Nothing Special   »   [go: up one dir, main page]

JPH06267559A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH06267559A
JPH06267559A JP5054395A JP5439593A JPH06267559A JP H06267559 A JPH06267559 A JP H06267559A JP 5054395 A JP5054395 A JP 5054395A JP 5439593 A JP5439593 A JP 5439593A JP H06267559 A JPH06267559 A JP H06267559A
Authority
JP
Japan
Prior art keywords
gas
electromotive
flow path
fuel cell
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5054395A
Other languages
Japanese (ja)
Inventor
Haruhiko Hirata
東彦 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5054395A priority Critical patent/JPH06267559A/en
Publication of JPH06267559A publication Critical patent/JPH06267559A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a fuel cell which can make even the gas flow distribution at the electromotive member of a single cell, and can improve the power generating property. CONSTITUTION:A gas flowing-in passage 2 to feed the gas to the electromotive member of a single cell, and a gas flowing-out passage 5 to exhaust the gas from the electromotive member are provided. And at least to one side of the gas flowing-in passage 2 or the gas flowing-out passage 5, flow passage resistance members 7, 8, and 9 are provided to make the pressure distribution of the gas almost even, about in the vertical direction to the gas flowing directions 6, at the gas inlet part 3 or the gas outlet part 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学エネルギを電気エ
ネルギに変換する燃料電池に係わり、特にそのガス流路
内のガス流れの均一化の改善を図った燃料電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell for converting chemical energy into electric energy, and more particularly to a fuel cell for improving the homogenization of gas flow in its gas passage.

【0002】[0002]

【従来の技術】燃料電池は、燃料および酸化剤のもつ化
学ポテンシャルと、それらの反応物の有する化学ポテン
シャルとの差のうちのギブス自由エネルギ分を直接電気
エネルギに変換するシステムである。そして、燃料、酸
化剤の反応は、電解質とこの電解質をはさんで位置する
2つの電極からなる単電池の両電極にそれぞれ、燃料、
酸化剤を接触させ、電解質中のイオンの移動を仲立ちと
した電池反応によって進められ、電解質内部のイオンの
流れが電池外部で電流として取り出される。
2. Description of the Related Art A fuel cell is a system for directly converting Gibbs free energy of a difference between a chemical potential of a fuel and an oxidant and a chemical potential of a reactant thereof into electric energy. Then, the reaction of the fuel and the oxidant is performed by the fuel and the two electrodes of the unit cell including the electrolyte and the two electrodes sandwiching the electrolyte, respectively.
An oxidant is brought into contact with the oxidant, and the flow of ions inside the electrolyte is taken out as a current by being promoted by a battery reaction mediated by the movement of ions in the electrolyte.

【0003】しかし、このような単電池で得られる電圧
は高々1Vにも満たない値のため、燃料電池システムとし
ては、単電池を積層して出力電圧を高める方法がとられ
ている。
However, since the voltage obtained from such a unit cell is less than 1 V at the most, a method of stacking the unit cells to increase the output voltage is adopted as the fuel cell system.

【0004】一般に、燃料電池発電システムにおいて
は、大容量化のために単電池面積の増大と、積層数の増
加が図られる傾向にあり、現状、単電池面積は1m×1
m程度、積層数は数十〜百程度となっている。
Generally, in a fuel cell power generation system, there is a tendency to increase the unit cell area and the number of stacked layers in order to increase the capacity. At present, the unit cell area is 1 m × 1.
About m, and the number of laminated layers is about tens to hundreds.

【0005】図16および図17に、単電池を積層した
従来の燃料電池の例を示す。図16は積層の様子を示す
分解斜視図で、図17は同図のA矢視方向の断面図であ
る。この従来例の燃料電池においては、ガスの供給は単
電池の積層方向と、単電池面内方向について行う必要が
あり、積層方向にはマニホールドリング213、単電池
面内方向にはセパレータ214のガス流路によってガス
供給が行われる。この単電池面内方向へのガス流の様子
を図18に示す。
16 and 17 show an example of a conventional fuel cell in which unit cells are stacked. FIG. 16 is an exploded perspective view showing a state of stacking, and FIG. 17 is a sectional view taken in the direction of arrow A in FIG. In the fuel cell of this conventional example, it is necessary to supply gas in the stacking direction of the unit cells and in the in-plane direction of the unit cells. The manifold ring 213 is in the stacking direction and the gas of the separator 214 is in the in-plane direction of the unit cells. Gas is supplied by the flow path. FIG. 18 shows the state of gas flow in the in-plane direction of the unit cell.

【0006】マニホールドリングの径は単電池の一辺の
寸法に対して小さいため、セパレータガス流路のマニホ
ールドリングにつながるガス流入部302から単電池ま
でのガス流路310は流れにしたがって断面積の増加す
る拡大流路となる。一般に、このような拡大流路におい
ては、たとえその流入部302において断面方向に一様
な流速分布が得られたとしても、拡大部下流で断面方向
に一様流速分布を得ることは難しく、結果的に単電池の
起電部流入部303に流入するガスの流量はその辺上の
位置によって一様ではないものとなる。
Since the diameter of the manifold ring is smaller than the size of one side of the unit cell, the gas flow path 310 from the gas inflow portion 302 connected to the manifold ring of the separator gas flow path to the unit cell increases in cross-sectional area as the flow proceeds. It becomes an enlarged flow path. Generally, in such an enlarged flow path, even if a uniform flow velocity distribution is obtained in the cross-sectional direction in the inflow portion 302, it is difficult to obtain a uniform flow velocity distribution in the cross-sectional direction downstream of the enlarged portion. Therefore, the flow rate of the gas flowing into the electromotive portion inflow portion 303 of the unit cell is not uniform depending on the position on the side.

【0007】また、単電池の起電部からガス流出部30
5までのガス流路311は流れにしたがって断面積の減
少する縮小流路となる。一般に、このような縮小流路に
おいては、たとえその流出部において断面方向に一様な
圧力が得られたとしても、縮小部上流で断面方向に一様
な流速分布を得ることは難しく、結果的に単電池の起電
部流出部304から流出するガスの流量はその辺上の位
置によって一様ではないものとなる。
In addition, from the electromotive section of the unit cell to the gas outflow section 30
The gas flow paths 311 up to 5 are reduced flow paths whose cross-sectional area decreases with the flow. In general, in such a reduced flow passage, even if a uniform pressure is obtained in the cross-sectional direction at the outflow portion, it is difficult to obtain a uniform flow velocity distribution in the cross-sectional direction upstream of the reduced portion. In addition, the flow rate of the gas flowing out from the electromotive portion outflow portion 304 of the unit cell is not uniform depending on the position on the side.

