JPH06264292A - Anodic oxidation treatment of mg and mg alloy - Google Patents
Anodic oxidation treatment of mg and mg alloyInfo
- Publication number
- JPH06264292A JPH06264292A JP23425792A JP23425792A JPH06264292A JP H06264292 A JPH06264292 A JP H06264292A JP 23425792 A JP23425792 A JP 23425792A JP 23425792 A JP23425792 A JP 23425792A JP H06264292 A JPH06264292 A JP H06264292A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- corrosion resistance
- anodizing
- treatment
- alloys
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 32
- 230000003647 oxidation Effects 0.000 title description 3
- 238000007254 oxidation reaction Methods 0.000 title description 3
- LDDQLRUQCUTJBB-UHFFFAOYSA-O azanium;hydrofluoride Chemical compound [NH4+].F LDDQLRUQCUTJBB-UHFFFAOYSA-O 0.000 claims abstract description 9
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 claims abstract description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 4
- 238000007743 anodising Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 12
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 6
- 239000010452 phosphate Substances 0.000 claims description 6
- 238000002048 anodisation reaction Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 abstract description 27
- 238000005260 corrosion Methods 0.000 abstract description 27
- 239000011248 coating agent Substances 0.000 abstract description 8
- 238000000576 coating method Methods 0.000 abstract description 8
- 230000007547 defect Effects 0.000 abstract description 3
- 150000003839 salts Chemical class 0.000 abstract description 2
- 235000021317 phosphate Nutrition 0.000 abstract 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Chemical Treatment Of Metals (AREA)
Abstract
Description
【0001】本発明はMgおよびMg合金の陽極酸化処
理方法に関し、さらに詳しくは、MgおよびMg合金の
表面に高耐蝕性の陽極酸化皮膜を形成するためのMgお
よびMg合金の陽極酸化処理方法に関するものである。The present invention relates to a method for anodizing Mg and Mg alloys, and more particularly to a method for anodizing Mg and Mg alloys for forming a highly corrosion resistant anodized film on the surface of Mg and Mg alloys. It is a thing.
【0002】[0002]
【従来技術】一般的に、MgおよびMg合金は、実用金
属の中でも特に軽量であり、比強度がアルミニウムおよ
び鋼等よりも大きいという特色を有しており、航空宇宙
機器の構造材料や部品等の軽量化および省エネルギー等
のために使用されている。さらに、最近になって、電気
部品、コンピュータ部品、自動車関連の部品等に用途が
拡大して来ている。2. Description of the Related Art In general, Mg and Mg alloys are light in weight among practical metals, and have the characteristic that their specific strength is larger than that of aluminum and steel, and they are structural materials and parts for aerospace equipment. It is used to reduce the weight and save energy. Further, recently, the applications have been expanded to electric parts, computer parts, automobile-related parts and the like.
【0003】しかしながら、MgおよびMg合金は、実
用金属の中でも科学的に最も活性であり、耐蝕性に著し
く劣っているため、クロメート処理、燐酸塩処理等の化
成処理、陽極酸化処理および塗装することが一般的に実
施されている。However, since Mg and Mg alloys are the most scientifically active among the practical metals and are extremely inferior in corrosion resistance, they should be subjected to chemical conversion treatment such as chromate treatment, phosphate treatment, anodizing treatment and coating. Is generally practiced.
【0004】しかして、化成処理ではその皮膜が薄く充
分に防錆効果を発揮することができず、また、最も高耐
蝕性を確保することができると言われている塗装におい
ては、塗装下地となる燐酸塩処理では耐蝕性および密着
性が不充分であり、高湿度および高温環境下においては
充分な耐蝕性が得られず、さらに、クロメート処理で
は、密着性には比較的に優れているけれども、6価クロ
ム廃液処理に問題があり、環境問題においてクロメート
処理を使用することは非常に困難である。However, in the chemical conversion treatment, the film is thin and cannot sufficiently exhibit the rust preventive effect, and in the case of the coating which is said to be capable of ensuring the highest corrosion resistance, it is used as a coating base. In the case of the phosphate treatment, the corrosion resistance and the adhesion are insufficient, and the corrosion resistance is not obtained under the high humidity and high temperature environment. Further, the chromate treatment is excellent in the adhesion. However, there is a problem in treating hexavalent chromium waste liquid, and it is very difficult to use the chromate treatment in environmental problems.
