーミック接触が得られ
にくい傾向にある。
Next, the Mg-doped p-type GaN contact layer 7 needs to have a composition of binary mixed crystal gallium nitride containing no In and Al. This is because the inclusion of indium and aluminum makes it difficult to obtain ohmic contact with the electrode 8 and reduces the luminous efficiency. In particular, the film thickness of the p-type GaN contact layer is 10
It is preferable to adjust the thickness to at least angstrom and at most 0.5 μm. If the thickness is less than 10 angstrom, it is easy to electrically short-circuit with the p-type GaAlN cladding layer 6,
Hard to act as a contact layer. In addition, the ternary mixed crystal G
Since a binary mixed crystal GaN contact layer having a different composition is stacked on the aAlN cladding layer 6, if the thickness is made thicker than 0.5 μm, lattice defects due to misfit between crystals may cause GaN contact layer. 7 is likely to occur and crystallinity tends to decrease. The thinner the contact layer 7 is, the lower Vf can be made to improve the luminous efficiency. In addition, this p-type GaN contact layer 7
The p-type dopant of 1 must be Mg. Doping with another p-type dopant in place of Mg tends to make it difficult to obtain p-type characteristics, and also makes it difficult to obtain ohmic contact.

【0014】また、p型Ga1-XAlXNクラッド層6、
p型GaN層をさらに低抵抗化する手段として、上記し
た特願平3−357046号に開示する400℃以上の
アニーリング処理を行ってもよい。アニーリングを行う
とp型クラッド層、およびp型コンタクト層、両方が抵
抗化し、発光出力をより向上させることができる。
The p-type Ga 1-x Al x N cladding layer 6,
As a means for further reducing the resistance of the p-type GaN layer, the annealing treatment at 400 ° C. or higher disclosed in the above-mentioned Japanese Patent Application No. 3-357046 may be performed. When the annealing is performed, both the p-type cladding layer and the p-type contact layer have resistance, and the light emission output can be further improved.

【0015】[0015]

【作用】p−n接合を用いたダブルへテロ構造の窒化ガ
リウム系化合物半導体発光素子において、Mgドープp
型Ga1-XAlXNクラッド層6の上に、Mgドープp型
GaNコンタクト層7を形成し、そのGaNコンタクト
層の上に電極8を形成することによりオーミック接触が
得られ、発光効率が向上する。詳しい原理は不明である
が、我々がそれらの層のホールキャリア濃度を測定した
結果、p型Ga1- XAlXN層はおよそ1016/cm3であ
り、p型GaN層はおよそ1017/cm3と一桁高かっ
た。つまり、ホールキャリア濃度の大きい層の方に電極
を形成する方がオーミック接触が得られやすいのではな
いかと推察する。また、p型GaAlNクラッド層6の
上に組成の異なるp型GaNコンタクト層7を形成する
ことにより、p型GaN層にミスフィットによる格子欠
陥が生じやすくなり、結晶性が低下する。ミスフィット
を少なくするには、p型GaAlNクラッド層6のAl
混晶比は少ない方がよい。従って、p型GaNコンタク
ト層7の結晶性がよく、電極8とオーミックコンタクト
が得られる限界値、即ち、X値0.5未満を限定値とし
た。
[Function] A double heterostructure nitride nitride film using a pn junction.
Mg-doped p
Type Ga1-XAlXMg-doped p-type on the N-clad layer 6
A GaN contact layer 7 is formed and its GaN contact is formed.
By forming the electrode 8 on the layer, ohmic contact is obtained.
Thus, the luminous efficiency is improved. The detailed principle is unknown
But we measured the hole carrier concentration in those layers
As a result, p-type Ga1- XAlXN layer is about 1016/cm3And
The p-type GaN layer is about 1017/cm3And an order of magnitude higher
It was That is, the electrode with the higher hole carrier concentration
It may be easier to obtain ohmic contact by forming
I guess. In addition, the p-type GaAlN cladding layer 6
Forming p-type GaN contact layers 7 having different compositions on top
As a result, a lattice defect due to a misfit in the p-type GaN layer
Cavities are likely to occur and the crystallinity decreases. Misfit
In order to reduce the amount of Al, the Al of the p-type GaAlN cladding layer 6 is reduced.
The lower the mixed crystal ratio, the better. Therefore, p-type GaN contact
Layer 7 has good crystallinity and ohmic contact with electrode 8.
Is the limit value, that is, X value less than 0.5 is the limit value
It was

【0016】[0016]

【実施例】以下有機金属気相成長法により、本発明の窒
化ガリウム系化合物半導体発光素子を製造する方法を述
べる。
EXAMPLES A method for producing the gallium nitride-based compound semiconductor light emitting device of the present invention by the metal organic chemical vapor deposition method will be described below.

