Nothing Special   »   [go: up one dir, main page]

JPH06267978A - Thin film transistor and manufacture thereof - Google Patents

Thin film transistor and manufacture thereof

Info

Publication number
JPH06267978A
JPH06267978A JP7899793A JP7899793A JPH06267978A JP H06267978 A JPH06267978 A JP H06267978A JP 7899793 A JP7899793 A JP 7899793A JP 7899793 A JP7899793 A JP 7899793A JP H06267978 A JPH06267978 A JP H06267978A
Authority
JP
Japan
Prior art keywords
gate electrode
thin film
crystallization
film transistor
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7899793A
Other languages
Japanese (ja)
Other versions
JP3137797B2 (en
Inventor
Kouyuu Chiyou
宏勇 張
Toru Takayama
徹 高山
Yasuhiko Takemura
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP05078997A priority Critical patent/JP3137797B2/en
Priority to CN2006100997241A priority patent/CN1893000B/en
Priority to CN94104268A priority patent/CN1095204C/en
Priority to KR1019940004944A priority patent/KR100203982B1/en
Priority to CN2004100351663A priority patent/CN1542929B/en
Priority to CN2006100997260A priority patent/CN1893001B/en
Priority to CN2006100997256A priority patent/CN1893118B/en
Publication of JPH06267978A publication Critical patent/JPH06267978A/en
Priority to US08/360,600 priority patent/US5595944A/en
Priority to US08/449,669 priority patent/US5773846A/en
Priority to US08/477,941 priority patent/US5646424A/en
Priority to US08/933,342 priority patent/US6060725A/en
Priority to KR1019980003945A priority patent/KR100194450B1/en
Priority to CNB98116322XA priority patent/CN1154165C/en
Priority to CNB981163211A priority patent/CN1154192C/en
Priority to KR1019980054318A priority patent/KR100194448B1/en
Application granted granted Critical
Publication of JP3137797B2 publication Critical patent/JP3137797B2/en
Priority to US09/903,647 priority patent/US6541313B2/en
Priority to US10/395,387 priority patent/US6939749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To lower a crystallization temperature and shorten a crystallization time by forming a gate electrode, a gate insulating film and a semiconductor layer on a substrate, an active region sandwiched by a pair of impurity regions is provided on the semiconductor layer and concentration of a catalytic element promoting crystallization in the impurity region is made larger than that of the active region. CONSTITUTION:A gate electrode 2 is formed on a substrate and an anode oxide 3 is formed on the gate electrode 2. Further, a silicon nitride film 4 is formed as a gate insulating film by a plasma CVD method, continuously an amorphous silicon film is piled up by a plasma CVD method for forming a semiconductor layer 5 by patterning. Then, a pair of impurity regions 7a, 7b are formed on the semiconductor layer 5 for being further recrystallized by a crystallization promoting catalytic action of nickel larger than the active region. Continuously, a silicon oxide film 8 is formed as an interlayer insulator for forming the source/drain regions 9a, 9b. Thereby, a process of crystallization can be performed at lower temperature of a crystallizationn process so as to shorten crystallization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜トランジスタ(T
FT)およびその作製方法に関するものである。本発明
によって作製される薄膜トランジスタは、ガラス等の絶
縁基板上、単結晶シリコン等の半導体基板上、いずれに
も形成される。特に本発明は、熱アニールによる結晶
化、活性化を経て作製される薄膜トランジスタに関す
る。
The present invention relates to a thin film transistor (T
FT) and its manufacturing method. The thin film transistor manufactured by the present invention is formed on either an insulating substrate such as glass or a semiconductor substrate such as single crystal silicon. In particular, the present invention relates to a thin film transistor manufactured through crystallization and activation by thermal annealing.

【0002】[0002]

【従来の技術】最近、絶縁基板上に、薄膜状の活性層
(活性領域ともいう)を有する絶縁ゲイト型の半導体装
置の研究がなされている。特に、薄膜状の絶縁ゲイトト
ランジスタ、いわゆる薄膜トランジスタ(TFT)が熱
心に研究されている。これらは、透明な絶縁基板上に形
成され、マトリクス構造を有する液晶等の表示装置にお
いて、各画素の制御用に利用することや駆動回路に利用
することが目的であり、利用する半導体の材料・結晶状
態によって、アモルファスシリコンTFTや結晶性シリ
コンTFTというように区別されている。
2. Description of the Related Art Recently, research has been conducted on an insulating gate type semiconductor device having a thin film active layer (also called an active region) on an insulating substrate. In particular, thin-film insulating gate transistors, so-called thin film transistors (TFTs), have been eagerly studied. These are intended to be used for controlling each pixel in a display device such as a liquid crystal having a matrix structure formed on a transparent insulating substrate and for a driving circuit. Amorphous silicon TFTs and crystalline silicon TFTs are distinguished by the crystalline state.

【0003】中でも、アモルファスシリコンTFTの作
製には高温を必要としないので、大面積基板に作製した
場合の歩留りが高く、既に実用化されている。一般的に
実用化されているアモルファスシリコンTFTの構造は
逆スタガー型(もしくはボトムゲイト型)と呼ばれるも
ので、ゲイト電極が活性領域の下に位置する。
Above all, since high temperature is not required for manufacturing an amorphous silicon TFT, the yield when it is manufactured on a large area substrate is high and it has already been put to practical use. The structure of the amorphous silicon TFT which is generally put into practical use is called an inverted stagger type (or bottom gate type), and the gate electrode is located below the active region.