【0005】これに対して、陽極酸化処理方法は、耐蝕
性においては塗装よりも劣るけれども、低コスト、簡便
さ、複雑形状や異形打等のつき回り性や皮膜の硬さ(耐
疵つき性)の点において優れている。On the other hand, although the anodizing method is inferior to the coating in corrosion resistance, it is low in cost, simple, throwing power such as complicated shape and irregular shape, and hardness of film (scratch resistance). ) Is excellent.
【0006】そして、従来における陽極酸化処理方法と
しては、重クロム酸塩と弗化水素アンモニウムとの水溶
液を使用するのが主流であるが、陽極酸化処理皮膜はポ
ーラスであるため、処理後に封孔処理を行うことが必須
である。As a conventional anodizing treatment method, an aqueous solution of dichromate and ammonium hydrogen fluoride is mainly used. However, since the anodizing coating is porous, it is sealed after treatment. It is essential to carry out processing.
【0007】しかしながら、この封孔処理のよっても微
細孔を完全に塞ぐことはできず、ピンホールが残存する
ことは避けられず、長期間の耐蝕性を確保するという点
に関しては塗装処理より劣るという問題がある。However, even if this sealing treatment cannot completely close the fine pores, it is unavoidable that pinholes remain, and it is inferior to the coating treatment in terms of ensuring long-term corrosion resistance. There is a problem.
【0008】[0008]
【発明が解決しようとする課題】本発明は上記に説明し
たように、MgおよびMg合金の耐蝕性を付与するため
の種々の処理方法、特に、陽極酸化処理方法における問
題点を解決するために、本発明者が鋭意研究を行い、検
討を重ねた結果、腐蝕減量、耐孔蝕性を改善した高耐蝕
性を有するMgおよびMg合金の陽極酸化処理方法を開
発したのである。SUMMARY OF THE INVENTION As described above, the present invention has been made to solve the problems in various treatment methods for imparting corrosion resistance to Mg and Mg alloys, particularly to the anodizing treatment method. As a result of extensive studies and studies by the present inventor, a method of anodizing Mg and Mg alloys having high corrosion resistance with improved corrosion weight loss and pitting corrosion resistance was developed.
【0009】[0009]
【課題を解決するための手段】本発明に係るMgおよび
Mg合金の陽極酸化処理方法は、重クロム酸塩および弗
化水素アンモニウムの水溶液に、アルミニウム塩の中か
ら選ばれた1種または2種以上を含有する処理液によ
り、MgおよびMg合金の陽極酸化を行うことを特徴と
するMgおよびMg合金の陽極酸化処理方法を第1の発
明とし、重クロム酸塩および弗化水素アンモニウムの水
溶液に、アルミニウム塩の中から選ばれた1種または2
種以上を含有し、さらに、燐酸および燐酸塩の中から選
ばれた1種または2種以上を含有する処理液により、M
gおよびMg合金の陽極酸化を行うことを特徴とするM
gおよびMg合金の陽極酸化処理方法を第2の発明とす
る2つの発明よりなるものである。The method of anodizing Mg and Mg alloys according to the present invention comprises an aqueous solution of dichromate and ammonium hydrogen fluoride, one or two selected from aluminum salts. A first invention is an anodizing method for Mg and Mg alloys, characterized in that Mg and Mg alloys are anodized by a treatment liquid containing the above, and an aqueous solution of dichromate and ammonium hydrogen fluoride is prepared. , 1 or 2 selected from aluminum salts
M by a treatment liquid containing at least one kind and further containing at least one kind selected from phosphoric acid and phosphate.