【0017】[実施例1]サファイア基板1を反応容器
内に配置し、サファイア基板1のクリーニングを行った
後、成長温度を510℃にセットし、キャリアガスとし
て水素、原料ガスとしてアンモニアとTMG(トリメチ
ルガリウム)とを用い、サファイア基板上にGaNバッ
ファ層2を約200オングストロームの膜厚で成長させ
る。
Example 1 The sapphire substrate 1 was placed in a reaction vessel, the sapphire substrate 1 was cleaned, the growth temperature was set to 510 ° C., hydrogen was used as a carrier gas, and ammonia and TMG (source gas were used as source gases. Trimethylgallium) is used to grow the GaN buffer layer 2 on the sapphire substrate to a film thickness of about 200 Å.

【0018】バッファ層2成長後、TMGのみ止めて、
温度を1030℃まで上昇させる。1030℃になった
ら、同じく原料ガスにTMGとアンモニアガス、ドーパ
ントガスにシランガスを用い、Siをドープしたn型G
aN層3を4μm成長させる。
After growing the buffer layer 2, stop only TMG,
The temperature is raised to 1030 ° C. When the temperature reached 1030 ° C, n-type G doped with Si using TMG and ammonia gas as the source gas and silane gas as the dopant gas.
The aN layer 3 is grown to 4 μm.

【0019】n型GaN層3成長後、原料ガス、ドーパ
ントガスを止め、温度を800℃にして、原料ガスとし
てTMGとTMA(トリメチルアルミニウム)とアンモ
ニア、ドーパントガスとしてシランガスを用い、n型ク
ラッド層4としてSiドープGa0.86Al0.14N層を
0.15μm成長させる。
After the growth of the n-type GaN layer 3, the source gas and the dopant gas are stopped, the temperature is set to 800 ° C., TMG and TMA (trimethylaluminum) and ammonia are used as the source gas, and the silane gas is used as the dopant gas. 4, a Si-doped Ga0.86Al0.14N layer is grown to a thickness of 0.15 μm.

【0020】次に、原料ガス、ドーパントガスを止め、
温度を800℃にして、キャリアガスを窒素に切り替
え、原料ガスとしてTMGとTMI(トリメチルインジ
ウム)とアンモニア、ドーパントガスとしてシランガス
を用い、n型活性層5としてSiドープIn0.01Ga0.
99N層を100オングストローム成長させる。
Next, the source gas and the dopant gas are stopped,
The temperature is set to 800 ° C., the carrier gas is switched to nitrogen, TMG, TMI (trimethylindium) and ammonia are used as source gases, and silane gas is used as a dopant gas, and Si-doped In0.01Ga0.
A 99N layer is grown to 100 Å.

【0021】次に、原料ガス、ドーパントガスを止め、
再び温度を1020℃まで上昇させ、原料ガスとしてT
MGと、TMAと、アンモニア、ドーパントガスとして
Cp2Mg(シクロペンタジエニルマグネシウム)とを
用い、p型クラッド層6として、Mgをドープしたp型
Ga0.86Al0.14N層を0.15μm成長させる。
Then, the raw material gas and the dopant gas are stopped,
The temperature is again raised to 1020 ° C. and T is used as a source gas.
Using MG, TMA, ammonia, and Cp2Mg (cyclopentadienylmagnesium) as a dopant gas, a Mg-doped p-type Ga0.86Al0.14N layer of 0.15 μm is grown as the p-type cladding layer 6.

【0022】次に、TMAのみ止めて、p型コンタクト
層7として、Mgドープp型GaN層を0.4μm成長
させる。
Next, only TMA is stopped and a Mg-doped p-type GaN layer is grown to 0.4 μm as the p-type contact layer 7.

【0023】成長後、基板を反応容器から取り出し、ア
ニーリング装置にて窒素雰囲気中、700℃で20分間
アニーリングを行い、p型Ga0.86Al0.14N層、p型
GaNコンタクト層をさらに低抵抗化する。
After the growth, the substrate is taken out of the reaction vessel and annealed at 700 ° C. for 20 minutes in a nitrogen atmosphere to anneal the p-type Ga0.86Al0.14N layer and the p-type GaN contact layer to further reduce the resistance. .

【0024】以上のようにして得られたウエハーを図1
に示すようにエッチングして、n型GaN層3を露出さ
せ、p型GaNコンタクト層7にはAuよりなる電極
8、n型GaN層3にはAlよりなる電極9を設け、5
00℃で再度アニーリングを行い電極と窒化ガリウム系
化合物半導体とをなじませる。後は、常法に従い500
μm角のチップにカットした後、発光ダイオードとした
ところ、順方向電流20mAにおいて、Vfは5V、発
光波長370nmで発光出力は700μW、発光効率
0.7%と優れた特性を示した。
The wafer thus obtained is shown in FIG.
The n-type GaN layer 3 is exposed by etching as shown in FIG. 3, the p-type GaN contact layer 7 is provided with an electrode 8 made of Au, and the n-type GaN layer 3 is provided with an electrode 9 made of Al.
Annealing is performed again at 00 ° C. to make the electrode and the gallium nitride-based compound semiconductor conform to each other. After that, 500 according to the usual method
After being cut into chips having a square of μm, it was used as a light emitting diode. As a result, when the forward current was 20 mA, Vf was 5 V, the emission output was 700 μW at an emission wavelength of 370 nm, and the emission efficiency was 0.7%, which were excellent characteristics.