【0004】その作製方法は以下のようなものである。
まず、基板上にゲイト電極を形成した後に、ゲイト絶縁
膜、活性層としてのアモルファスシリコン膜を形成す
る。そして、ソース、ドレイン領域としてN型の微結晶
シリコン膜をアモルファスシリコン上に形成する。しか
しながら、この際、N型のシリコン膜と下地のアモルフ
ァスシリコン膜とのエッチングレートの差がほとんどな
いため、エッチングストッパーを設ける等の工夫が必要
であった。
The manufacturing method is as follows.
First, after forming a gate electrode on a substrate, a gate insulating film and an amorphous silicon film as an active layer are formed. Then, an N-type microcrystalline silicon film is formed on the amorphous silicon as the source and drain regions. However, at this time, since there is almost no difference in etching rate between the N-type silicon film and the underlying amorphous silicon film, it is necessary to devise such as providing an etching stopper.

【0005】この問題を解決するためには、イオンドー
ピング法のような高速イオンを注入することによって、
アモルファスシリコン膜に直接、ドーピング不純物を導
入して、これをソース、ドレインにする方法が提案され
ている。
In order to solve this problem, by implanting fast ions such as the ion doping method,
A method has been proposed in which a doping impurity is directly introduced into an amorphous silicon film to be used as a source and a drain.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな高速イオンが注入された領域は結晶性が著しく悪い
ので、導電率が低く、そのままでは使用できないという
問題を抱えていた。結晶性を高めるにはレーザー等の光
エネルギーによってアニールをおこなう方法が提案され
ていたが量産実用化の目処がついていない。
However, since the region into which such fast ions are implanted has a remarkably poor crystallinity, it has a problem that it has a low conductivity and cannot be used as it is. In order to enhance the crystallinity, a method of annealing with light energy of a laser or the like has been proposed, but there is no prospect of mass production.

【0007】現在、実用的に採用できる考えられる方法
は、熱によってアモルファスシリコンを結晶化させる方
法である。しかし、最低でも600℃の温度でのアニー
ルが要求され、基板の問題から実用的でない。すなわ
ち、アモルファスシリコンTFTに使用される無アルカ
リガラス基板は、その歪み温度が600℃以下(コーニ
ング7059の場合は593℃)であるので、600℃
でのアニールでは、基板の収縮やソリが問題となる。
At present, a possible method that can be practically adopted is a method of crystallizing amorphous silicon by heat. However, annealing at a temperature of at least 600 ° C. is required, which is not practical due to the problem of the substrate. That is, the non-alkali glass substrate used for the amorphous silicon TFT has a strain temperature of 600 ° C. or lower (593 ° C. in the case of Corning 7059).
In annealing at 1, the shrinkage and warpage of the substrate become a problem.

【0008】また、600℃のアニールが要求されるの
では、低温で作製できるアモルファスシリコンTFTの
特徴を生かすことができず、活性領域も結晶化してしま
うので、アモルファスシリコンTFTの低リーク電流と
いう特徴が失われてしまう。そこで、結晶化のプロセス
はより低温(好ましくはガラスの歪み温度より50℃以
上低い温度)でおこなうことが望まれていた。本発明は
このような困難な課題に対して解答を与えんとするもの
である。本発明は、量産性を維持しつつ、上記の問題点
を解決することを課題とする。
Further, if annealing at 600 ° C. is required, the characteristics of the amorphous silicon TFT which can be manufactured at a low temperature cannot be utilized, and the active region is crystallized. Will be lost. Therefore, it has been desired to carry out the crystallization process at a lower temperature (preferably at a temperature lower than the strain temperature of glass by 50 ° C. or more). The present invention is intended to provide an answer to such a difficult task. An object of the present invention is to solve the above problems while maintaining mass productivity.

【0009】[0009]

【課題を解決するための手段】本発明者の研究の結果、
実質的にアモルファス状態のシリコン被膜に微量の触媒
材料を添加することによって結晶化を促進させ、結晶化
温度を低下させ、結晶化時間を短縮できることが明らか
になった。触媒材料としては、ニッケル(Ni)、鉄
(Fe)、コバルト(Co)、白金(Pt)の単体、も
しくはそれらの珪化物等の化合物が適している。具体的
には、これらの触媒元素を有する膜、粒子、クラスター
等をアモルファスシリコン膜の下、もしくは上に密着し
て形成し、あるいはイオン注入法等の方法によってアモ
ルファスシリコン膜中にこれらの触媒元素を導入し、そ
の後、これを適当な温度、典型的には550℃以下の温
度で熱アニールすることによって結晶化させることがで
きる。
As a result of the research conducted by the present inventor,
It has been revealed that the addition of a trace amount of a catalyst material to the substantially amorphous silicon coating can promote crystallization, lower the crystallization temperature, and shorten the crystallization time. Suitable catalyst materials are simple substances of nickel (Ni), iron (Fe), cobalt (Co), platinum (Pt), or compounds thereof such as silicides. Specifically, a film, particles, clusters or the like having these catalytic elements are formed in close contact with each other under or on the amorphous silicon film, or these catalytic elements are formed in the amorphous silicon film by a method such as an ion implantation method. Can then be crystallized by thermal annealing at a suitable temperature, typically below 550 ° C.

【0010】当然のことであるが、アニール温度が高い
ほど結晶化時間は短いという関係がある。また、ニッケ
ル、鉄、コバルト、白金の濃度が大きいほど結晶化温度
が低く、結晶化時間が短いという関係がある。本発明人
の研究では、結晶化を進行させるには、これらのうちの
少なくとも1つの元素の濃度が1017cm-3以上、好ま
しくは5×1018cm-3以上存在することが必要である
ことがわかった。
As a matter of course, there is a relationship that the higher the annealing temperature, the shorter the crystallization time. In addition, the higher the concentration of nickel, iron, cobalt, and platinum, the lower the crystallization temperature and the shorter the crystallization time. According to the research conducted by the present inventors, it is necessary that the concentration of at least one of these elements is 10 17 cm −3 or more, preferably 5 × 10 18 cm −3 or more in order to promote crystallization. I understood it.