M characterized by performing anodic oxidation of g and Mg alloys
The present invention comprises two inventions, the second invention being an anodizing method for g and Mg alloys.
【0010】本発明に係るMgおよびMg合金の陽極酸
化処理方法について、以下詳細に説明する。The method of anodizing Mg and Mg alloys according to the present invention will be described in detail below.
【0011】重クロム酸塩および弗化水素アンモニウム
の水溶液を使用して、陽極酸化処理を行うと、Cr
2O3、MgF2を主成分とするセラミックス状の無機物
皮膜を形成するものであり、そして、さらに、アルミニ
ウム塩の中から選んだ1種または2種以上を含有させる
ことによって、無機物皮膜のピンホールを削減すること
ができ、より緻密化することができ、高耐蝕性が得られ
るものである。When anodizing treatment is carried out using an aqueous solution of dichromate and ammonium hydrogen fluoride, Cr
It forms a ceramic-like inorganic film mainly composed of 2 O 3 and MgF 2 , and by further containing one or more selected from aluminum salts, the pin of the inorganic film is formed. The holes can be reduced, the density can be increased, and high corrosion resistance can be obtained.
【0012】重クロム酸塩としては、ナトリウム塩、カ
リウム塩等が挙げられ、含有量は、50〜150g/l
であり、そして、70〜135g/lの範囲が良好であ
る。この量が50g/l未満では充分な耐蝕性が得られ
ず、また、150g/lを越えると耐蝕性の改善効果は
飽和してしまう。Examples of the dichromate include sodium salt and potassium salt, and the content is 50 to 150 g / l.
And a range of 70-135 g / l is good. If this amount is less than 50 g / l, sufficient corrosion resistance cannot be obtained, and if it exceeds 150 g / l, the effect of improving corrosion resistance is saturated.
【0013】弗化水素アンモニウムの含有量は、150
〜400g/lとするのがよいが、250〜350g/
lの範囲が良好である。そして、150g/l未満では
充分な耐蝕性を得ることができず、また、400g/l
を越えると耐蝕性は飽和してしまう。The content of ammonium hydrogen fluoride is 150
~ 400g / l is recommended, but 250-350g /
The range of 1 is good. And, if it is less than 150 g / l, sufficient corrosion resistance cannot be obtained, and 400 g / l
If it exceeds, corrosion resistance will be saturated.
【0014】アルミニウム塩としては、硫酸アルミニウ
ム、燐酸アルミニウム、塩化アルミニウム等を挙げるこ
とができ、重クロム酸塩、弗化水素アンモニウムの酸性
溶液に溶解することができるものであれば何れのアルミ
ニウム塩でもよい。Examples of the aluminum salt include aluminum sulfate, aluminum phosphate and aluminum chloride. Any aluminum salt can be used as long as it can be dissolved in an acidic solution of dichromate and ammonium hydrogen fluoride. Good.
【0015】このアルミニウム塩の含有量は、15g/
l以上飽和する量まで良いが、特に、15g/l以上7
0g/l未満とするのがよく、15g/l未満では皮膜
が緻密ではなく高耐蝕性が得られず、また、70g/l
を越えると効果は飽和してしまう。The content of this aluminum salt is 15 g /
It is good up to a saturated amount of 1 or more, but especially 15 g / l or more 7
It is preferable that the amount is less than 0 g / l, and if the amount is less than 15 g / l, the film is not dense and high corrosion resistance cannot be obtained.
If it exceeds, the effect will be saturated.
【0016】さらに、高耐蝕性を得るために燐酸および
燐酸塩の中から選んだ1種または2種以上を含有させる
ことができ、燐酸塩としてはナトリウム塩、カリウム塩
等が挙げられる。これらの含有量として総計のPO4 3-
換算で、0.7〜1.5mol/lである。含有量が0.