【0008】単電池起電部におけるガスの流動状態は電
池性能に大きく影響することが知られており、例えば、
単電池のガス流入部においてガス流量が他の部位より少
ない部位においてはその下流では十分な電流の取り出し
が行えず、また、ガスによる単電池の冷却も十分に行え
ない。したがって、単電池面内における、電流密度の分
布、あるいは温度の分布が大きくなり、結果的に燃料電
池の性能を低下させる。
It is known that the flow state of gas in the electromotive section of a single cell has a great influence on the cell performance.
In the gas inflow portion of the unit cell, where the gas flow rate is smaller than that of the other portion, sufficient current cannot be taken out downstream thereof, and the unit cell cannot be sufficiently cooled by the gas. Therefore, the distribution of the current density or the distribution of the temperature in the plane of the unit cell becomes large, resulting in the deterioration of the performance of the fuel cell.

【0009】また、単電池のガス流出部においてガス流
量が他の部位より少ない部位においてはその上流のガス
流量が低下するため、十分な電流の取り出しが行えず、
また、ガスによる単電池の冷却も十分に行えないため、
結果的に燃料電池の性能を低下させる。さらに、単電池
面内における、電流密度の分布、あるいは温度の分布が
大きくなることは、燃料電池の寿命にも悪影響を及ぼ
す。
Further, in the gas outflow portion of the unit cell, where the gas flow rate is smaller than that of the other area, the gas flow rate upstream thereof decreases, so that sufficient current cannot be taken out.
In addition, because it is not possible to sufficiently cool the unit cell with gas,
As a result, the performance of the fuel cell is degraded. Further, the increase of the current density distribution or the temperature distribution in the plane of the unit cell adversely affects the life of the fuel cell.

【0010】[0010]

【発明が解決しようとする課題】上記のように、従来の
燃料電池においては、単電池起電部のガス流量が不均一
になることにより、燃料電池の性能が低下するという問
題点があった。この発明は上記問題点に着目してなされ
たもので、単電池起電部のガス流量を均一化し、発電性
能の向上が可能な燃料電池の提供を目的とする。
As described above, in the conventional fuel cell, there is a problem that the performance of the fuel cell deteriorates due to the nonuniform gas flow rate in the cell electromotive section. . The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel cell capable of improving the power generation performance by equalizing the gas flow rate in the unit cell electromotive section.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、第1の発明の燃料電池は、単電池の起電部にガス
の供給を行うためのガス流入路と、前記起電部からガス
の排出を行うためのガス流出路とを備え、前記ガス流入
路あるいは前記ガス流出路の少なくとも一方に、前記起
電部のガス入口部分あるいは出口部分において前記ガス
の流れ方向に対してほぼ垂直方向に関して前記ガスの圧
力分布をほぼ均一化させるように流路抵抗を設定したこ
とを特徴としている。
In order to solve the above-mentioned problems, a fuel cell according to a first aspect of the present invention comprises a gas inflow path for supplying gas to an electromotive section of a unit cell, and the electromotive section. A gas outflow passage for discharging gas from the at least one of the gas inflow passage or the gas outflow passage, at a gas inlet portion or an outlet portion of the electromotive section with respect to the flow direction of the gas. The channel resistance is set so that the pressure distribution of the gas is substantially uniform in the vertical direction.

【0012】また、第2の発明の燃料電池は、単電池の
起電部にガスを供給し前記起電部内を通して前記ガスの
排出を行うガス流路を備え、前記起電部内の前記ガス流
路に、前記ガスの流れ方向に対してほぼ垂直方向に関し
て前記ガスの圧力分布をほぼ均一化させるように流路抵
抗を設定したことを特徴としている。
Further, the fuel cell of the second invention comprises a gas flow path for supplying gas to the electromotive part of the unit cell and discharging the gas through the electromotive part, and the gas flow in the electromotive part A flow path resistance is set in the passage so that the pressure distribution of the gas is substantially uniform in a direction substantially perpendicular to the flow direction of the gas.

【0013】[0013]

【作用】このように構成された、第1の発明の燃料電池
においては、ガス流入路(ガス流入部)、あるいはガス
流出路(ガス流出部)の少なくとも一方において、起電
部のガス入口部分あるいは出口部分において前記ガスの
流れ方向に対してほぼ垂直方向に関して前記ガスの圧力
分布をほぼ均一化させるように流路抵抗を設定した(流
路抵抗部材を配設した)ことにより、拡大流路を流れる
ガス流の流量はそのいずれの断面においてもほぼ均一化
され、単電池起電部に流入するガス流量、あるいは流出
するガス流量はほぼ均一化される。
In the fuel cell according to the first aspect of the present invention thus configured, at least one of the gas inflow path (gas inflow section) and the gas outflow path (gas outflow section) has a gas inlet section of the electromotive section. Alternatively, the flow passage resistance is set so as to make the pressure distribution of the gas substantially uniform in the direction substantially perpendicular to the flow direction of the gas at the outlet portion (the flow passage resistance member is provided), so that the enlarged flow passage is formed. The flow rate of the gas flow flowing through is substantially uniform in any cross section, and the flow rate of gas flowing into or out of the unit cell electromotive section is substantially uniform.

【0014】これによって、単電池起電部を流れるガス
の流量はいずれの部位においてもほぼ均一化され、流量
不均一による燃料電池の性能低下を生じることなく、高
い性能を維持することができる。
As a result, the flow rate of the gas flowing through the unit cell electromotive portion is made substantially uniform at any of the portions, and high performance can be maintained without causing deterioration in fuel cell performance due to uneven flow rate.

【0015】また、第2の発明の燃料電池においては、
起電部内のガス流路に、ガスの流れ方向に対してほぼ垂
直方向に関して前記ガスの圧力分布をほぼ均一化させる
ように流路抵抗を設定した(流路抵抗部材を配設した)
ことによって、単電池起電部を流れるガスの流量はいず
れの部位においてもほぼ均一化され、流量不均一による
燃料電池の性能低下を生じることなく、高い性能を維持
することができる。
Further, in the fuel cell of the second invention,
The flow path resistance was set in the gas flow path in the electromotive section so that the pressure distribution of the gas was substantially uniform in a direction substantially perpendicular to the gas flow direction (a flow path resistance member was provided).
As a result, the flow rate of the gas flowing through the unit cell electromotive section is made substantially uniform at any part, and high performance can be maintained without causing deterioration in fuel cell performance due to non-uniform flow rate.

【0016】[0016]

【実施例】以下、図面に基づいて、本発明の燃料電池の
一実施例を説明する。 [第1の発明]まず、第1の発明について第1乃至第4
の実施例および変形例について図1乃至図14を参照し
て説明する。 (第1実施例)図1は、第1の発明の第1実施例の燃料
電池に係わるセパレータの概略構成を示す斜視図で、図
2はこのセパレータを用いて、単電池を積層した様子を
示すための断面図である。
An embodiment of the fuel cell of the present invention will be described below with reference to the drawings. [First Invention] First, first to fourth aspects of the invention are described.
Embodiments and modified examples will be described with reference to FIGS. 1 to 14. (First Embodiment) FIG. 1 is a perspective view showing a schematic configuration of a separator relating to a fuel cell of a first embodiment of the first invention, and FIG. 2 shows a state in which unit cells are stacked using this separator. It is sectional drawing for showing.