【0011】一方、上記触媒材料はいずれもシリコンに
とっては好ましくない材料であるので、できるだけその
濃度が低いことが望まれる。本発明人の研究では、これ
らの触媒材料の濃度は合計して1020cm-3を越えない
ことが望まれる。特に活性層として利用する場合には、
十分な信頼性および特性を得るために1×1018cm-3
以下、好ましくは1×1017cm-3以下の濃度であるこ
とが必要とされる。
On the other hand, all of the above catalyst materials are unfavorable materials for silicon, so that it is desirable that the concentration thereof be as low as possible. In the study of the present inventors, it is desired that the total concentration of these catalyst materials does not exceed 10 20 cm -3 . Especially when used as an active layer,
1 × 10 18 cm -3 to obtain sufficient reliability and characteristics
Hereafter, it is required that the concentration is preferably 1 × 10 17 cm −3 or less.

【0012】本発明人は、この触媒元素の効果に着目
し、これを利用することによって上記の問題を解決でき
ることを見出した。本発明におけるTFTの作製プロセ
スは、概ね以下のようなものである。 ゲイト電極の形成 ゲイト絶縁膜の成膜 アモルファスシリコン膜の成膜 ドーピング不純物の導入(イオン注入もしくはイオ
ンドーピング法による) ’触媒元素を有する物質のシリコン膜への成膜 ドーピング不純物の活性化(550℃以下、8時間
以内) ソース、ドレイン電極の形成
The present inventor has paid attention to the effect of this catalytic element and found that the above problem can be solved by utilizing it. The manufacturing process of the TFT in the present invention is generally as follows. Gate electrode formation Gate insulation film formation Amorphous silicon film formation Introducing doping impurities (by ion implantation or ion doping method) 'Forming a substance having a catalytic element on a silicon film Activation of doping impurities (550 ° C Within 8 hours) Source and drain electrode formation

【0013】あるいは、 ゲイト電極の形成 ゲイト絶縁膜の成膜 アモルファスシリコン膜の成膜 ドーピング不純物の導入(イオン注入もしくはイオ
ンドーピング法による) ’触媒元素の導入(イオン注入もしくはイオンドーピ
ング法による) ドーピング不純物の活性化(550℃以下、8時間
以内) ソース、ドレイン電極の形成
Alternatively, gate electrode formation, gate insulating film formation, amorphous silicon film formation, doping impurity introduction (by ion implantation or ion doping method) 'catalyst element introduction (ion implantation or ion doping method), doping impurity Activation (less than 550 ℃, within 8 hours) Source and drain electrode formation

【0014】これらの工程において、および’はそ
の順序を逆転させることも可能である。本発明におい
て、上記工程’によって主としてソース、ドレイン領
域に導入された触媒元素は、その領域の結晶化を著しく
促進する。そのため、活性化のためには、550℃以
下、典型的には500℃以下の温度で十分であり、ま
た、アニール時間も8時間以内、典型的には4時間以内
で十分である。特に、後者のようにイオン注入法やイオ
ンドーピング法によって最初から均等に触媒元素が分布
している場合には、極めて結晶化が進行しやすかった。
この場合、触媒元素の導入には、ドーピング不純物の導
入に使用するマスクを使用すればよい。このようなマス
クは、ゲイト電極を裏面から露光することによって自己
整合的に得ることができる。
In these steps, and 'can also reverse their order. In the present invention, the catalyst element mainly introduced into the source / drain region in the above step 'remarkably promotes crystallization of the region. Therefore, a temperature of 550 ° C. or lower, typically 500 ° C. or lower is sufficient for activation, and an annealing time of 8 hours or less, typically 4 hours or less is sufficient. In particular, when the catalytic element is evenly distributed from the beginning by the ion implantation method or the ion doping method like the latter, crystallization was extremely easy to proceed.
In this case, the mask used for introducing the doping impurities may be used for introducing the catalyst element. Such a mask can be obtained in a self-aligned manner by exposing the gate electrode from the back surface.

【0015】本発明の優れた点は、シリコンに有害な触
媒元素をTFTに添加するものの、その濃度は活性領域
では著しく低い(1×1018cm-3以下)ことである。
すなわち、いずれのプロセスを採用しても、活性領域の
上にドーピングに使用されるマスクが存在するので、活
性領域にじかに触媒元素が密着したり、注入されたりす
ることはない。その結果、TFTの信頼性、特性は何ら
損なわれることはない。特に、不純物領域と活性領域の
ニッケルの濃度比を10倍以上にすれば、アニール温度
と時間の最適化によって、活性領域のアモルファス性を
保ちつつ、不純物領域の活性化をおこなうことができ
た。以下に実施例を用いて、より詳細に本発明を説明す
る。
An advantage of the present invention is that although a catalytic element harmful to silicon is added to the TFT, its concentration is extremely low in the active region (1 × 10 18 cm -3 or less).
That is, no matter which process is adopted, since the mask used for doping is present on the active region, the catalytic element is not directly adhered to or implanted into the active region. As a result, the reliability and characteristics of the TFT are not impaired. Particularly, if the concentration ratio of nickel in the impurity region and the active region is set to 10 times or more, the impurity region can be activated while maintaining the amorphous property of the active region by optimizing the annealing temperature and time. Hereinafter, the present invention will be described in more detail with reference to examples.