7mol/l未満では耐蝕性を改善する効果は少なく、
また、1.5mol/lを越えると皮膜組成が変化し
て、逆に耐蝕性を低減するようになる。Further, in order to obtain high corrosion resistance, one or more selected from phosphoric acid and phosphate may be contained, and examples of the phosphate include sodium salt, potassium salt and the like. The total amount of PO 4 3- as these contents
It is 0.7 to 1.5 mol / l in terms of conversion. Content is 0.
If it is less than 7 mol / l, the effect of improving the corrosion resistance is small,
On the other hand, if it exceeds 1.5 mol / l, the film composition changes, and conversely the corrosion resistance is reduced.
【0017】本発明に係るMgおよびMg合金の陽極酸
化処理方法において、使用することが可能な金属として
は、MgおよびMg合金であれば特に制約はないもので
あり、砂型、金型、ダイカスト等の製造方法にも制限は
ない。また、AZ、EZ、QZ等の規格合金、または、
高温強度を改良するために微量の元素を含有させたMg
合金をも使用することが可能である。In the method of anodizing Mg and Mg alloys according to the present invention, the metals that can be used are not particularly limited as long as they are Mg and Mg alloys, such as sand molds, molds and die castings. There is no limitation on the manufacturing method of. Also, standard alloys such as AZ, EZ, QZ, or
Mg containing a trace amount of elements to improve high temperature strength
It is also possible to use alloys.
【0018】本発明に係るMgおよびMg合金の陽極酸
化処理方法における処理条件としては、処理液温度は2
0℃〜沸騰温度、電流密度0.5〜5.0A/dm2であ
り、処理液温度が60〜90℃、電流密度2〜3A/d
m2の場合には好結果が得られる。The treatment liquid temperature is 2 as a treatment condition in the method of anodizing treatment of Mg and Mg alloy according to the present invention.
0 ° C to boiling temperature, current density 0.5 to 5.0 A / dm 2 , treatment liquid temperature 60 to 90 ° C, current density 2 to 3 A / d
Good results are obtained for m 2 .
【0019】そして、この処理液温度が20℃未満では
皮膜形成反応が遅く、また、処理液温度が高すぎると水
の蒸発が激しくなり、処理液の組成保持が困難となり、
電流密度が0.5A/dm2未満では皮膜形成反応がが遅
く、かつ、皮膜の成長において欠陥部が形成され易く、
また、電流密度が5.0A/dm2を越えると皮膜の欠陥
部が形成され易く、高耐蝕性を得ることができない。電
流印加方法は直流、交流の何れでもよい。If the temperature of the treatment liquid is lower than 20 ° C., the film-forming reaction is slow, and if the temperature of the treatment liquid is too high, the water vaporizes violently, making it difficult to maintain the composition of the treatment liquid.
When the current density is less than 0.5 A / dm 2 , the film formation reaction is slow, and defects are likely to be formed during film growth.
Further, if the current density exceeds 5.0 A / dm 2 , defective portions of the coating are likely to be formed and high corrosion resistance cannot be obtained. The current application method may be direct current or alternating current.
【0020】なお、本発明に係るMgおよびMg合金の
陽極酸化処理方法により、陽極酸化皮膜を形成させた
後、珪酸塩溶液に浸漬すことにより、さらに耐蝕性は向
上するのである。The corrosion resistance is further improved by forming an anodized film by the method of anodizing Mg and Mg alloy according to the present invention and then immersing it in a silicate solution.
【0021】[0021]
【実 施 例】本発明に係るMgおよびMg合金の陽極
酸化処理方法の実施例を比較例と共に説明する。[Examples] Examples of the method for anodizing Mg and Mg alloys according to the present invention will be described together with comparative examples.
