JPH06264062A - Operation of coke oven dry quencher - Google Patents
Operation of coke oven dry quencherInfo
- Publication number
- JPH06264062A JPH06264062A JP4136716A JP13671692A JPH06264062A JP H06264062 A JPH06264062 A JP H06264062A JP 4136716 A JP4136716 A JP 4136716A JP 13671692 A JP13671692 A JP 13671692A JP H06264062 A JPH06264062 A JP H06264062A
- Authority
- JP
- Japan
- Prior art keywords
- amount
- coke
- prechamber
- combustion air
- factors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Coke Industry (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、コークス炉乾式消火設
備(以下CDQと称する)の操業方法に係り、特に、制
御因子が目的関数に影響を与えるまでの遅れ時間を考慮
した、制御遅れのないCDQの操業方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a coke oven dry fire extinguishing system (hereinafter referred to as CDQ), and more particularly, to a control delay in consideration of a delay time until a control factor affects an objective function. There is no CDQ operating method.
【0002】[0002]
【従来の技術】コークス炉から排出される赤熱コークス
を散水消火する代わりに、赤熱コークスの保有する顕熱
を回収できると共に、粉塵の飛散を防止でき、更にコー
クス強度の向上と水分の低下など多くの利点を有するC
DQが用いられている。2. Description of the Related Art Instead of spraying and extinguishing the red hot coke discharged from a coke oven, the sensible heat of the red hot coke can be recovered, dust can be prevented from scattering, and the coke strength can be improved and the water content can be reduced. C with the advantages of
DQ is used.
【0003】このCDQは、例えば図1に示す如く、図
示しないコークス炉から排出された赤熱コークスが、例
えばコークバケットから投入されるプレチャンバ12
と、該プレチャンバ12から順次降下する赤熱コークス
を、送風機14により下部から吹き込まれる窒素等の不
活性ガスからなる循環冷却ガスと接触して冷却する冷却
室16とを有し、該冷却室16により冷却されたコーク
スが下部より排出される消火塔10を有している。In this CDQ, for example, as shown in FIG. 1, a prechamber 12 into which red hot coke discharged from a coke oven (not shown) is charged from a coke bucket, for example.
And a cooling chamber 16 for cooling the red hot coke that sequentially descends from the pre-chamber 12 by contacting it with a circulating cooling gas composed of an inert gas such as nitrogen blown from below by a blower 14, and the cooling chamber 16 It has a fire extinguisher 10 from which the coke cooled by is discharged from below.
【0004】一方、赤熱コークスと接触して高温となっ
た循環ガスは、除塵機20で除塵された後、廃熱ボイラ
22に導入され、熱交換して冷却された後、例えばサイ
クロン24で再度除塵されて、前記送風機14により前
記冷却室16に吹き込まれる。On the other hand, the circulating gas which has reached a high temperature due to contact with the red hot coke is dedusted by the dust remover 20, introduced into the waste heat boiler 22, cooled by exchanging heat and then again by the cyclone 24, for example. Dust is removed and blown into the cooling chamber 16 by the blower 14.
【0005】前記廃熱ボイラ22において加熱された、
高温、高圧の回収蒸気は、図示しないタービン発電機等
に送られる。Heated in the waste heat boiler 22,
The high temperature, high pressure recovered steam is sent to a turbine generator or the like (not shown).
【0006】このCDQでは、プレチャンバ12内のコ
ークスレベルが所定レベルを保持するようにコークス切
出量が設定される。In this CDQ, the coke cutout amount is set so that the coke level in the pre-chamber 12 maintains a predetermined level.
【0007】一方、コークス炉の窯出し作業は、連続的
に行われるから、窯出し作業中に所定の投入ピッチでプ
レチャンバ12に1窯分の赤熱コークスが投入される。
しかし、窯出し作業が中断している間は、赤熱コークス
が全く投入されない。On the other hand, since the coke oven kiln removal work is continuously performed, one kiln worth of red hot coke is introduced into the pre-chamber 12 at a predetermined introduction pitch during the kiln removal work.
However, while the kiln removal work was suspended, no red hot coke was added.
【0008】このため、窯出し作業中断中は、供給空気
導入弁26により燃焼エアーを消火塔10の上部に吹き
込んで循環ガス内に混入した可燃ガスを燃焼させ、循環
ガス温度を上昇させることによって、回収蒸気量の低下
を抑制すると共に、循環ガス中の可燃ガスの濃度を爆発
限界外に低下させている。Therefore, during the kiln removal operation, the supply air introduction valve 26 blows combustion air into the upper part of the fire extinguishing tower 10 to burn the combustible gas mixed in the circulation gas and raise the temperature of the circulation gas. In addition to suppressing the decrease in the amount of recovered steam, the concentration of combustible gas in the circulating gas is decreased outside the explosion limit.