【0025】[実施例2]実施例1において、Mgドー
プp型GaNコンタクト層の膜厚を0.1μmにする他
は実施例1と同様にして発光ダイオードを得たところ、
順方向電流20mAにおいて、発光波長、発光出力は同
一であったが、Vfが4Vにまで下がり、発光効率が
0.88%と向上した。
Example 2 A light emitting diode was obtained in the same manner as in Example 1 except that the thickness of the Mg-doped p-type GaN contact layer was changed to 0.1 μm.
At a forward current of 20 mA, the emission wavelength and emission output were the same, but Vf dropped to 4 V, and the emission efficiency improved to 0.88%.

【0026】[実施例2]実施例1において、p型Mg
ドープp型GaNコンタクト層の膜厚を0.1μmにす
る他は実施例1と同様にして発光ダイオードを得たとこ
ろ、順方向電流20mAにおいて、発光波長、発光出力
は同一であったが、Vfが4Vにまで下がり、発光効率
が0.88%と向上した。
Example 2 In Example 1, p-type Mg
A light emitting diode was obtained in the same manner as in Example 1 except that the thickness of the doped p-type GaN contact layer was 0.1 μm. At a forward current of 20 mA, the emission wavelength and emission output were the same, but Vf Was reduced to 4 V, and the luminous efficiency was improved to 0.88%.

【0027】[実施例3]実施例1において、TMAの
流量を多くして、p型クラッド層6のAl混晶比をGa
0.55Al0.45Nとする他は、同様にして発光ダイオード
を得たところ、順方向電流20mAにおいて、Vfは6
Vとオーミック接触が得られているほぼ限界値を示し、
発光波長は同一で、発光出力は400μW、発光効率
0.2%であった。
Example 3 In Example 1, the flow rate of TMA was increased and the Al mixed crystal ratio of the p-type cladding layer 6 was changed to Ga.
A light emitting diode was similarly obtained except that 0.55Al0.45N was used. Vf was 6 at a forward current of 20 mA.
It shows almost the limit value at which ohmic contact with V is obtained,
The emission wavelength was the same, the emission output was 400 μW, and the emission efficiency was 0.2%.

【0028】[実施例4]実施例1において、n型クラ
ッド層4を成長しない他は実施例1と同様にして発光ダ
イオードを得たところ、順方向電流20mAにおいて、
Vfは5Vであったが、発光出力は200μW、発光効
率0.2%であった。
Example 4 A light emitting diode was obtained in the same manner as in Example 1 except that the n-type cladding layer 4 was not grown, and a forward current of 20 mA was obtained.
Although Vf was 5 V, the light emission output was 200 μW and the light emission efficiency was 0.2%.

【0029】[比較例1]実施例1において、TMAの
流量を多くして、p型クラッド層6のAl混晶比をGa
0.5Al0.5Nとする他は、同様にして発光ダイオードを
得たところ、順方向電流20mAにおいて、Vfは30
Vにまで上昇しオーミック接触は得られていないことが
確認された。なお、この素子はVfが大きいため、すぐ
に発光しなくなった。
Comparative Example 1 In Example 1, the flow rate of TMA was increased and the Al mixed crystal ratio of the p-type cladding layer 6 was changed to Ga.
A light emitting diode was obtained in the same manner except that 0.5Al0.5N was used, and Vf was 30 at a forward current of 20 mA.
It was confirmed that the voltage rose to V and ohmic contact was not obtained. Since this device had a large Vf, it stopped emitting light immediately.

【0030】[比較例2]実施例1において、p型コン
タクト層7を形成せず、p型クラッド層6に直接電極を
形成する他は、同様にして発光ダイオードを得たとこ
ろ、順方向電流20mAにおいて、Vfは30Vにまで
上昇し、オーミック接触が得られていないため、比較例
1と同様にすぐに発光しなくなった。
[Comparative Example 2] A light emitting diode was obtained in the same manner as in Example 1 except that the p-type contact layer 7 was not formed and an electrode was directly formed on the p-type cladding layer 6, and a forward current flow was obtained. At 20 mA, Vf increased to 30 V, and no ohmic contact was obtained, so that light emission stopped immediately as in Comparative Example 1.