【0022】[0022]
【実 施 例】Mg合金は、通常使用されているAZ91
D−Fダイカスト材(150×70×5mm)を、表面
の鋳造面をフライス盤により除去した後、表1に示す組
成の陽極酸化処理液を使用して、処理液温度70℃、電
流密度2.0A/dm2(直流)の条件により処理を行
い、温度80℃のメタ珪酸ナトリウム30g/l含有の
水溶液に500秒間浸漬して封孔処理を行った。[Examples] Mg alloy is the commonly used AZ91
After removing the D-F die casting material (150 × 70 × 5 mm) by a milling machine on the casting surface, the treatment liquid temperature was 70 ° C. and the current density was 2. using the anodizing treatment liquid having the composition shown in Table 1. The treatment was carried out under the condition of 0 A / dm 2 (direct current), and the hole was sealed by immersing it in an aqueous solution containing 30 g / l of sodium metasilicate at a temperature of 80 ° C. for 500 seconds.
【0023】次に、このようにして処理されたMg合金
の耐蝕性は、100×50mmに試験面積を被覆して、
塩水噴霧試験を200時間実施した後、クロム酸溶液中
において腐蝕生成物を除去して、最大孔蝕深さを求め
た。この最大孔蝕深さは試験面積を9分割し、各面積内
の最大孔蝕深さを求め、極値解析法を使用して類推され
る最大孔蝕深さを求めた。再帰期間は500とした。最
大孔蝕深さが未処理材の1/4以下のものを◎、1/3
以下のものを○、それより多いものを×として判断を行
った。そして、表1から本発明に係るMgおよびMg合
金の陽極酸化処理方法により得られたMgおよひMg合
金は、比較例に比して格段に優れた耐蝕性を有している
ことが分かる。Next, the corrosion resistance of the thus treated Mg alloy was 100 × 50 mm covering the test area,
After performing the salt spray test for 200 hours, the corrosion products were removed in the chromic acid solution to determine the maximum pitting depth. This maximum pitting depth was obtained by dividing the test area into 9 parts, finding the maximum pitting depth within each area, and finding the maximum pitting depth by analogy using the extreme value analysis method. The recurrence period was set to 500. If the maximum pit depth is 1/4 or less of the untreated material, ◎, 1/3
The following items were evaluated as ◯, and more items were evaluated as x. Further, it can be seen from Table 1 that the Mg and Mg alloys obtained by the method of anodizing Mg and Mg alloys according to the present invention have markedly superior corrosion resistance as compared with Comparative Examples. .
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【発明の効果】以上説明したように、本発明に係るMg
およびMg合金の陽極酸化処理方法は上記の構成である
から、処理されたMgおよびMg合金は、皮膜には欠陥
部の存在がなく、かつ、耐蝕性に優れているという効果
を有するものである。As described above, the Mg according to the present invention
Since the anodic oxidation treatment method for Mg alloy and Mg alloy has the above-mentioned constitution, the treated Mg and Mg alloy have effects that there is no defect portion in the film and that they are excellent in corrosion resistance. .
Claims (2)
の水溶液に、アルミニウム塩の中から選ばれた1種また
は2種以上を含有する処理液により、MgおよびMg合
金の陽極酸化を行うことを特徴とするMgおよびMg合
金の陽極酸化処理方法。1. An anodization of Mg and a Mg alloy is performed by a treatment liquid containing one or more selected from aluminum salts in an aqueous solution of dichromate and ammonium hydrogen fluoride. A method for anodizing Mg and Mg alloys characterized.