【0017】この第1実施例に係る構成の燃料電池で
は、マニホールド(図示省略)を通して供給されるガス
は、図中矢印6で示すようにマニホールドリング25を
介して各セパレータ1に分配供給される。そして、この
セパレータ1に供給されたガスは、単電池27を構成す
る電極23へ各セパレータ1内のガス流路を、ガス流入
部2、起電部流入部3、起電部、起電部流出部4、ガス
流出部5の順に流れることによって供給・排出される。
ここで、マニホールドリング25の径は、単電池27の
一辺の長さと比較してかなり小さく設定されているた
め、ガス流入部2から、起電部流入部3へ至るガス流路
10は、流れにしたがって漸次流路断面積が増加する拡
大流路となっている。
In the fuel cell having the structure according to the first embodiment, the gas supplied through the manifold (not shown) is distributed and supplied to each separator 1 through the manifold ring 25 as shown by an arrow 6 in the figure. . Then, the gas supplied to the separator 1 flows through the gas flow path in each separator 1 to the electrode 23 forming the unit cell 27, the gas inflow part 2, the electromotive part inflow part 3, the electromotive part, the electromotive part. The gas is supplied and discharged by flowing in the order of the outflow portion 4 and the gas outflow portion 5.
Here, since the diameter of the manifold ring 25 is set to be considerably smaller than the length of one side of the unit cell 27, the gas flow path 10 from the gas inflow portion 2 to the electromotive portion inflow portion 3 flows. Accordingly, the flow passage becomes an enlarged flow passage whose cross-sectional area gradually increases.

【0018】第1の発明の第1実施例に係る燃料電池で
は、流路抵抗部材の一例として、ガス流路10に台形フ
ィン群7、8、9が配置されている。ここで台形フィン
群7、8、9はより具体的には、図3に示すような構成
をしている。すなわち、多数の板状の台形フィン31が
ほぼ千鳥状に配列され、ガスは台形フィン31の内部お
よび互いの間を流れるように構成されている。
In the fuel cell according to the first embodiment of the first aspect of the invention, trapezoidal fin groups 7, 8 and 9 are arranged in the gas flow passage 10 as an example of the flow passage resistance member. Here, more specifically, the trapezoidal fin groups 7, 8 and 9 are configured as shown in FIG. That is, a large number of plate-shaped trapezoidal fins 31 are arranged in a substantially zigzag manner, and the gas is configured to flow inside the trapezoidal fins 31 and between them.

【0019】本発明者の実験によれば、このような台形
フィン31では、その配列の方向に対するガスの流れの
方向によって、流路抵抗が異なり、図3に示すガスの流
れ方向角度θが0度のとき、図4に示すように摩擦係数
すなわち流路抵抗が最も小さく、角度θが60度のとき
流路抵抗が最も大きくなる。なお、図4は、横軸にレイ
ノルズ数、縦軸に摩擦係数を示して、上記角度θについ
て、0,30,45,60,90度の各々の場合につい
ての本発明者による実験データを示したものである。
According to the experiments conducted by the present inventor, in such a trapezoidal fin 31, the flow path resistance differs depending on the gas flow direction relative to the arrangement direction, and the gas flow direction angle θ shown in FIG. 3 is 0. When the angle is 60 degrees, the friction coefficient, that is, the flow path resistance is the smallest, and when the angle θ is 60 degrees, the flow path resistance is the largest. Note that FIG. 4 shows the Reynolds number on the horizontal axis and the friction coefficient on the vertical axis, and shows the experimental data by the inventor for each of the angles θ of 0, 30, 45, 60, and 90 degrees. It is a thing.

【0020】この図4から理解できることは、台形フィ
ン31では、ガスの流れ方向角度θが0度と60度の時
とでは、流路抵抗の差を約3倍程度と大きく変化させる
ことができるということである。
It can be understood from FIG. 4 that, in the trapezoidal fin 31, the difference in flow path resistance can be greatly changed to about three times when the gas flow direction angle θ is 0 ° and 60 °. That's what it means.

【0021】次に図5は、台形フィン群7、8、9の各
々の配置の様子を示す図で、ガス流入部2から起電部流
入部3に至るガス流路10では、図中矢印6で示すガス
の流れの方向に対して概ね垂直な方向の断面において、
台形フィンの配置された部分と、台形フィンの配置され
ていない部分とが形成されている。また、矢印6で示す
ガスの流れの方向に対する台形フィン配列の角度は、台
形フィン群7では0度、台形フィン群8では60度、台
形フィン群9では0度となっており、ガスの流れに対す
る流路抵抗の大きさは、台形フィン群8が最も大きく、
次に台形フィン群7および9、そして台形フィンのない
部分が最も小さくなっている。
Next, FIG. 5 is a view showing the arrangement of the trapezoidal fin groups 7, 8, 9 respectively. In the gas flow path 10 from the gas inflow portion 2 to the electromotive portion inflow portion 3, arrows in the figure are shown. In the cross section in the direction substantially perpendicular to the gas flow direction shown by 6,
A portion where the trapezoidal fins are arranged and a portion where the trapezoidal fins are not arranged are formed. Further, the angle of the trapezoidal fin array with respect to the direction of the gas flow indicated by the arrow 6 is 0 degrees for the trapezoidal fin group 7, 60 degrees for the trapezoidal fin group 8, and 0 degrees for the trapezoidal fin group 9. The trapezoidal fin group 8 has the largest flow resistance with respect to
Next, the trapezoidal fin groups 7 and 9 and the portion without the trapezoidal fins are the smallest.

【0022】そして、上記のような台形フィン群7、
8、9の各々の配置は、起電部流入口においてガスの圧
力がほぼ一定となるように配置されている。このよう
に、矢印6で示したガスの流れ方向に対して概ね垂直な
方向において、起電部流入口においてガスの圧力がほぼ
一定となるように、流路抵抗を変化させた本実施例のガ
ス流路10におけるガスの流れの様子を、汎用流体解析
コードを用いてシミュレーションした結果を図6に示
す。また、比較のために、台形フィン群7、8、9を配
置せず、流路抵抗を変化させない従来例のシミュレーシ
ョン結果を図7に示す。
The trapezoidal fin group 7 as described above,
Each of the arrangements 8 and 9 is arranged so that the gas pressure is substantially constant at the electromotive portion inlet. As described above, in the present embodiment, the flow path resistance is changed so that the gas pressure becomes substantially constant at the electromotive portion inlet in the direction substantially perpendicular to the gas flow direction indicated by the arrow 6. FIG. 6 shows a result of simulating the state of gas flow in the gas channel 10 using a general-purpose fluid analysis code. For comparison, FIG. 7 shows a simulation result of a conventional example in which the trapezoidal fin groups 7, 8 and 9 are not arranged and the flow path resistance is not changed.