【0031】[比較例3]実施例1において、p型クラ
ッド層6を成長する際、原料ガスに新たにTMIを加
え、キャリアガスを窒素に切り替え、成長温度を800
℃にしてMgドープp型In0.01Al0.14Ga0.85Nク
ラッド層を成長させる他は、同様にして発光ダイオード
を得たところ、順方向電流20mA流すとすぐに発光し
なくなった。
[Comparative Example 3] In Example 1, when the p-type cladding layer 6 was grown, TMI was newly added to the source gas, the carrier gas was switched to nitrogen, and the growth temperature was set to 800.
A light emitting diode was obtained in the same manner except that the Mg-doped p-type In0.01Al0.14Ga0.85N cladding layer was grown at a temperature of 0 ° C., and no light was emitted immediately when a forward current of 20 mA was applied.

【0032】[0032]

【発明の効果】以上説明したように、本発明の窒化ガリ
ウム系化合物半導体発光素子は、p型GaAlNクラッ
ド層の上に、コンタクト層としてp型GaN層を具備し
ているため、Vfが低く発光効率に優れた素子とするこ
とができる。しかもp型GaAlN層のAl混晶比を限
定することにより結晶性に優れた前記p型クラッド層、
前記p型コンタクト層を得ることができ、Vf低下に大
きく寄与している。
As described above, the gallium nitride-based compound semiconductor light-emitting device of the present invention has the p-type GaN layer as a contact layer on the p-type GaAlN cladding layer, and thus emits light with low Vf. It is possible to obtain an element having excellent efficiency. Moreover, by limiting the Al mixed crystal ratio of the p-type GaAlN layer, the p-type cladding layer having excellent crystallinity,
The p-type contact layer can be obtained, which greatly contributes to the reduction of Vf.

【0033】さらに、n型窒化ガリウム系化合物半導体
層、n型GaAlNクラッド層、n型InGaN層を積
層し、前記p型GaAlNクラッド層、前記p型GaN
コンタクト層を積層することにより発光出力、発光効率
に優れた発光素子を実現でき、るため、未だ実現されて
いないレーザー素子の構造のヒントとして、その産業上
の利用価値は大きい。
Further, an n-type gallium nitride-based compound semiconductor layer, an n-type GaAlN cladding layer, and an n-type InGaN layer are stacked to form the p-type GaAlN cladding layer and the p-type GaN.
By stacking the contact layers, it is possible to realize a light-emitting element having excellent light-emission output and light-emission efficiency. Therefore, it has a great industrial utility value as a hint for the structure of a laser element that has not been realized yet.

【0034】[0034]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る発光素子の構造を示
す模式断面図。
FIG. 1 is a schematic cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

【符号の説明】[Explanation of symbols]

1 ・・・・・サファイア基板 2 ・・・・・GaNバッファ層 3 ・・・・・n型窒化ガリウム系化合物半導体層 4 ・・・・・n型Ga1-YAlYNクラッド層 5 ・・・・・n型InZGa1-ZN活性層 6 ・・・・・p型Ga1-XAlXNクラッド層 7 ・・・・・p型GaNコンタクト層 8、9 ・・・電極1 sapphire substrate 2 GaN buffer layer 3 n-type gallium nitride compound semiconductor layer 4 n-type Ga 1-Y Al Y N clad layer 5 · · · · n-type In Z Ga 1-Z n active layer 6 · · · · · p-type Ga 1-X Al X n cladding layer 7 · · · · · p-type GaN contact layer 8, 9 ... electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 p−n接合を有するダブルヘテロ構造の
窒化ガリウム系化合物半導体発光素子において、Mgが
ドープされたp型Ga1-XAlXN(但し、Xは0<X<
0.5)クラッド層の上に、電極が形成されるべき層と
して、Mgがドープされたp型GaNコンタクト層を具
備することを特徴とする窒化ガリウム系化合物半導体発
光素子。
1. A double-heterostructure gallium nitride-based compound semiconductor light-emitting device having a pn junction, wherein Mg-doped p-type Ga 1-X Al X N (where X is 0 <X <
0.5) A gallium nitride-based compound semiconductor light emitting device comprising a p-type GaN contact layer doped with Mg as a layer on which an electrode is to be formed, on the clad layer.
【請求項2】 前記p型Ga1-XAlXNクラッド層の膜
厚は10オングストローム以上、0.2μm以下である
ことを特徴とする請求項1に記載の窒化ガリウム系化合
物半導体発光素子。
2. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the p-type Ga 1-x Al x N clad layer has a film thickness of 10 angstroms or more and 0.2 μm or less.
【請求項3】 前記p型GaNコンタクト層の膜厚は1
0オングストローム以上、0.5μm以下であることを
特徴とする請求項1に記載の窒化ガリウム系化合物半導
体発光素子。
3. The film thickness of the p-type GaN contact layer is 1
The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the thickness is 0 angstrom or more and 0.5 μm or less.
【請求項4】 n型窒化ガリウム系化合物半導体層の上
に、n型Ga1-YAlYNクラッド層(但し、Yは0<Y<
1)と、n型InZGa1-ZN活性層(但し、Zは0<Z<
1)とが順に積層されており、そのn型InZGa1-Z
活性層の上に、前記p型Ga1-XAlXNクラッド層が積
層されていることを特徴とする請求項1に記載の窒化ガ
リウム系化合物半導体発光素子。
4. An n-type Ga 1 -Y Al Y N cladding layer (where Y is 0 <Y <
And 1), n-type In Z Ga 1-Z N active layer (where, Z is 0 <Z <
1) and are layered in this order, the n-type In Z Ga 1-Z N
The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the p-type Ga 1-x Al x N clad layer is stacked on the active layer.
JP7904693A 1993-03-12 1993-03-12 Gallium nitride based compound semiconductor light emitting device Expired - Lifetime JP2778405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7904693A JP2778405B2 (en) 1993-03-12 1993-03-12 Gallium nitride based compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7904693A JP2778405B2 (en) 1993-03-12 1993-03-12 Gallium nitride based compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH06268259A true JPH06268259A (en) 1994-09-22
JP2778405B2 JP2778405B2 (en) 1998-07-23