【0016】[0016]

【実施例】 〔実施例1〕 図1に本実施例の作製工程の断面図を示
す。まず、基板(コーニング7059)1上に厚さ30
00〜8000Å、例えば5000Åのタンタル膜を形
成し、これをパターニングしてゲイト電極2を形成し
た。さらに、タンタルの表面を陽極酸化して、陽極酸化
物3を厚さ1000〜3000Å、例えば2000Å形
成した。さらに、プラズマCVD法によってゲイト絶縁
膜として厚さ1000〜5000Å、例えば1500Å
の窒化珪素膜4を堆積し、引き続きプラズマCVD法に
よって、厚さ200〜1500Å、例えば500Åの真
性(I型)のアモルファスシリコン膜を堆積し、パター
ニングして半導体領域5とした。(図1(A))
[Embodiment 1] FIG. 1 shows a cross-sectional view of a manufacturing process of this embodiment. First, a substrate (Corning 7059) 1 having a thickness of 30
A tantalum film having a thickness of 00 to 8000 Å, for example 5000 Å, was formed and patterned to form the gate electrode 2. Further, the surface of tantalum was anodized to form anodic oxide 3 having a thickness of 1000 to 3000Å, for example 2000Å. Further, the thickness of the gate insulating film is 1000 to 5000 Å, for example 1500 Å by plasma CVD method.
The silicon nitride film 4 is deposited, and subsequently, an intrinsic (I-type) amorphous silicon film having a thickness of 200 to 1500 Å, for example, 500 Å is deposited by the plasma CVD method and patterned to form the semiconductor region 5. (Fig. 1 (A))

【0017】次に、基板表面にフォトレジストを塗布
し、基板裏面からの露光によって、ゲイト電極のパター
ンに合わせてマスク6を形成した。(図1(B)) そして、このマスク6を用いて、イオンドーピング法に
よって、半導体領域5に不純物(燐)を注入した。ドー
ピングガスとして、フォスフィン(PH3 )を用い、加
速電圧を60〜90kV、例えば80kVとした。ドー
ズ量は1×1015〜8×1015cm-2、例えば、2×1
15cm-2とした。この結果、N型の不純物領域7a、
7bが形成された。(図1(C))
Next, a photoresist was applied to the front surface of the substrate, and a mask 6 was formed in accordance with the pattern of the gate electrode by exposing the back surface of the substrate. (FIG. 1B) Then, using this mask 6, an impurity (phosphorus) was implanted into the semiconductor region 5 by an ion doping method. Phosphine (PH 3 ) was used as a doping gas, and the acceleration voltage was set to 60 to 90 kV, for example, 80 kV. The dose amount is 1 × 10 15 to 8 × 10 15 cm -2 , for example, 2 × 1
It was set to 0 15 cm -2 . As a result, the N-type impurity region 7a,
7b was formed. (Fig. 1 (C))

【0018】さらに、イオンドーピング法によって、マ
スク6を用いて、今度はニッケルイオンを注入した。ド
ーズ量は2×1013〜2×1014cm-2、例えば5×1
13cm-2とした。この結果、N型の不純物領域26
a、26bのニッケルの濃度は、5×1018cm-3程度
になった。(図1(D))
Further, nickel ions were implanted by using the mask 6 by the ion doping method. The dose amount is 2 × 10 13 to 2 × 10 14 cm −2 , for example, 5 × 1
It was set to 0 13 cm -2 . As a result, the N-type impurity region 26
The nickel concentration of a and 26b was about 5 × 10 18 cm −3 . (Fig. 1 (D))

【0019】その後、水素雰囲気(好ましくは水素の分
圧が0.1〜1気圧)中500℃で4時間アニールする
ことによって、不純物を活性化させた。このとき、先に
ニッケルイオンが注入された不純物領域はニッケルの結
晶化促進触媒作用によって再結晶化が容易に進行した。
こうして不純物領域7a、7bを活性化した。
Then, the impurities were activated by annealing at 500 ° C. for 4 hours in a hydrogen atmosphere (preferably a partial pressure of hydrogen is 0.1 to 1 atm). At this time, recrystallization was easily promoted in the impurity region into which nickel ions were previously implanted due to the crystallization promoting catalytic action of nickel.
Thus, the impurity regions 7a and 7b are activated.

【0020】続いて、厚さ3000Åの酸化珪素膜8を
層間絶縁物としてプラズマCVD法によって形成し、こ
れにコンタクトホールを形成して、金属材料、例えば、
窒化チタンとアルミニウムの多層膜によってTFTのソ
ース領域、ドレイン領域の電極・配線9a、9bを形成
した。以上の工程によって薄膜トランジスタが完成し
た。(図1(E)) 得られた薄膜トランジスタの不純物領域、活性領域のニ
ッケルの濃度を2次イオン質量分析(SIMS)法によ
って測定したところ、前者は、1×1018〜5×1018
cm-3、後者は測定限界(1×1016cm-3)以下であ
った。
Then, a silicon oxide film 8 having a thickness of 3000 Å is formed as an interlayer insulator by a plasma CVD method, and a contact hole is formed in this film, and a metal material such as, for example,
The electrodes / wirings 9a and 9b in the source region and the drain region of the TFT were formed by a multilayer film of titanium nitride and aluminum. The thin film transistor was completed through the above steps. (FIG. 1 (E)) The concentration of nickel in the impurity region and active region of the obtained thin film transistor was measured by the secondary ion mass spectrometry (SIMS) method, and the former was 1 × 10 18 to 5 × 10 18.
cm -3 , the latter was below the measurement limit (1 × 10 16 cm -3 ).