の水溶液に、アルミニウム塩の中から選ばれた1種また
は2種以上を含有し、さらに、燐酸および燐酸塩の中か
ら選ばれた1種または2種以上を含有する処理液によ
り、MgおよびMg合金の陽極酸化を行うことを特徴と
するMgおよびMg合金の陽極酸化処理方法。2. An aqueous solution of dichromate and ammonium hydrogen fluoride, containing one or more selected from aluminum salts, and further selected from phosphoric acid and phosphate. Alternatively, a method of anodizing Mg and Mg alloy is performed by anodizing Mg and Mg alloy with a treatment liquid containing two or more kinds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23425792A JPH06264292A (en) | 1992-08-10 | 1992-08-10 | Anodic oxidation treatment of mg and mg alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23425792A JPH06264292A (en) | 1992-08-10 | 1992-08-10 | Anodic oxidation treatment of mg and mg alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06264292A true JPH06264292A (en) | 1994-09-20 |
Family
ID=16968141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23425792A Withdrawn JPH06264292A (en) | 1992-08-10 | 1992-08-10 | Anodic oxidation treatment of mg and mg alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06264292A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6540826B2 (en) * | 2000-06-21 | 2003-04-01 | Sika Schweitz Ag | Sulfate-free and alkali-free setting and hardening accelerator |
WO2003056055A1 (en) * | 2001-12-24 | 2003-07-10 | Universität Hannover | Magnesium workpiece and method for generation of an anti-corrosion coating on a magnesium workpiece |
JP2015232155A (en) * | 2014-06-09 | 2015-12-24 | 日本表面化学株式会社 | Alumite member, manufacturing method of alumite member and treatment agent |
-
1992
- 1992-08-10 JP JP23425792A patent/JPH06264292A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6540826B2 (en) * | 2000-06-21 | 2003-04-01 | Sika Schweitz Ag | Sulfate-free and alkali-free setting and hardening accelerator |
WO2003056055A1 (en) * | 2001-12-24 | 2003-07-10 | Universität Hannover | Magnesium workpiece and method for generation of an anti-corrosion coating on a magnesium workpiece |
JP2005513274A (en) * | 2001-12-24 | 2005-05-12 | ユニベルジテット ハノーバー | Magnesium workpiece and method for forming an anticorrosive coating on a magnesium workpiece |
JP2015232155A (en) * | 2014-06-09 | 2015-12-24 | 日本表面化学株式会社 | Alumite member, manufacturing method of alumite member and treatment agent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mandich et al. | Electrodeposition of chromium | |
JPH0320495A (en) | Improved method for anodizing aluminum alloy working member | |
JPH11193498A (en) | Cathodic-protection coating of magnesium or its alloy and its production | |
US4188270A (en) | Process for electrolytically forming glossy film on articles of aluminum or alloy thereof | |
US20210262107A1 (en) | Process for treating the surface of a part made of aluminium or aluminium alloy or of magnesium or magnesium alloy | |
US4439287A (en) | Method for anodizing aluminum materials and aluminized parts | |
JP6369745B2 (en) | Anodized film and sealing method thereof | |
CN102465286A (en) | Corrosion-resistant treatment composition, material and method for producing same | |
EP1793019A2 (en) | Multivalent electrolytic process for the surface treatment of non ferrous metallic material | |
JPH06264292A (en) | Anodic oxidation treatment of mg and mg alloy | |
JP2004538375A (en) | Magnesium anodizing system and method | |
Yerokhin et al. | Anodising of light alloys | |
US3351540A (en) | Method of improving the corrosion resistance of oxidized metal surfaces | |
US3365377A (en) | Method of sealing anodized aluminum | |
JP3941649B2 (en) | Aluminum substrate and surface treatment method thereof | |
US4159230A (en) | Treatment of chromium electrodeposit | |
US3787298A (en) | Anodizing aluminum foams | |
JPH048515B2 (en) | ||
JPH0419307B2 (en) | ||
JPH02153098A (en) | Phosphating method | |
KR101135371B1 (en) | Chemical Coating Solutions for Magnesium Alloys and Magnesium Alloy Substrates thereby | |
JPH0673596A (en) | Highly corrosion resistant mg or mg alloy material | |
JPH06212453A (en) | Highly corrosion-resistant mg alloy and its production | |
Hara et al. | Optimization of environmentally friendly anodic oxide film for magnesium alloys | |
Gralak et al. | The effect of hexafluorozirconic acid concentration on the formation and corrosion resistance of trivalent chromium conversion coatings on AlSi12Cu1 (Fe) cast alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991102 |