Family

ID=13678969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7904693A Expired - Lifetime JP2778405B2 (en) 1993-03-12 1993-03-12 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2778405B2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0678945A1 (en) * 1994-04-20 1995-10-25 Toyoda Gosei Co., Ltd. Gallium nitride group compound semiconductor laser diode
JPH0897471A (en) * 1994-09-20 1996-04-12 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light emitting device
JPH08115880A (en) * 1994-10-17 1996-05-07 Matsushita Electric Ind Co Ltd Manufacture of p-type gan semiconductor
JPH08130327A (en) * 1994-11-02 1996-05-21 Nichia Chem Ind Ltd Group iii-v nitride semiconductor light-emitting element
JPH08167735A (en) * 1994-12-12 1996-06-25 Hitachi Cable Ltd Light emitting element
EP0742622A2 (en) * 1995-03-27 1996-11-13 Mitsubishi Cable Industries, Ltd. Laser diode
JPH09129924A (en) * 1995-10-27 1997-05-16 Toyoda Gosei Co Ltd Iii group nitride semiconductor etching method and light emitting element manufacturing method
WO1997026680A1 (en) * 1996-01-19 1997-07-24 Matsushita Electric Industrial Co., Ltd. Gallium nitride compound semiconductor light emitting device and process for producing gallium nitride compound semiconductor
JP2000036616A (en) * 1998-07-21 2000-02-02 Toshiba Corp Semiconductor light emitting element and its manufacture
US6069021A (en) * 1997-05-14 2000-05-30 Showa Denko K.K. Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
US6133058A (en) * 1994-07-21 2000-10-17 Matsushita Electric Industrial Co., Ltd. Fabrication of semiconductor light-emitting device
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6194744B1 (en) 1998-03-17 2001-02-27 Showa Denko Kabushiki Kaisha Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
JP2001237455A (en) * 2000-02-23 2001-08-31 Inst Of Physical & Chemical Res InAlGaN EMITTING LIGHT IN SHORT-WAVELENGTH REGION OF ULTRAVIOLET REGION, ITS MANUFACTURING METHOD AS WELL AS ULTRAVIOLET LIGHT-EMITTING ELEMENT USING THE SAME
US6307219B1 (en) 1998-05-25 2001-10-23 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising gallium-nitride-group compound semiconductor
JP2002043620A (en) * 2000-07-27 2002-02-08 Shiro Sakai Gallium nitride compound semiconductor element and method for forming electrode
JP2002100803A (en) * 2000-09-22 2002-04-05 Shiro Sakai Gallium nitride-based compound semiconductor device and method for forming electrode
JP2002185044A (en) * 2001-11-27 2002-06-28 Nichia Chem Ind Ltd Nitride semiconductor multi-colored light-emitting element
US6497944B1 (en) 1997-12-26 2002-12-24 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising a gallium-nitride-group compound-semiconductor
US6580099B2 (en) 1994-12-02 2003-06-17 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
JP2004006970A (en) * 2003-07-31 2004-01-08 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting element
JP2004505434A (en) * 1999-12-03 2004-02-19 クリー インコーポレイテッド Micro light-emitting diode array with improved light extraction
JP2004511080A (en) * 1999-12-03 2004-04-08 クリー インコーポレイテッド Light-emitting diodes with improved light extraction by internal and external optical elements
US6734091B2 (en) 2002-06-28 2004-05-11 Kopin Corporation Electrode for p-type gallium nitride-based semiconductors
US6841800B2 (en) 1997-12-26 2005-01-11 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising a gallium-nitride-group compound-semiconductor
US6849864B2 (en) 1997-01-09 2005-02-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US6881983B2 (en) 2002-02-25 2005-04-19 Kopin Corporation Efficient light emitting diodes and lasers
US6900465B2 (en) 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
US6911079B2 (en) 2002-04-19 2005-06-28 Kopin Corporation Method for reducing the resistivity of p-type II-VI and III-V semiconductors
US7001790B2 (en) 1994-03-22 2006-02-21 Toyoda Gosei Co., Ltd. Light-emitting aluminum gallium indium nitride compound semiconductor device having an improved luminous intensity
US7088670B2 (en) 2001-09-20 2006-08-08 Victor Company Of Japan Limited Information recording carrier and method of reproducing the same
US7166869B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US7277379B2 (en) 2001-09-26 2007-10-02 Victor Company Of Japan, Limited Information recording carrier
US7498612B2 (en) 2003-10-31 2009-03-03 Showa Denko K.K. Compound semiconductor light-emitting device having pn-junction type hetero structure and forming method thereof
JP2009177219A (en) * 2009-05-15 2009-08-06 Mitsubishi Chemicals Corp METHOD FOR MANUFACTURING GaN-BASED SEMICONDUCTOR DEVICE
US7822088B2 (en) 2007-07-12 2010-10-26 Opnext Japan, Inc. Nitride semiconductor light emitting device and method for manufacturing the same
EP2264794A3 (en) * 1997-01-09 2011-02-23 Nichia Corporation Nitride semiconductor device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
CN105655456A (en) * 2016-04-08 2016-06-08 湘能华磊光电股份有限公司 Bottom coarsening growth method for epitaxially increasing LED light extraction efficiency