【0021】〔実施例2〕 図2に本実施例の作製工程
の断面図を示す。まず、基板(コーニング7059)1
1上に厚さ3000〜8000Å、例えば5000Åの
タンタル膜を形成し、これをパターニングしてゲイト電
極12を形成した。さらに、タンタルの表面を陽極酸化
して、陽極酸化物13を厚さ1000〜3000Å、例
えば2000Å形成した。さらに、プラズマCVD法に
よってゲイト絶縁膜として厚さ1000〜5000Å、
例えば1500Åの窒化珪素膜14を堆積し、引き続き
プラズマCVD法によって、厚さ200〜1500Å、
例えば500Åの真性(I型)のアモルファスシリコン
膜を堆積し、パターニングして半導体領域15とした。
(図2(A))
[Embodiment 2] FIG. 2 shows a cross-sectional view of a manufacturing process of this embodiment. First, the substrate (Corning 7059) 1
A tantalum film having a thickness of 3000 to 8000 Å, for example 5000 Å, was formed on the substrate 1 and patterned to form the gate electrode 12. Further, the surface of tantalum was anodized to form an anodic oxide 13 having a thickness of 1000 to 3000Å, for example 2000Å. Furthermore, a thickness of 1000 to 5000Å is formed as a gate insulating film by the plasma CVD method.
For example, a silicon nitride film 14 having a thickness of 1500 Å is deposited, and subsequently, a thickness of 200 to 1500 Å is formed by plasma CVD
For example, an intrinsic (I-type) amorphous silicon film of 500 Å was deposited and patterned to form a semiconductor region 15.
(Fig. 2 (A))

【0022】次に、基板表面にフォトレジストを塗布
し、基板裏面からの露光によって、ゲイト電極のパター
ンに合わせてマスク16を形成した。(図2(B)) そして、このマスク16を用いて、イオンドーピング法
によって、半導体領域5に不純物(燐)を注入した。ド
ーピングガスとして、フォスフィン(PH3 )を用い、
加速電圧を60〜90kV、例えば80kVとした。ド
ーズ量は1×1015〜8×1015cm-2、例えば、2×
1015cm-2とした。この結果、N型の不純物領域17
a、17bが形成された。(図2(C))
Next, a photoresist was applied to the front surface of the substrate, and a mask 16 was formed in accordance with the pattern of the gate electrode by exposing the back surface of the substrate. (FIG. 2B) Then, using this mask 16, an impurity (phosphorus) was implanted into the semiconductor region 5 by an ion doping method. Phosphine (PH 3 ) is used as a doping gas,
The acceleration voltage was 60 to 90 kV, for example 80 kV. The dose amount is 1 × 10 15 to 8 × 10 15 cm -2 , for example, 2 ×
It was set to 10 15 cm -2 . As a result, the N-type impurity region 17
a and 17b were formed. (Fig. 2 (C))

【0023】次に、スパッタリング法によって、平均的
に厚さ5〜200Å、例えば20Åの珪化ニッケル膜
(化学式NiSix 、0.4≦x≦2.5、例えば、x
=2.0)18を図に示すように全面に形成した。20
Å程度の厚さでは膜は連続的なものではなく、どちらか
というと粒子の集合体の様相を呈していたが、本実施例
では問題はない。(図2(D))
Next, a nickel silicide film (chemical formula NiSi x , 0.4 ≦ x ≦ 2.5, for example x) having an average thickness of 5 to 200 Å, for example, 20 Å is formed by the sputtering method.
= 2.0) 18 was formed on the entire surface as shown in the figure. 20
At a thickness of about Å, the film was not continuous and rather appeared as an aggregate of particles, but there is no problem in this example. (Fig. 2 (D))

【0024】その後、水素雰囲気(好ましくは水素の分
圧が0.1〜1気圧)中450℃で4時間アニールする
ことによって、不純物を活性化させた。このとき、N型
不純物領域17aおよび17bには、珪化ニッケル膜1
8からニッケル原子が拡散し、ニッケルの結晶化促進触
媒作用によって再結晶化が容易に進行した。こうして不
純物領域17a、17bを活性化した。
Then, the impurities were activated by annealing at 450 ° C. for 4 hours in a hydrogen atmosphere (preferably a partial pressure of hydrogen is 0.1 to 1 atm). At this time, the nickel silicide film 1 is formed on the N-type impurity regions 17a and 17b.
Nickel atoms diffused from No. 8, and recrystallization easily proceeded by the catalytic action of nickel for promoting crystallization. Thus, the impurity regions 17a and 17b are activated.

【0025】続いて、厚さ3000Åの酸化珪素膜19
を層間絶縁物としてプラズマCVD法によって形成し、
これにコンタクトホールを形成して、金属材料、例え
ば、窒化チタンとアルミニウムの多層膜によってTFT
のソース領域、ドレイン領域の電極・配線20a、20
bを形成した。以上の工程によって薄膜トランジスタが
完成した。(図2(E)) 得られた薄膜トランジスタの不純物領域、活性領域のニ
ッケルの濃度を2次イオン質量分析(SIMS)法によ
って測定したところ、前者は、1×1019〜3×1019
cm-3、後者は1×1016〜5×1016cm-3であっ
た。
Then, a silicon oxide film 19 having a thickness of 3000 Å is formed.
Is formed by plasma CVD as an interlayer insulator,
A contact hole is formed in this, and the TFT is made of a metal material, for example, a multilayer film of titanium nitride and aluminum.
Source / drain region electrodes / wirings 20a, 20
b was formed. The thin film transistor was completed through the above steps. (FIG. 2 (E)) The concentration of nickel in the impurity region and active region of the obtained thin film transistor was measured by the secondary ion mass spectrometry (SIMS) method, and the former was 1 × 10 19 to 3 × 10 19.
cm −3 , the latter was 1 × 10 16 to 5 × 10 16 cm −3 .