【0023】両図は、ガス流路における等圧力線を示す
もので、流路断面積の変化しない領域では、等圧線がほ
ぼ平行に近く並び、そして等圧線が整っているほど断面
上の流量分布も少ないことを示している。流路抵抗を変
化させない従来例の図7の場合には、起電部流入部付近
の等圧線71は、起電部の等圧線72に対して平行には
ならず、起電部流入部においてガス流量に分布があるこ
とを示している。一方図6に示すように、ガスの流れ方
向に対して概ね垂直な方向において、起電部流入口にお
いてガスの圧力がほぼ一定となるように流路抵抗を変化
させた本実施例の場合には、確かに、起電部流入部付近
の等圧線61もほぼ起電部の等圧線62に平行となり、
起電部流入部においてガス流量の分布が小さくなってお
り、台形フィン群を設けた効果が明瞭に理解できる。
Both figures show isobars in the gas flow path. In the region where the cross-sectional area of the flow path does not change, the isobars are arranged substantially parallel to each other. It shows that there are few. In the case of FIG. 7 of the conventional example in which the flow path resistance is not changed, the isobar 71 near the inflow part of the electromotive part is not parallel to the isobar 72 of the electromotive part, and the gas flow rate at the inflow part of the electromotive part is not increased. It has a distribution in. On the other hand, as shown in FIG. 6, in the case of the present embodiment in which the flow path resistance is changed so that the gas pressure is substantially constant at the electromotive section inlet in the direction substantially perpendicular to the gas flow direction. Surely, the isobar 61 near the inflow part of the electromotive part is almost parallel to the isobar 62 of the electromotive part,
The distribution of the gas flow rate is small in the electromotive part inflow part, and the effect of providing the trapezoidal fin group can be clearly understood.

【0024】さらに本第1実施例と従来例との差を、起
電部流入部断面において、流速分布の標準偏差を自乗平
均の平方根で規準化して定義した偏流率によって示す
と、従来例では25%であるのに対して、本実施例では
5.8%と、流量分布はほぼ1/5に抑えられており、
この事実からも本発明が流量分布の均一化に極めて有効
であることが明らかである。 (第2実施例)図8は、第1の発明の燃料電池の第2実
施例に係わるセパレータ部分に配置される台形フィン群
の配置図である。
Further, the difference between the first embodiment and the conventional example is shown by the drift rate defined by normalizing the standard deviation of the flow velocity distribution by the square root of the root mean square in the cross section of the inflow section of the electromotive section. While it is 25%, in this embodiment, it is 5.8%, and the flow rate distribution is suppressed to about 1/5.
From this fact, it is clear that the present invention is extremely effective in making the flow rate distribution uniform. (Second Embodiment) FIG. 8 is a layout view of a trapezoidal fin group arranged in a separator portion according to a second embodiment of the fuel cell of the first invention.

【0025】この第2実施例では、台形フィン群87、
88、89は、各々起電部流出部4と流出部5との間の
縮小流路80に配置されている。これら台形フィン群8
7、88、89は、第1実施例で示した台形フィン群
7、8、9と機能的には同等のものであり、ガスの流れ
方向に対して概ね垂直な方向の断面において、台形フィ
ンの配置された部分と、台形フィンの配置されていない
部分とが形成されてい。また、ガスの流れ方向に対する
台形フィン配列の角度は、台形フィン群87では0度、
台形フィン群88では60度、台形フィン群89では0
度となっており、ガスの流れに対する流路抵抗の大きさ
は、台形フィン群88が最も大きく、次に台形フィン群
87および89、そして台形フィンのない部分が最も小
さくなっている。
In the second embodiment, the trapezoidal fin group 87,
88 and 89 are respectively arranged in the reduced flow path 80 between the electromotive part outflow part 4 and the outflow part 5. These trapezoidal fin groups 8
Reference numerals 7, 88 and 89 are functionally equivalent to the trapezoidal fin groups 7, 8 and 9 shown in the first embodiment, and are trapezoidal fins in a cross section substantially perpendicular to the gas flow direction. And a portion where the trapezoidal fins are not arranged are formed. The angle of the trapezoidal fin array with respect to the gas flow direction is 0 degrees in the trapezoidal fin group 87,
60 degrees for the trapezoidal fin group 88, 0 for the trapezoidal fin group 89
The trapezoidal fin group 88 has the largest flow path resistance to the gas flow, the trapezoidal fin groups 87 and 89, and the portion without the trapezoidal fin have the smallest flow path resistance.

【0026】そして、上記のような台形フィン群87、
88、89の各々の配置は、起電部流出口4においてガ
スの圧力がほぼ一定となるように配置されている。した
がって、このような台形フィン群87、88、89の配
置によって、起電部流出部4の上流のガス流量が均一化
される。 (第3実施例)図9は、第1の発明の燃料電池の第3実
施例に係わるセパレータ部分に配置される台形フィン群
の配置図である。
Then, the trapezoidal fin group 87 as described above,
The respective 88 and 89 are arranged so that the gas pressure is substantially constant at the electromotive portion outlet 4. Therefore, by arranging the trapezoidal fin groups 87, 88, 89 in this manner, the gas flow rate upstream of the electromotive portion outflow portion 4 is made uniform. (Third Embodiment) FIG. 9 is a layout view of a trapezoidal fin group arranged in a separator portion according to a third embodiment of the fuel cell of the first invention.

【0027】第3実施例の構成は、先に説明した第1実
施例と第2実施例とを組合わせた構成に相当し、台形フ
ィン群7、8、9が流入部2と起電部流入部3との間の
拡大流路10に配置され、台形フィン群87、88、8
9は、起電部流出部4と流出部5との間の縮小流路80
に各々配置される。このような台形フィン群の配置によ
って、起電部流入部3の下流、および起電部流出部4の
上流のガス流量が均一化され、結果的に起電部全域でガ
ス流量が均一化される。
The structure of the third embodiment corresponds to a combination of the first and second embodiments described above, in which the trapezoidal fin groups 7, 8 and 9 are connected to the inflow part 2 and the electromotive part. The trapezoidal fin groups 87, 88, 8 are arranged in the enlarged flow path 10 between the inflow section 3 and
Reference numeral 9 denotes a reduced flow passage 80 between the electromotive portion outflow portion 4 and the outflow portion 5.
It is arranged in each. By arranging such trapezoidal fin groups, the gas flow rates in the downstream of the electromotive portion inflow portion 3 and the upstream of the electromotive portion outflow portion 4 are made uniform, and as a result, the gas flow rates are made uniform in the entire electromotive portion. It