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7133331B2 (en) 2000-12-28 2006-11-07 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
CN1220981C (en) 2001-10-15 2005-09-28 日本胜利株式会社 Information recording carrier
US7177262B2 (en) 2002-04-19 2007-02-13 Victor Company Of Japan, Ltd. Reproducing system and corresponding information recording medium having wobbled land portions
US7393411B2 (en) 2003-02-24 2008-07-01 Waseda University β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
EP2034524A1 (en) 2006-05-26 2009-03-11 Rohm Co., Ltd. Nitride semiconductor light emitting element
CN101449395A (en) 2006-05-26 2009-06-03 罗姆股份有限公司 A nitride semiconductor luminous element
US8207547B2 (en) 2009-06-10 2012-06-26 Brudgelux, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US20130032810A1 (en) 2011-08-03 2013-02-07 Bridgelux, Inc. Led on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8669585B1 (en) 2011-09-03 2014-03-11 Toshiba Techno Center Inc. LED that has bounding silicon-doped regions on either side of a strain release layer
US8558247B2 (en) 2011-09-06 2013-10-15 Toshiba Techno Center Inc. GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US20130082274A1 (en) 2011-09-29 2013-04-04 Bridgelux, Inc. Light emitting devices having dislocation density maintaining buffer layers
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125086A (en) * 1974-08-26 1976-03-01 Mitsubishi Electric Corp
JPS5228887A (en) * 1975-08-30 1977-03-04 Fujitsu Ltd Semiconductive emitter device
JPS5493380A (en) * 1977-12-30 1979-07-24 Fujitsu Ltd Semiconductor light emitting device
JPH02229475A (en) 1989-03-01 1990-09-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting element
JPH03252178A (en) 1990-02-28 1991-11-11 Toyoda Gosei Co Ltd Light emitting element of gallium nitride compound semiconductor
JPH03252177A (en) 1990-02-28 1991-11-11 Toyoda Gosei Co Ltd Light emitting element of gallium nitride compound semiconductor
JPH04242985A (en) 1990-12-26 1992-08-31 Toyoda Gosei Co Ltd Gallium nitride group compound semiconductor laser diode
JPH04321280A (en) 1991-04-19 1992-11-11 Nichia Chem Ind Ltd Blue color light-emitting diode
JPH0529653A (en) 1991-07-19 1993-02-05 Toshiba Corp Semiconductor device
JPH05243614A (en) 1992-03-03 1993-09-21 Sharp Corp Method of growing compound semiconductor, its light-emitting device, and the manufacture
JPH06151968A (en) 1992-10-29 1994-05-31 Toyoda Gosei Co Ltd Nitrogen-iii group semiconductor luminous element and manufacture thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125086A (en) * 1974-08-26 1976-03-01 Mitsubishi Electric Corp
JPS5228887A (en) * 1975-08-30 1977-03-04 Fujitsu Ltd Semiconductive emitter device
JPS5493380A (en) * 1977-12-30 1979-07-24 Fujitsu Ltd Semiconductor light emitting device
JPH02229475A (en) 1989-03-01 1990-09-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting element
JPH03252178A (en) 1990-02-28 1991-11-11 Toyoda Gosei Co Ltd Light emitting element of gallium nitride compound semiconductor
JPH03252177A (en) 1990-02-28 1991-11-11 Toyoda Gosei Co Ltd Light emitting element of gallium nitride compound semiconductor
JPH04242985A (en) 1990-12-26 1992-08-31 Toyoda Gosei Co Ltd Gallium nitride group compound semiconductor laser diode
JPH04321280A (en) 1991-04-19 1992-11-11 Nichia Chem Ind Ltd Blue color light-emitting diode
JPH0529653A (en) 1991-07-19 1993-02-05 Toshiba Corp Semiconductor device
JPH05243614A (en) 1992-03-03 1993-09-21 Sharp Corp Method of growing compound semiconductor, its light-emitting device, and the manufacture
JPH06151968A (en) 1992-10-29 1994-05-31 Toyoda Gosei Co Ltd Nitrogen-iii group semiconductor luminous element and manufacture thereof