【0026】[0026]

【発明の効果】本発明は、従来は、N型シリコン膜の成
膜によって作製されていたソース、ドレイン領域を、イ
オンドーピング法によって行ううえでは欠かすことので
来ない技術である。本発明が、他の競合する技術、例え
ばレーザーアニール技術、に比較して歩留り、信頼性の
点で優れていることは先に示したとおりである。このよ
うに本発明は工業上有益な発明である。
The present invention is a technique that is indispensable for performing the source and drain regions, which were conventionally formed by forming an N-type silicon film, by the ion doping method. As described above, the present invention is superior in yield and reliability to other competing technologies such as laser annealing technology. Thus, the present invention is an industrially useful invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1の作製工程断面図を示す。1A to 1C are cross-sectional views of a manufacturing process of Example 1.

【図2】 実施例2の作製工程断面図を示す。2A to 2C are cross-sectional views of a manufacturing process of Example 2.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・ゲイト電極(タンタル) 3・・・陽極酸化物(酸化タンタル) 4・・・ゲイト絶縁膜(窒化珪素) 5・・・半導体領域(アモルファスシリコン) 6・・・マスク 7・・・ソース、ドレイン領域 8・・・層間絶縁物(酸化珪素) 9・・・金属配線・電極(窒化チタン/アルミニウム) 1 ... Substrate 2 ... Gate electrode (tantalum) 3 ... Anodic oxide (tantalum oxide) 4 ... Gate insulating film (silicon nitride) 5 ... Semiconductor region (amorphous silicon) 6 ... Mask 7 ... Source / drain region 8 ... Interlayer insulator (silicon oxide) 9 ... Metal wiring / electrode (titanium nitride / aluminum)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/265 21/324 Z 8617−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 21/265 21/324 Z 8617-4M

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成されたゲイト電極と、ゲイ
ト電極上に形成されたゲイト絶縁膜と、ゲイト絶縁膜上
に形成された半導体層を有し、該半導体層には1対の不
純物領域と不純物領域に挟まれた活性領域が設けられ、
該不純物領域中の結晶化を促進する触媒元素の濃度は、
活性領域のものより大きいことを特徴とする薄膜トラン
ジスタ。
1. A gate electrode formed on a substrate, a gate insulating film formed on the gate electrode, and a semiconductor layer formed on the gate insulating film, wherein the semiconductor layer has a pair of impurities. An active region sandwiched between the region and the impurity region is provided,
The concentration of the catalytic element that promotes crystallization in the impurity region is
A thin film transistor which is larger than that of the active region.
【請求項2】 請求項1において、触媒元素は、ニッケ
ル、鉄、コバルト、白金の少なくとも1つであることを
特徴とする薄膜トランジスタ。
2. The thin film transistor according to claim 1, wherein the catalyst element is at least one of nickel, iron, cobalt, and platinum.
【請求項3】 請求項1において、不純物領域の触媒元
素の濃度は、活性領域の濃度ものの10倍以上であるこ
とを特徴とする薄膜トランジスタ。
3. The thin film transistor according to claim 1, wherein the concentration of the catalytic element in the impurity region is 10 times or more that of the active region.
【請求項4】 請求項1において、活性領域は実質的に
アモルファスシリコンであることを特徴とする薄膜トラ
ンジスタ。
4. The thin film transistor according to claim 1, wherein the active region is substantially amorphous silicon.
【請求項5】 基板上に形成されたゲイト電極と、ゲイ
ト電極上に形成されたゲイト絶縁膜と、ゲイト絶縁膜上
に形成された半導体層を有し、該半導体層には1対の不
純物領域と不純物領域に挟まれた活性領域が設けられ、
該不純物領域中の結晶化を促進する触媒元素の濃度が1
×1017cm-3もしくはそれを越える濃度であることを
特徴とする薄膜トランジスタ。
5. A gate electrode formed on a substrate, a gate insulating film formed on the gate electrode, and a semiconductor layer formed on the gate insulating film, wherein the semiconductor layer has a pair of impurities. An active region sandwiched between the region and the impurity region is provided,
The concentration of the catalyst element that promotes crystallization in the impurity region is 1
A thin film transistor having a concentration of × 10 17 cm -3 or higher.
【請求項6】 請求項5において、触媒元素の濃度は2
次イオン質量分析法によって測定された最低値であるこ
とを特徴とする薄膜トランジスタ。
6. The concentration of the catalytic element according to claim 5,
A thin film transistor having the lowest value measured by secondary ion mass spectrometry.
【請求項7】 基板上にゲイト電極を形成する第1の工
程と、 前記ゲイト電極を覆って、ゲイト絶縁膜を形成する第2
の工程と、 前記ゲイト絶縁膜上にアモルファスシリコン膜を形成す
る第3の工程と、 前記ゲイト電極の形状に合わせて、前記アモルファスシ
リコン膜にドーピング不純物および結晶化を促進する触
媒元素を添加する第4の工程と、を有することを特徴と
する薄膜トランジスタの作製方法。
7. A first step of forming a gate electrode on a substrate, and a second step of forming a gate insulating film to cover the gate electrode.
And a third step of forming an amorphous silicon film on the gate insulating film, and a doping impurity and a catalyst element for promoting crystallization are added to the amorphous silicon film according to the shape of the gate electrode. 4. The method for manufacturing a thin film transistor, comprising:
【請求項8】 基板上にゲイト電極を形成する第1の工
程と、 前記ゲイト電極を覆って、ゲイト絶縁膜を形成する第2
の工程と、 前記ゲイト絶縁膜上にアモルファスシリコン膜を形成す
る第3の工程と、 前記ゲイト電極の形状に合わせて、前記アモルファスシ
リコン膜にドーピング不純物を添加する第4の工程と、 前記アモルファスシリコン膜上に触媒元素を有する材料
を被着させる第5の工程とを有することを特徴とする薄
膜トランジスタの作製方法。
8. A first step of forming a gate electrode on a substrate, and a second step of forming a gate insulating film to cover the gate electrode.
And a third step of forming an amorphous silicon film on the gate insulating film, a fourth step of adding a doping impurity to the amorphous silicon film according to the shape of the gate electrode, and the amorphous silicon. A fifth step of depositing a material having a catalytic element on the film, the method for manufacturing a thin film transistor.
【請求項9】 請求項8において、触媒元素を有する材
料は、触媒元素とシリコンの化合物であることを特徴と
する薄膜トランジスタ。
9. The thin film transistor according to claim 8, wherein the material having a catalytic element is a compound of the catalytic element and silicon.
JP05078997A 1993-03-12 1993-03-12 Thin film transistor and manufacturing method thereof Expired - Fee Related JP3137797B2 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP05078997A JP3137797B2 (en) 1993-03-12 1993-03-12 Thin film transistor and manufacturing method thereof
CN2006100997241A CN1893000B (en) 1993-03-12 1994-03-12 Method for manufacturing semiconductor device
CN94104268A CN1095204C (en) 1993-03-12 1994-03-12 Transistor and process for fabricating the same
KR1019940004944A KR100203982B1 (en) 1993-03-12 1994-03-12 Semiconductor device and manufacturing method thereof
CN2004100351663A CN1542929B (en) 1993-03-12 1994-03-12 Process for fabricating Semiconductor device
CN2006100997260A CN1893001B (en) 1993-03-12 1994-03-12 Method for manufacturing semiconductor device
CN2006100997256A CN1893118B (en) 1993-03-12 1994-03-12 Thin film transistor
US08/360,600 US5595944A (en) 1993-03-12 1994-12-21 Transistor and process for fabricating the same
US08/449,669 US5773846A (en) 1993-03-12 1995-05-24 Transistor and process for fabricating the same
US08/477,941 US5646424A (en) 1993-03-12 1995-06-07 Transistor device employing crystallization catalyst
US08/933,342 US6060725A (en) 1993-03-12 1997-09-19 Thin film transistor using a semiconductor film
KR1019980003945A KR100194450B1 (en) 1993-03-12 1998-02-11 A thin film tr
CNB98116322XA CN1154165C (en) 1993-03-12 1998-07-15 Transistor and making method thereof
CNB981163211A CN1154192C (en) 1993-03-12 1998-07-15 Transistor and making method thereof
KR1019980054318A KR100194448B1 (en) 1993-03-12 1998-12-11 A semicoductor device
US09/903,647 US6541313B2 (en) 1993-03-12 2001-07-13 Transistor and process for fabricating the same
US10/395,387 US6939749B2 (en) 1993-03-12 2003-03-25 Method of manufacturing a semiconductor device that includes heating the gate insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05078997A JP3137797B2 (en) 1993-03-12 1993-03-12 Thin film transistor and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10091046A Division JP3137943B2 (en) 1998-03-19 1998-03-19 Thin film transistor