【0028】この第3実施例の構成について、ガス流路
の流れの様子を、汎用流体解析コードを用いてシミュレ
ーションした結果の等圧線図を図10に示す。起電部流
入部付近の等圧線101、および起電部流出部の等圧線
103ともに、ほぼ起電部の等圧線102と平行にな
り、起電部流入部および、起電部流出部において供にガ
ス流量の分布が小さいことが分かる。さらに本第3実施
例と従来例との差を、前述の偏流率によって示すと、従
来例の25%に対して、本第3実施例では起電部流入部
で4.6%、起電部流出部で8.6%と、流量分布は起
電部全域でほぼ1/5〜1/3に抑えられている。 (第4実施例)図11は、第1の発明の燃料電池の第4
実施例に係わるセパレータ部分に配置される台形フィン
群の配置図である。
FIG. 10 shows an isobaric diagram as a result of simulating the state of the flow in the gas passage using the general-purpose fluid analysis code for the configuration of the third embodiment. Both the isobars 101 near the electromotive part inflow part and the isobars 103 at the electromotive part outflow part are almost parallel to the isobar line 102 of the electromotive part, and the gas flow rate is provided at the electromotive part inflow part and the electromotive part outflow part. It can be seen that the distribution of is small. Further, when the difference between the third embodiment and the conventional example is shown by the above-mentioned drift ratio, 25% in the conventional example, 4.6% in the electromotive portion inflow portion in the third embodiment, The flow rate distribution is suppressed to about 1/5 to 1/3 in the entire electromotive section, being 8.6% at the outflow section. (Fourth Embodiment) FIG. 11 shows a fourth embodiment of the fuel cell of the first invention.
FIG. 5 is a layout view of a trapezoidal fin group arranged in a separator portion according to an example.

【0029】第4実施例の構成では、台形フィン群11
7は、流入部2と起電部流入部3との間の拡大流路11
0に配置される。第1〜第3の実施例では台形フィン群
をガスの流れ方向に対してほぼ垂直方向に3分割して配
置していたのに対し、本第4実施例では分割しない構成
で台形フィン群117を配置している。
In the configuration of the fourth embodiment, the trapezoidal fin group 11
Reference numeral 7 denotes an enlarged flow path 11 between the inflow part 2 and the electromotive part inflow part 3.
It is placed at 0. In the first to third embodiments, the trapezoidal fin group is divided into three in a direction substantially perpendicular to the gas flow direction, whereas in the fourth embodiment, the trapezoidal fin group 117 is configured so as not to be divided. Are arranged.

【0030】図中矢印111、112、113で示すガ
スの流れ方向に対する台形フィン群117の配列の角度
は、それぞれ約0度、45度、90度となり、台形フィ
ン群を分割して配置した上述の第1〜第3実施例とほぼ
同様な角度配置となる。このため、流れに垂直な方向の
流路抵抗の分布も第1の実施例の場合とほぼ同様となる
ため、起電部流入部でのガス流量の均一化が可能であ
る。
The angles of the trapezoidal fin group 117 array with respect to the gas flow direction indicated by arrows 111, 112, and 113 in the figure are about 0 °, 45 °, and 90 °, respectively, and the trapezoidal fin group is divided and arranged as described above. The angular arrangement is substantially the same as in the first to third embodiments. Therefore, the distribution of the flow path resistance in the direction perpendicular to the flow is almost the same as in the case of the first embodiment, so that the gas flow rate in the electromotive part inflow part can be made uniform.

【0031】また、この第4実施例では、流入部2と起
電部流入部3との間に台形フィン群117を配置した場
合について述べたが、第2実施例と同様に起電部流出部
4と流出部5との間、あるいは、第3実施例と同様に流
入部2と起電部流入部3との間および起電部流出部4と
流出部5との間の双方に台形フィン群を配置してもよい
のは前記の実施例と同様である。 (第1〜第4実施例の付帯効果)上記の第1〜第4のい
ずれの実施例においても、ガス流路に配置された台形フ
ィンは、ガス流路の剛性を高めるとともに、流路の高さ
寸法を精度よく保つことにも効果がある。また、台形フ
ィンを触媒担体として用い、原料ガスを燃料ガスに改質
する改質触媒をガス流入部2と起電部流入部3との間に
配置する台形フィンに保持させることにより、起電部流
入部3において完全に改質された燃料ガスを用いること
のできる直接内部改質燃料電池が構成できる等、その作
用・効果は多岐にわたる。 (変形例)また、上記の各実施例においては、流路抵抗
を変化させるために、台形フィンのガス流れに対する角
度を変化させるように構成しているが、流路抵抗を変化
させる方法としては、上記実施例に限定されるものでは
ない。
In the fourth embodiment, the trapezoidal fin group 117 is arranged between the inflow part 2 and the electromotive part inflow part 3, but the electromotive part outflow is carried out similarly to the second embodiment. A trapezoid is formed between the part 4 and the outflow part 5, or both between the inflow part 2 and the electromotive part inflow part 3 and between the electromotive part outflow part 4 and the outflow part 5 as in the third embodiment. The fin group may be arranged as in the above-described embodiment. (Additional Effects of First to Fourth Embodiments) In any of the above first to fourth embodiments, the trapezoidal fins arranged in the gas flow passage enhance the rigidity of the gas flow passage and It is also effective to keep the height dimension accurately. Further, the trapezoidal fin is used as a catalyst carrier, and the reforming catalyst for reforming the raw material gas into the fuel gas is held by the trapezoidal fin arranged between the gas inflow portion 2 and the electromotive portion inflow portion 3 to generate electromotive force. The operation and effect of the direct internal reforming fuel cell that can use the completely reformed fuel gas in the partial inflow portion 3 are various. (Modification) Further, in each of the above embodiments, the angle of the trapezoidal fin with respect to the gas flow is changed in order to change the flow path resistance. However, as a method of changing the flow path resistance, However, the present invention is not limited to the above embodiment.

【0032】例えば、図12に示すように流路中に、流
路抵抗部材の他の例としての柱状の突起130を複数配
置し、この配置密度(突起の単位面積当りの数あるいは
大きさ、あるいは形状など)を変化させても同様の作用
・効果を得ることができる。またこの柱状の突起の形状
も、図12に示す円柱状の突起130に限定されること
なく、角柱状その他の形状のものを適用することができ
る。
For example, as shown in FIG. 12, a plurality of columnar projections 130 as another example of the flow path resistance member are arranged in the flow path, and the arrangement density (the number or size of the projections per unit area, Alternatively, the same action and effect can be obtained by changing the shape). Further, the shape of the columnar protrusion is not limited to the columnar protrusion 130 shown in FIG. 12, and a prismatic column or other shapes can be applied.

【0033】あるいは、図13に示すように第1〜第4
実施例で示した台形フィンの代わりに流路抵抗部材とし
て、半矩形状フィン131あるいは図14に示すように
半円筒状フィン132等を配置しても同様の作用・効果
を得ることができ、フィンの形状も本発明の要旨を逸脱
しない範囲で種々変形して実施することができる。
Alternatively, as shown in FIG. 13, first to fourth
Even if a semi-rectangular fin 131 or a semi-cylindrical fin 132 as shown in FIG. 14 is arranged as the flow path resistance member instead of the trapezoidal fin shown in the embodiment, the same action and effect can be obtained. The shape of the fins can be modified in various ways without departing from the scope of the present invention.