【0009】このようなCDQでの操作因子は、主に供
給空気導入弁26から導入される燃焼エアー量と、プレ
チャンバ12に注水して冷却するためのプレチャンバ注
水量と、プレチャンバ12内のコークスレベルを制御す
るためのコークス切出量であるが、それぞれを増減する
と、廃熱ボイラ22の入口ガス温度と循環ガスの比熱も
共に変化し、そのため回収蒸気も増減する。しかも、こ
れらの応答時間は、それぞれ異なる。The operation factors in such CDQ are mainly the amount of combustion air introduced from the supply air introduction valve 26, the amount of pre-chamber water for pouring water into the pre-chamber 12 for cooling, and the inside of the pre-chamber 12. The amount of coke cut-out for controlling the coke level is, but when each is increased or decreased, both the inlet gas temperature of the waste heat boiler 22 and the specific heat of the circulating gas change, and therefore the recovered steam also increases or decreases. Moreover, these response times are different from each other.
【0010】CDQオペレータは、常に最大の回収蒸気
量を得るように、燃焼エアー量とプレチャンバ注水量と
コークス切出量の3つの因子を制御している。The CDQ operator controls three factors, that is, the combustion air amount, the pre-chamber water injection amount, and the coke cut-out amount so as to always obtain the maximum amount of recovered steam.
【0011】この制御方法としては、従来、例えば特開
平3−157485号に見られるように、赤熱コークス
中の残存可燃ガス量、消火塔入口の循環ガス中の可燃ガ
ス量、及び現在吹き込んでいる燃焼エアー量から、最適
燃焼エアー量を予測演算し、燃焼エアー量の自動制御を
行う方法が提案されている。As a conventional control method, as shown in, for example, Japanese Patent Laid-Open No. 3-157485, the amount of residual combustible gas in the red hot coke, the amount of combustible gas in the circulating gas at the entrance of the fire extinguishing tower, and the current blowing are used. A method has been proposed in which the optimum combustion air amount is predicted and calculated from the combustion air amount, and the combustion air amount is automatically controlled.
【0012】又、特開平3−9988号では、赤熱コー
クス装入ピッチ、プレチャンバのコークス在庫量、冷却
室下部よりの排出コークス量の変動から循環ガス中のC
O、H2 等の可燃性ガス発生量を推定し、プレチャンバ
下方の循環ガス吸込み部へ、該循環ガス中の可燃性ガス
濃度が最小となるように、燃焼エアー量をフィード・フ
ォワード制御する方法が提案されている。Further, in Japanese Patent Application Laid-Open No. 3-9988, the amount of C in the circulating gas is changed from the fluctuations of the pitch of charging red hot coke, the amount of coke stock in the prechamber, and the amount of coke discharged from the lower part of the cooling chamber.
A method of estimating the amount of combustible gas such as O and H2, and feed-forward controlling the amount of combustible gas to the circulating gas suction section below the prechamber so that the concentration of the combustible gas in the circulating gas is minimized. Is proposed.
【0013】[0013]
【発明が解決しようとする問題点】しかしながら、前記
従来の方法は、いずれも制御因子である燃焼エアー量、
コークス切出量を増減した際に、廃熱ボイラ入口ガス温
度、循環ガス比熱及び回収蒸気量に与える影響が出るま
での遅れ時間を考慮していないため、時間的ずれが生
じ、例えば燃焼エアー量が過剰となると、循環ガス中に
O2 が存在するようになり、爆発の危険性がある。又、
可燃性ガスが十分にあり、O2 が存在しない状態におい
ても、廃熱ボイラ入口ガス温度が管理値上限を越え、ボ
イラチューブ寿命を縮めることになる。更に、燃焼エア
ー量の制御遅れにより、回収蒸気量が変動し、エネルギ
ー需給バランス上好ましくない等の問題点を有してい
た。However, in all of the above-mentioned conventional methods, the combustion air amount, which is a control factor,
When the amount of coke cut out is increased or decreased, the delay time until it affects the waste heat boiler inlet gas temperature, the circulating gas specific heat and the amount of recovered steam is not considered, so a time lag occurs, for example, the combustion air amount. If it becomes excessive, O 2 will be present in the circulating gas and there is a risk of explosion. or,
Even when there is sufficient combustible gas and O 2 does not exist, the waste heat boiler inlet gas temperature exceeds the control value upper limit, and the boiler tube life is shortened. Further, there is a problem that the amount of recovered steam fluctuates due to a delay in the control of the amount of combustion air, which is not preferable in terms of energy supply and demand balance.
【0014】本発明は、前記従来の問題点を解消するべ
く成されたもので、コークス切出量、燃焼エアー量、プ
レチャンバ注水量等の制御因子が、廃熱ボイラ入口ガス
温度や回収蒸気量等の目的関数に影響を与えるまでの遅
れ時間を考慮して、操業遅れのないCDQ操業方法を提
供することを目的とする。The present invention has been made to solve the above-mentioned conventional problems. Control factors such as the amount of coke cut out, the amount of combustion air, and the amount of water injected into the prechamber are controlled by the waste heat boiler inlet gas temperature and the recovered steam. It is an object of the present invention to provide a CDQ operating method with no operational delay in consideration of the delay time until it affects the objective function such as the quantity.