Publications (2)

Publication Number Publication Date
JPH06267978A true JPH06267978A (en) 1994-09-22
JP3137797B2 JP3137797B2 (en) 2001-02-26

Family

ID=13677539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05078997A Expired - Fee Related JP3137797B2 (en) 1993-03-12 1993-03-12 Thin film transistor and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP3137797B2 (en)
CN (3) CN1893118B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595923A (en) * 1993-03-12 1997-01-21 Semiconductor Energy Laboratory Co., Ltd. Method of forming a thin film transistor
US5946560A (en) * 1993-03-22 1999-08-31 Semiconductor Energy Laboratory Co., Ltd. Transistor and method of forming the same
EP0989614A2 (en) 1998-09-04 2000-03-29 Sel Semiconductor Energy Laboratory Co., Ltd. TFT with an LDD structure and its manufacturing method
US6072193A (en) * 1997-05-30 2000-06-06 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and semiconductor device using thin-film transistors
US6124155A (en) * 1991-06-19 2000-09-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US6194255B1 (en) * 1994-06-14 2001-02-27 Semiconductor Energy Laboratry Co. Ltd Method for manufacturing thin-film transistors
US6300659B1 (en) 1994-09-30 2001-10-09 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and fabrication method for same
JP2002184694A (en) * 2000-12-15 2002-06-28 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US6541793B2 (en) 1997-05-30 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and semiconductor device using thin-film transistors
US6822293B2 (en) 1998-07-16 2004-11-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device equipped with semiconductor circuits composed of semiconductor elements and process for production thereof
KR100473997B1 (en) * 2000-10-06 2005-03-07 엘지.필립스 엘시디 주식회사 A method of fabricating the same
US6884698B1 (en) * 1994-02-23 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with crystallization of amorphous silicon
US6984550B2 (en) 2001-02-28 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7075002B1 (en) 1995-03-27 2006-07-11 Semiconductor Energy Laboratory Company, Ltd. Thin-film photoelectric conversion device and a method of manufacturing the same
US7081646B2 (en) 1997-06-10 2006-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
KR100642968B1 (en) * 1997-06-11 2007-04-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method producing it
US7915102B2 (en) 2005-06-23 2011-03-29 Samsung Mobile Display Co., Ltd. Methods of fabricating thin film transistor and organic light emitting display device using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693509B2 (en) * 1983-08-26 1994-11-16 シャープ株式会社 Thin film transistor
GB8606045D0 (en) * 1986-03-12 1986-04-16 Emi Plc Thorn Gas sensitive device
JPH0687503B2 (en) * 1987-03-11 1994-11-02 株式会社日立製作所 Thin film semiconductor device
US5037766A (en) * 1988-12-06 1991-08-06 Industrial Technology Research Institute Method of fabricating a thin film polysilicon thin film transistor or resistor
US5064775A (en) * 1990-09-04 1991-11-12 Industrial Technology Research Institute Method of fabricating an improved polycrystalline silicon thin film transistor