【0034】あるいは図示は省略するが流路の一部にフ
ェルト状の部材を配置する等の方法によっても流路抵抗
を変化させることができる。このフェルト状部材の一例
としては、高温環境で耐腐食性にも優れている、例えば
Niの繊維をフェルト状に形成したもの等が適用でき
る。なお、フェルト状部材についても種々の材質のもの
を適用できることは明白である。
Alternatively, although not shown, the flow path resistance can be changed by a method of disposing a felt-like member in a part of the flow path. As an example of this felt-like member, a material having excellent corrosion resistance in a high temperature environment, for example, Ni fibers formed in a felt shape can be applied. It is obvious that various materials can be applied to the felt-shaped member.

【0035】またさらに、第1〜第3実施例において台
形フィン群がガスの流れ方向に対して3分割で配置され
ていたが、3分割に限定されること無く、起電部流入口
あるいは流出口においてガスの圧力がほぼ一定となるよ
うに配置されていれば分割の形態は限定されることはな
い。 [第2の発明]図15は、第2の発明の一実施例を示す
台形フィンの配置図である。図16に示す従来例の燃料
電池の起電部ガス流路には、集電板209,210とし
て、図3に示す台形フィン31に相当する部材が配設さ
れている。集電板についても、台形フィン配列とガス流
れ方向との角度によって流路抵抗が異なるため、一般に
は起電部全域において、流路抵抗が最も小さくなるよう
にガス流れに対して0度の配列が用いられている。
Furthermore, in the first to third embodiments, the trapezoidal fin group is arranged in three divisions with respect to the gas flow direction, but the invention is not limited to three divisions, and the electromotive section inlet or the flow section is not limited. The form of division is not limited as long as the gas pressure is arranged to be substantially constant at the outlet. [Second Invention] FIG. 15 is a layout view of trapezoidal fins showing an embodiment of the second invention. Members corresponding to the trapezoidal fins 31 shown in FIG. 3 are provided as current collector plates 209 and 210 in the gas flow path of the electromotive section of the conventional fuel cell shown in FIG. Also for the current collector plate, since the flow path resistance differs depending on the angle between the trapezoidal fin array and the gas flow direction, generally, the flow path resistance is 0 degree with respect to the gas flow so that the flow path resistance is the smallest in the entire electromotive section. Is used.

【0036】この第2の発明においては、流路抵抗部材
としての台形フィン群に相当する配列が、起電部流入部
3の下流においてガス流れに対してほぼ60度の角度と
なるように設定された集電板124aからなる第1の領
域と、ガス流れに対して0度の角度となるように設定さ
れた集電板124bから成る第2の領域とから集電板1
24を構成している。
In the second aspect of the invention, the arrangement corresponding to the trapezoidal fin group as the flow path resistance member is set so as to form an angle of approximately 60 degrees with respect to the gas flow downstream of the electromotive portion inflow portion 3. Of the current collector plate 124a and a second region of the current collector plate 124b set to form an angle of 0 degree with respect to the gas flow.
24 make up.

【0037】つまり、起電部流入部3の下流の一部の領
域を他の領域よりも流路抵抗を増加させている。この構
成によって、図中矢印123で示すガスの流れ方向に対
して概ね垂直な方向において、流路抵抗が起電部流入部
3における流量分布がほぼ均一となるように設定されて
いることになる。なお、ここでは、起電部流入部3の下
流の一部の集電板124aの領域において台形フィンに
相当する部材の配列を変化させているが、これに限定さ
れるものではない。
That is, the flow path resistance is increased in a part of the area downstream of the electromotive part inflow part 3 compared to other areas. With this configuration, the flow path resistance is set so that the flow rate distribution in the electromotive portion inflow portion 3 becomes substantially uniform in the direction substantially perpendicular to the gas flow direction indicated by the arrow 123 in the figure. . Note that, here, the arrangement of members corresponding to the trapezoidal fins is changed in the region of the current collector plate 124a at a part of the downstream side of the electromotive portion inflow portion 3, but the present invention is not limited to this.

【0038】つまり、上記第1の発明の第2実施例に相
当するように起電部流出部4の上流に、あるいは、同じ
く第3実施例に相当するように起電部流入部3の下流と
起電部流出部4の上流との双方に設けていも良く、また
その他の部位、さらにはこれらの複数の部位において、
集電板124に形成される抵抗部材の配列をガスの均一
な流量分布を得るように変化させていも良い。
That is, upstream of the electromotive portion outflow portion 4 so as to correspond to the second embodiment of the first invention, or downstream of the electromotive portion inflow portion 3 so as to correspond to the third embodiment. May be provided both upstream and upstream of the electromotive section outflow section 4, and in other parts, and further in these plural parts,
The arrangement of the resistance members formed on the collector plate 124 may be changed so as to obtain a uniform gas flow rate distribution.

【0039】[0039]

【発明の効果】以上詳述したように、本発明によれば、
単電池の起電部を流れるガスの流量はいずれの部位にお
いてもほぼ均一化され、流量不均一による燃料電池の性
能低下を生じることなく、高い性能を維持することがで
きる。
As described in detail above, according to the present invention,
The flow rate of the gas flowing through the electromotive section of the unit cell is substantially uniformed at any portion, and high performance can be maintained without causing performance deterioration of the fuel cell due to uneven flow rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1の発明の第1実施例のセパレータを示す
斜視図。
FIG. 1 is a perspective view showing a separator according to a first embodiment of the first invention.

【図2】 第1の発明の第1実施例の燃料電池を示す断
面図。
FIG. 2 is a sectional view showing a fuel cell according to a first embodiment of the first invention.

【図3】 第1の発明の第1実施例に係わる台形フィン
を拡大して示す要部拡大斜視図。
FIG. 3 is an enlarged perspective view of an essential part showing a trapezoidal fin according to the first embodiment of the first invention in an enlarged manner.

【図4】 第1の発明の第1実施例に係わる台形フィン
の流路抵抗の特性を示す特性図。
FIG. 4 is a characteristic diagram showing characteristics of flow path resistance of the trapezoidal fin according to the first embodiment of the first invention.

【図5】 第1の発明の第1実施例に係わる台形フィン
の配置の様子を示す配置図。
FIG. 5 is a layout diagram showing a layout of trapezoidal fins according to the first embodiment of the first invention.

【図6】 第1の発明の第1実施例に係わるガス流路の
ガスの流れを示す等圧線図。
FIG. 6 is an isobaric diagram showing a gas flow in a gas channel according to the first embodiment of the first invention.

【図7】 従来例に係わるガス流路のガスの流れを示す
等圧線図。
FIG. 7 is an isobar diagram showing the flow of gas in a gas channel according to a conventional example.

【図8】 第1の発明の第2実施例に係わる台形フィン
の配置の様子を示す配置図。
FIG. 8 is a layout drawing showing a layout of trapezoidal fins according to a second embodiment of the first invention.

【図9】 第1の発明の第3実施例に係わる台形フィン
の配置の様子を示す配置図。
FIG. 9 is a layout diagram showing a layout of trapezoidal fins according to a third embodiment of the first invention.