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138286B2 (en) 1994-03-22 2006-11-21 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitrogen compound
US7001790B2 (en) 1994-03-22 2006-02-21 Toyoda Gosei Co., Ltd. Light-emitting aluminum gallium indium nitride compound semiconductor device having an improved luminous intensity
US7332366B2 (en) 1994-03-22 2008-02-19 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitrogen compound
US7867800B2 (en) 1994-03-22 2011-01-11 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitrogen compound
EP0678945A1 (en) * 1994-04-20 1995-10-25 Toyoda Gosei Co., Ltd. Gallium nitride group compound semiconductor laser diode
US5583879A (en) * 1994-04-20 1996-12-10 Toyoda Gosei Co., Ltd. Gallum nitride group compound semiconductor laser diode
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6133058A (en) * 1994-07-21 2000-10-17 Matsushita Electric Industrial Co., Ltd. Fabrication of semiconductor light-emitting device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JPH0897471A (en) * 1994-09-20 1996-04-12 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light emitting device
US5753939A (en) * 1994-09-20 1998-05-19 Toyoda Gosei Kk Light-emitting semiconductor device using a Group III nitride compound and having a contact layer upon which an electrode is formed
JPH08115880A (en) * 1994-10-17 1996-05-07 Matsushita Electric Ind Co Ltd Manufacture of p-type gan semiconductor
JPH08130327A (en) * 1994-11-02 1996-05-21 Nichia Chem Ind Ltd Group iii-v nitride semiconductor light-emitting element
US6580099B2 (en) 1994-12-02 2003-06-17 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
US6900465B2 (en) 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
JPH08167735A (en) * 1994-12-12 1996-06-25 Hitachi Cable Ltd Light emitting element
EP0742622A3 (en) * 1995-03-27 1997-02-19 Mitsubishi Cable Ind Ltd Laser diode
EP0742622A2 (en) * 1995-03-27 1996-11-13 Mitsubishi Cable Industries, Ltd. Laser diode
JPH09129924A (en) * 1995-10-27 1997-05-16 Toyoda Gosei Co Ltd Iii group nitride semiconductor etching method and light emitting element manufacturing method
US8304790B2 (en) 1995-11-06 2012-11-06 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US7166869B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US7166874B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US6165812A (en) * 1996-01-19 2000-12-26 Matsushita Electric Industrial Co., Ltd. Gallium nitride compound semiconductor light emitting device and process for producing gallium nitride compound semiconductor
WO1997026680A1 (en) * 1996-01-19 1997-07-24 Matsushita Electric Industrial Co., Ltd. Gallium nitride compound semiconductor light emitting device and process for producing gallium nitride compound semiconductor
US6849864B2 (en) 1997-01-09 2005-02-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US7615804B2 (en) 1997-01-09 2009-11-10 Nichia Chemical Industries, Ltd. Superlattice nitride semiconductor LD device
US7211822B2 (en) 1997-01-09 2007-05-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US8541794B2 (en) 1997-01-09 2013-09-24 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
EP2264794A3 (en) * 1997-01-09 2011-02-23 Nichia Corporation Nitride semiconductor device
US6069021A (en) * 1997-05-14 2000-05-30 Showa Denko K.K. Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
US7002184B2 (en) 1997-12-26 2006-02-21 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising a gallum-nitride-group compound-semiconductor
US6841800B2 (en) 1997-12-26 2005-01-11 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising a gallium-nitride-group compound-semiconductor
US6497944B1 (en) 1997-12-26 2002-12-24 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising a gallium-nitride-group compound-semiconductor
US6194744B1 (en) 1998-03-17 2001-02-27 Showa Denko Kabushiki Kaisha Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
US6307219B1 (en) 1998-05-25 2001-10-23 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising gallium-nitride-group compound semiconductor
JP2000036616A (en) * 1998-07-21 2000-02-02 Toshiba Corp Semiconductor light emitting element and its manufacture
JP2004505434A (en) * 1999-12-03 2004-02-19 クリー インコーポレイテッド Micro light-emitting diode array with improved light extraction
JP2004511080A (en) * 1999-12-03 2004-04-08 クリー インコーポレイテッド Light-emitting diodes with improved light extraction by internal and external optical elements
JP2001237455A (en) * 2000-02-23 2001-08-31 Inst Of Physical & Chemical Res InAlGaN EMITTING LIGHT IN SHORT-WAVELENGTH REGION OF ULTRAVIOLET REGION, ITS MANUFACTURING METHOD AS WELL AS ULTRAVIOLET LIGHT-EMITTING ELEMENT USING THE SAME
JP2002043620A (en) * 2000-07-27 2002-02-08 Shiro Sakai Gallium nitride compound semiconductor element and method for forming electrode
JP2002100803A (en) * 2000-09-22 2002-04-05 Shiro Sakai Gallium nitride-based compound semiconductor device and method for forming electrode
US7796496B2 (en) 2001-09-20 2010-09-14 Victor Company Of Japan, Limited Information recording carrier and method of reproducing the same
US7643402B2 (en) 2001-09-20 2010-01-05 Victor Company Of Japan, Limited Information recording carrier and method of reproducing the same
US7796497B2 (en) 2001-09-20 2010-09-14 Victor Company Of Japan, Limited Information recording carrier and method of reproducing the same
US7505393B2 (en) 2001-09-20 2009-03-17 Victor Company Of Japan, Limited Information recording carrier and method of reproducing the same
US7088670B2 (en) 2001-09-20 2006-08-08 Victor Company Of Japan Limited Information recording carrier and method of reproducing the same
US7391709B2 (en) 2001-09-20 2008-06-24 Victor Company Of Japan, Limited Information recording carrier and method of reproducing the same
US7643403B2 (en) 2001-09-20 2010-01-05 Victor Company Of Japan, Limited Information recording carrier and method of reproducing the same
US7277379B2 (en) 2001-09-26 2007-10-02 Victor Company Of Japan, Limited Information recording carrier
US8036097B2 (en) 2001-09-26 2011-10-11 Victor Company Of Japan, Limited Information recording carrier and information reproducing apparatus for the same
US8077590B2 (en) 2001-09-26 2011-12-13 Victor Company Of Japan, Limited Information recording carrier and information reproducing apparatus for the same
JP2002185044A (en) * 2001-11-27 2002-06-28 Nichia Chem Ind Ltd Nitride semiconductor multi-colored light-emitting element
US6881983B2 (en) 2002-02-25 2005-04-19 Kopin Corporation Efficient light emitting diodes and lasers
US6911079B2 (en) 2002-04-19 2005-06-28 Kopin Corporation Method for reducing the resistivity of p-type II-VI and III-V semiconductors
US6734091B2 (en) 2002-06-28 2004-05-11 Kopin Corporation Electrode for p-type gallium nitride-based semiconductors
JP2004006970A (en) * 2003-07-31 2004-01-08 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting element
US7498612B2 (en) 2003-10-31 2009-03-03 Showa Denko K.K. Compound semiconductor light-emitting device having pn-junction type hetero structure and forming method thereof
US7822088B2 (en) 2007-07-12 2010-10-26 Opnext Japan, Inc. Nitride semiconductor light emitting device and method for manufacturing the same
JP2009177219A (en) * 2009-05-15 2009-08-06 Mitsubishi Chemicals Corp METHOD FOR MANUFACTURING GaN-BASED SEMICONDUCTOR DEVICE
CN105655456A (en) * 2016-04-08 2016-06-08 湘能华磊光电股份有限公司 Bottom coarsening growth method for epitaxially increasing LED light extraction efficiency