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335213B1 (en) 1991-06-19 2002-01-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US6124155A (en) * 1991-06-19 2000-09-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US6166399A (en) * 1991-06-19 2000-12-26 Semiconductor Energy Laboratory Co., Ltd. Active matrix device including thin film transistors
US6797548B2 (en) 1991-06-19 2004-09-28 Semiconductor Energy Laboratory Co., Inc. Electro-optical device and thin film transistor and method for forming the same
US5595923A (en) * 1993-03-12 1997-01-21 Semiconductor Energy Laboratory Co., Ltd. Method of forming a thin film transistor
US5946560A (en) * 1993-03-22 1999-08-31 Semiconductor Energy Laboratory Co., Ltd. Transistor and method of forming the same
US6028326A (en) * 1993-03-22 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor including a catalytic element for promoting crystallization of a semiconductor film
US6346486B2 (en) 1993-03-22 2002-02-12 Semiconductor Energy Laboratory Co., Ltd. Transistor device and method of forming the same
US7749819B2 (en) 1994-02-23 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7235828B2 (en) 1994-02-23 2007-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with residual nickel from crystallization of semiconductor film
US6884698B1 (en) * 1994-02-23 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with crystallization of amorphous silicon
US6194255B1 (en) * 1994-06-14 2001-02-27 Semiconductor Energy Laboratry Co. Ltd Method for manufacturing thin-film transistors
US6743667B2 (en) 1994-06-14 2004-06-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an active matrix type device
US6300659B1 (en) 1994-09-30 2001-10-09 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and fabrication method for same
US7075002B1 (en) 1995-03-27 2006-07-11 Semiconductor Energy Laboratory Company, Ltd. Thin-film photoelectric conversion device and a method of manufacturing the same
US6541793B2 (en) 1997-05-30 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and semiconductor device using thin-film transistors
US6072193A (en) * 1997-05-30 2000-06-06 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and semiconductor device using thin-film transistors
US7371667B2 (en) 1997-06-10 2008-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US7868360B2 (en) 1997-06-10 2011-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with heat-resistant gate
US7081646B2 (en) 1997-06-10 2006-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US7157753B2 (en) 1997-06-10 2007-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
KR100642968B1 (en) * 1997-06-11 2007-04-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method producing it
US6822293B2 (en) 1998-07-16 2004-11-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device equipped with semiconductor circuits composed of semiconductor elements and process for production thereof
US7709844B2 (en) 1998-07-16 2010-05-04 Semiconductor Energy Laboratory Co., Ltd Semiconductor device equipped with semiconductor circuits composed of semiconductor elements and processes for production thereof
US7078768B2 (en) 1998-07-16 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device equipped with semiconductor circuits composed of semiconductor elements and process for production thereof
EP0989614A3 (en) * 1998-09-04 2009-06-10 Sel Semiconductor Energy Laboratory Co., Ltd. TFT with an LDD structure and its manufacturing method
EP0989614A2 (en) 1998-09-04 2000-03-29 Sel Semiconductor Energy Laboratory Co., Ltd. TFT with an LDD structure and its manufacturing method
KR100473997B1 (en) * 2000-10-06 2005-03-07 엘지.필립스 엘시디 주식회사 A method of fabricating the same
JP2002184694A (en) * 2000-12-15 2002-06-28 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US6984550B2 (en) 2001-02-28 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9330940B2 (en) 2001-02-28 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7915102B2 (en) 2005-06-23 2011-03-29 Samsung Mobile Display Co., Ltd. Methods of fabricating thin film transistor and organic light emitting display device using the same

Also Published As

Publication number Publication date
CN1893118A (en) 2007-01-10
CN1893001B (en) 2011-10-05
CN1893000B (en) 2012-06-27
CN1893001A (en) 2007-01-10
JP3137797B2 (en) 2001-02-26
CN1893118B (en) 2010-05-12
CN1893000A (en) 2007-01-10

Similar Documents

Publication Publication Date Title
US5646424A (en) Transistor device employing crystallization catalyst
JP3637069B2 (en) Method for manufacturing semiconductor device
JPH06267978A (en) Thin film transistor and manufacture thereof
JP3535205B2 (en) Method for manufacturing thin film transistor
US20010001496A1 (en) Semiconductor devices
US5972105A (en) Method of fabricating semiconductor device
JPH0758339A (en) Semiconductor device and its production
US6531348B2 (en) Method for crystallizing amorphous silicon and fabricating thin film transistor using crystallized silicon
JP3402380B2 (en) Semiconductor circuit and manufacturing method thereof
JP3359689B2 (en) Semiconductor circuit and manufacturing method thereof
JPH06275808A (en) Semiconductor circuit and its manufacture
JP3369244B2 (en) Thin film transistor
JP3433966B2 (en) Method for manufacturing semiconductor circuit
JP3359691B2 (en) Method for manufacturing thin film transistor
JP3137943B2 (en) Thin film transistor
JP3405955B2 (en) Semiconductor circuit
JPH06275805A (en) Semiconductor circuit and its manufacture
JP3333489B2 (en) Method for manufacturing thin film transistor
JP3535465B2 (en) Method for manufacturing semiconductor device
JPS63250178A (en) Manufacture of thin film semiconductor device
JP3316201B2 (en) Semiconductor circuit
JP3362023B2 (en) Method for manufacturing semiconductor device
KR100709282B1 (en) The manafacturing method of the silicon thin film transistor
JPH04370937A (en) Manufacture of semiconductor device
KR20030056247A (en) Method of fabricating the same for Poly-Silicone Thin Film Transistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20071208

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091208

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121208

LAPS Cancellation because of no payment of annual fees