【図10】 第1の発明の第3実施例に係わるガス流路
のガスの流れを示す等圧線図。
FIG. 10 is an isobar diagram showing a gas flow in a gas passage according to a third embodiment of the first invention.

【図11】 第1の発明の第4実施例に係わる台形フィ
ンの配置の様子を示す配置図。
FIG. 11 is a layout view showing a layout of trapezoidal fins according to a fourth embodiment of the first invention.

【図12】 第1の発明の変形例に係わる流路抵抗部材
の配置の様子を示す配置図。
FIG. 12 is a layout view showing a layout of flow path resistance members according to a modification of the first invention.

【図13】 第1の発明の変形例に係わる流路抵抗部材
の配置の様子を示す配置図。
FIG. 13 is a layout diagram showing a layout of flow path resistance members according to a modification of the first invention.

【図14】 第1の発明の変形例に係わる流路抵抗部材
の配置の様子を示す配置図。
FIG. 14 is a layout diagram showing a layout of flow path resistance members according to a modification of the first invention.

【図15】 第2の発明に係わる流路抵抗部材の配置の
様子を示す配置図。
FIG. 15 is a layout view showing a layout of flow path resistance members according to a second invention.

【図16】 従来例の燃料電池を示す分解斜視図。FIG. 16 is an exploded perspective view showing a conventional fuel cell.

【図17】 従来例の燃料電池を示す断面図。FIG. 17 is a sectional view showing a conventional fuel cell.

【図18】 従来例の燃料電池のセパレータを示す斜視
図。
FIG. 18 is a perspective view showing a separator of a conventional fuel cell.

【符号の説明】[Explanation of symbols]

2 ガス流入部(ガス流入路) 3 起電部流入部(起電部のガス入口部分) 4 起電部流出部(起電部のガス出口部分) 5 ガス流出部(ガス流出路) 6 ガスの流れ方向 7 台形フィン群(流路抵抗部材) 8 台形フィン群(流路抵抗部材) 9 台形フィン群(流路抵抗部材) 10 ガス流路 11 ガスの流れ方向 21 スプリング 22 電解質マトリックス 23 カソード 24 カソード集電板 26 アノード 28 アノード集電板 31 台形フィン(流路抵抗部材) 87 台形フィン群(流路抵抗部材) 88 台形フィン群(流路抵抗部材) 89 台形フィン群(流路抵抗部材) 117 台形フィン群(流路抵抗部材) 124 集電板 130 突起(流路抵抗部材) 131 半矩形状フィン(流路抵抗部材) 132 半円筒状フィン(流路抵抗部材) 2 gas inflow part (gas inflow path) 3 electromotive part inflow part (gas inlet part of electromotive part) 4 electromotive part outflow part (gas outlet part of electromotive part) 5 gas outflow part (gas outflow path) 6 gas 7 Trapezoidal fin group (flow path resistance member) 8 Trapezoidal fin group (flow path resistance member) 9 Trapezoidal fin group (flow path resistance member) 10 Gas flow path 11 Gas flow direction 21 Spring 22 Electrolyte matrix 23 Cathode 24 Cathode current collector plate 26 Anode 28 Anode current collector plate 31 Trapezoidal fin (flow path resistance member) 87 Trapezoidal fin group (flow path resistance member) 88 Trapezoidal fin group (flow path resistance member) 89 Trapezoidal fin group (flow path resistance member) 117 Trapezoidal fin group (flow path resistance member) 124 Current collector 130 Protrusion (flow path resistance member) 131 Semi-rectangular fin (flow path resistance member) 132 Semi-cylindrical fin (flow path resistance member)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】単電池の起電部にガスの供給を行うための
ガス流入路と、前記起電部からガスの排出を行うための
ガス流出路とを備え、前記ガス流入路あるいは前記ガス
流出路の少なくとも一方に、前記起電部のガス入口部分
あるいは出口部分において前記ガスの流れ方向に対して
ほぼ垂直方向に関して前記ガスの圧力分布をほぼ均一化
させるように流路抵抗を設定したことを特徴とする燃料
電池。
1. A gas inflow path for supplying gas to an electromotive section of a unit cell, and a gas outflow path for discharging gas from the electromotive section. A flow path resistance is set in at least one of the outflow passages so that the pressure distribution of the gas is substantially uniform in a gas inlet portion or an outlet portion of the electromotive section in a direction substantially perpendicular to the gas flow direction. Is a fuel cell.
【請求項2】単電池の起電部にガスを供給し前記起電部
内を通して前記ガスの排出を行うガス流路を備え、前記
起電部内の前記ガス流路に、前記ガスの流れ方向に対し
てほぼ垂直方向に関して前記ガスの圧力分布をほぼ均一
化させるように流路抵抗を設定したことを特徴とする燃
料電池。
2. A gas flow path for supplying gas to an electromotive part of a unit cell and discharging the gas through the electromotive part, wherein the gas flow path in the electromotive part is arranged in a flow direction of the gas. On the other hand, the fuel cell is characterized in that the flow path resistance is set so that the pressure distribution of the gas is substantially uniform in the substantially vertical direction.
【請求項3】前記流路抵抗の設定は、前記ガス流入路あ
るいは前記ガス流出路、あるいは前記起電部内の前記ガ
ス流路のうち、少なくともいずれか一箇所の流路に、流
路抵抗部材を配設することにより設定されたものである
ことを特徴とする請求項1あるいは請求項2に記載の燃
料電池。
3. A flow path resistance member is set in at least one of the gas inflow path, the gas outflow path, and the gas flow path in the electromotive section. The fuel cell according to claim 1 or 2, wherein the fuel cell is set by disposing.
JP5054395A 1993-03-15 1993-03-15 Fuel cell Pending JPH06267559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5054395A JPH06267559A (en) 1993-03-15 1993-03-15 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5054395A JPH06267559A (en) 1993-03-15 1993-03-15 Fuel cell

Publications (1)

Publication Number Publication Date
JPH06267559A true JPH06267559A (en) 1994-09-22

Family

ID=12969498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5054395A Pending JPH06267559A (en) 1993-03-15 1993-03-15 Fuel cell

Country Status (1)