Also Published As

Publication number Publication date
JP2778405B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3250438B2 (en) Nitride semiconductor light emitting device
JP2932467B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2917742B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
US6693307B2 (en) Semiconductor light emitting element
JP3890930B2 (en) Nitride semiconductor light emitting device
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
JP5145617B2 (en) N-type nitride semiconductor laminate and semiconductor device using the same
JP2002231997A (en) Nitride semiconductor light-emitting device
JPH0870139A (en) Method for crystal growth of n-type gallium nitride compound semiconductor
JPH11220173A (en) Gallium nitride compound semiconductor light emitting element
JPH09148678A (en) Nitride semiconductor light emitting element
JP3620292B2 (en) Nitride semiconductor device
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH08162671A (en) Nitride semiconductor light emitting diode
JP3371830B2 (en) Nitride semiconductor light emitting device
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JP2560964B2 (en) Gallium nitride compound semiconductor light emitting device
JPH06209120A (en) Blue colored light emitting element
JPH11220172A (en) Gallium nitride compound semiconductor light-emitting element
JP3267250B2 (en) Nitride semiconductor light emitting device
JPH10173231A (en) Gallium nitride-based compound semiconductor light emitting element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080508

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100508

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100508

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110508

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120508

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120508

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120508

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130508

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130508

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130508

Year of fee payment: 15

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130508

Year of fee payment: 15

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

EXPY Cancellation because of completion of term