Country Link
JP (1) JPH06267559A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013441A3 (en) * 1999-08-16 2001-06-07 Allied Signal Inc Fuel cell having improved condensation and reaction product management capabilities
JP2005135813A (en) * 2003-10-31 2005-05-26 Toyota Motor Corp Fuel cell simulator, simulation method, simulation program, and recording medium
JP2006107968A (en) * 2004-10-07 2006-04-20 Toyota Motor Corp Gas passage forming member for fuel cell, and fuel cell
JP2006216441A (en) * 2005-02-04 2006-08-17 Sumitomo Metal Ind Ltd Method of designing passage of separator for fuel cell
JP2006221853A (en) * 2005-02-08 2006-08-24 Toyota Motor Corp Separator of fuel cell
JP2007207730A (en) * 2006-02-06 2007-08-16 Sanyo Electric Co Ltd Separator for fuel cell
JP2007234543A (en) * 2006-03-03 2007-09-13 Honda Motor Co Ltd Fuel cell
WO2007105740A1 (en) * 2006-03-08 2007-09-20 Toyota Jidosha Kabushiki Kaisha Cell stack and fuel cell with the same
JP2008293743A (en) * 2007-05-23 2008-12-04 Honda Motor Co Ltd Fuel cell
JP2009037860A (en) * 2007-08-01 2009-02-19 Hitachi Ltd Fuel cell and separator used for the same
JP2009080965A (en) * 2007-09-25 2009-04-16 Toshiba Corp Fuel cell
JP2009135107A (en) * 2009-01-14 2009-06-18 Sanyo Electric Co Ltd Fuel cell system
US7572537B2 (en) 1997-12-18 2009-08-11 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
JP2010129265A (en) * 2008-11-26 2010-06-10 Honda Motor Co Ltd Fuel cell
US8216742B2 (en) 2007-11-27 2012-07-10 Toyota Jidosha Kabushiki Kaisha Fuel cell and gas separator for fuel cell
US8409767B2 (en) 2009-11-26 2013-04-02 Honda Motor Co., Ltd. Fuel cell
JP2017120757A (en) * 2015-12-30 2017-07-06 現代自動車株式会社Hyundai Motor Company Porous panel of fuel cell separator plate
JP2021077629A (en) * 2019-09-03 2021-05-20 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド Fuel cell bipolar plates with flow uniformity
WO2022153059A1 (en) 2021-01-15 2022-07-21 Afc Energy Plc Corralled air inflow manifold
CN115275248A (en) * 2022-08-30 2022-11-01 上海捷氢科技股份有限公司 Fuel cell and bipolar plate assembly thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572537B2 (en) 1997-12-18 2009-08-11 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
WO2001013441A3 (en) * 1999-08-16 2001-06-07 Allied Signal Inc Fuel cell having improved condensation and reaction product management capabilities
US6635378B1 (en) 1999-08-16 2003-10-21 Hybrid Power Generation System, Llc Fuel cell having improved condensation and reaction product management capabilities
KR100697480B1 (en) * 1999-08-16 2007-03-20 얼라이드시그날 인코퍼레이티드 Fuel cell having improved condensation and reaction product management capabilities
JP2005135813A (en) * 2003-10-31 2005-05-26 Toyota Motor Corp Fuel cell simulator, simulation method, simulation program, and recording medium
JP2006107968A (en) * 2004-10-07 2006-04-20 Toyota Motor Corp Gas passage forming member for fuel cell, and fuel cell
JP4639744B2 (en) * 2004-10-07 2011-02-23 トヨタ自動車株式会社 Fuel cell
JP2006216441A (en) * 2005-02-04 2006-08-17 Sumitomo Metal Ind Ltd Method of designing passage of separator for fuel cell
JP2006221853A (en) * 2005-02-08 2006-08-24 Toyota Motor Corp Separator of fuel cell
JP4692001B2 (en) * 2005-02-08 2011-06-01 トヨタ自動車株式会社 Fuel cell separator
JP2007207730A (en) * 2006-02-06 2007-08-16 Sanyo Electric Co Ltd Separator for fuel cell
JP2007234543A (en) * 2006-03-03 2007-09-13 Honda Motor Co Ltd Fuel cell
WO2007105740A1 (en) * 2006-03-08 2007-09-20 Toyota Jidosha Kabushiki Kaisha Cell stack and fuel cell with the same
US8298715B2 (en) 2006-03-08 2012-10-30 Toyota Jidosha Kabushiki Kaisha Cell laminate and fuel cell provided with the same
JP2008293743A (en) * 2007-05-23 2008-12-04 Honda Motor Co Ltd Fuel cell
JP2009037860A (en) * 2007-08-01 2009-02-19 Hitachi Ltd Fuel cell and separator used for the same
JP2009080965A (en) * 2007-09-25 2009-04-16 Toshiba Corp Fuel cell
US8877405B2 (en) 2007-09-25 2014-11-04 Kabushiki Kaisha Toshiba Fuel cell including membrane electrode assembly to maintain humidity condition
US8216742B2 (en) 2007-11-27 2012-07-10 Toyota Jidosha Kabushiki Kaisha Fuel cell and gas separator for fuel cell
US8257880B2 (en) 2007-11-27 2012-09-04 Toyota Jidosha Kabushiki Kaisha Fuel cell and gas separator for fuel cell
JP2010129265A (en) * 2008-11-26 2010-06-10 Honda Motor Co Ltd Fuel cell
JP2009135107A (en) * 2009-01-14 2009-06-18 Sanyo Electric Co Ltd Fuel cell system
US8409767B2 (en) 2009-11-26 2013-04-02 Honda Motor Co., Ltd. Fuel cell
JP2017120757A (en) * 2015-12-30 2017-07-06 現代自動車株式会社Hyundai Motor Company Porous panel of fuel cell separator plate
JP2021077629A (en) * 2019-09-03 2021-05-20 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド Fuel cell bipolar plates with flow uniformity
WO2022153059A1 (en) 2021-01-15 2022-07-21 Afc Energy Plc Corralled air inflow manifold
CN115275248A (en) * 2022-08-30 2022-11-01 上海捷氢科技股份有限公司 Fuel cell and bipolar plate assembly thereof

Similar Documents

Publication Publication Date Title
JPH06267559A (en) Fuel cell
US9905880B2 (en) Fuel cell stack
US6924052B2 (en) Coolant flow field design for fuel cell stacks
KR101693993B1 (en) Bipolar plate for fuel cell
US7687182B2 (en) Pressurized coolant for stamped plate fuel cell without diffusion media in the inactive feed region
US7867666B2 (en) Fuel cell with triangular buffers for reactant gas and coolant
US11682782B2 (en) Fuel cell having a modular base active area
JP6075742B2 (en) Method and arrangement for distributing reactants into a fuel cell or electrolysis cell
US20050064270A1 (en) Fuel cell bipolar separator plate
JP2000231929A (en) Fuel cell
US8268503B2 (en) Fuel cell stack
JP4738411B2 (en) PEM fuel cell plate manufactured by stamping
US6926985B2 (en) Fuel cell stack
JP2007511045A (en) Integrated bipolar plate with spring seal
US8409767B2 (en) Fuel cell
JPH03266365A (en) Separator of solid electrolytic type fuel cell
CN111788730B (en) Fuel cell, cell unit thereof, and stack structure
JPH09161828A (en) Fuel cell
JPS5830074A (en) Fuel cell
US20240204214A1 (en) Separator for fuel cell
CN117727989B (en) High performance fuel cell
CN115064721B (en) Air-cooled fuel single cell assembly and air-cooled fuel cell stack structure
KR20240028148A (en) Separator for feul cell
US20070065710A1 (en) Fuel Cell
CN116805696A (en) fuel cell stack