【0015】[0015]
【問題点を解決するための手段】本発明は、CDQの操
業方法において、少なくともコークス切出量、燃焼エア
ー量、プレチャンバ注水量を制御因子とし、これら各因
子が目的関数の回収蒸気量に与える影響の大きさと、影
響が出るまでの遅れ時間を考慮したモデルを用いて、コ
ークス炉乾式消火設備の操業状態が変化しても、常にそ
の操業状態下での最大の回収蒸気量が得られる様、少な
くともコークス切出量、燃焼エアー量、プレチャンバ注
水量をフィード・フォワード制御することにより、前記
目的を達成したものである。According to the present invention, in the CDQ operating method, at least the coke cutting amount, the combustion air amount, and the prechamber water injection amount are used as control factors, and each of these factors becomes a recovery vapor amount of the objective function. Even if the operating condition of the coke oven dry fire extinguishing equipment changes, the maximum recovery steam amount under that operating condition is always obtained by using a model that considers the magnitude of the effect and the delay time until the effect appears. As described above, the above object is achieved by feed-forward controlling at least the coke cut-out amount, the combustion air amount, and the pre-chamber water injection amount.
【0016】[0016]
【作用】本発明は、前記問題点を解決して、最大の蒸気
量を得る操業方法を見出すために、プレチャンバ注水
量、燃焼エアー量等、蒸気量に影響を与える因子につい
て、図2に示すようなCDQ操業モデルを構築して、操
業解析を行った。図において、STは回収蒸気量、Vは
循環ガス量、BITはボイラ入口ガス温度、GCPは循
環ガス比熱、T/Hはコークス切出量、PTはプレチャ
ンバ温度、AIRは投入(燃焼)エアー量、WATはプ
レチャンバ注水量、Wはプレチャンバ在庫量、 ai は感
度定数、τi は遅れ時間、ε1 はコークス火落ち状態を
表わす因子、ε2 は投入コークス温度であり、AIR及
びWATが制御因子である。In order to solve the above problems and find an operating method for obtaining the maximum amount of steam, the present invention shows factors affecting the amount of steam, such as the pre-chamber water injection amount and the combustion air amount, as shown in FIG. The CDQ operation model as shown was constructed and the operation analysis was performed. In the figure, ST is the amount of recovered steam, V is the circulating gas amount, BIT is the boiler inlet gas temperature, GCP is the specific heat of the circulating gas, T / H is the amount of coke cut out, PT is the prechamber temperature, and AIR is the input (combustion) air. Volume, WAT is the prechamber water injection volume, W is the prechamber inventory volume, a i is the sensitivity constant, τ i is the delay time, ε 1 is a factor representing the state of coke burn-off, ε 2 is the input coke temperature, AIR and WAT is the controlling factor.
【0017】ここで、回収蒸気量STは、循環ガス量
V、ボイラ入口ガス温度BIT、循環ガス比熱GPCに
より決定され、又、ボイラ入口ガス温度BITは、コー
クス切出量T/H、プレチャンバ温度PT、燃焼エアー
量AIRによって決定され、循環ガス比熱GCPは、プ
レチャンバ注水量WAT、燃焼エアー量AIR、コーク
ス火落ち状態を表わす因子ε1 により決定される。Here, the recovered steam amount ST is determined by the circulating gas amount V, the boiler inlet gas temperature BIT and the circulating gas specific heat GPC, and the boiler inlet gas temperature BIT is the coke cutting amount T / H and the pre-chamber. It is determined by the temperature PT and the combustion air amount AIR, and the circulating gas specific heat GCP is determined by the prechamber water injection amount WAT, the combustion air amount AIR, and the factor ε 1 representing the coke burn-off state.
【0018】これら各因子が従属変数に与える影響の大
きさを示す感度定数と、影響が出る迄の遅れ時間はそれ
ぞれ異なる。そこで、上記ある1つの因子に注目し、そ
の操作量を変化させて実験を行った。その際、コークス
火落ち状態を表わす因子ε1と投入コークス温度ε2 以
外の因子は一定とした。なお、前記ε1 及びε2 を一定
にすることは困難なため、これらは外乱と見做した。The sensitivity constant, which indicates the magnitude of the influence of each of these factors on the dependent variable, and the delay time until the influence appears are different. Therefore, an experiment was conducted focusing on one of the above factors and changing the manipulated variable. At that time, factors other than the coke burn-off state ε 1 and the input coke temperature ε 2 were set constant. Since it is difficult to keep ε 1 and ε 2 constant, these were regarded as disturbances.
【0019】次に、得られた組データを順次ずらして
(時間遅れを取り)回帰分析を行い、相関係数Rが最大
のときの遅れ時間と、そのときの回帰係数を求め、該当
因子間の遅れ時間と感度定数とした。Next, the obtained set data is sequentially shifted (with a time delay) and a regression analysis is performed to find the delay time when the correlation coefficient R is maximum and the regression coefficient at that time. And the sensitivity constant.
【0020】具体的には、回収蒸気量STと主因子(循
環ガス量V、ボイラ入口ガス温度BIT、循環ガス比熱
GCP)との間には、例えば次式の関係が成立すること
が分かった。Specifically, it has been found that, for example, the following equation is established between the recovered steam amount ST and the main factors (circulation gas amount V, boiler inlet gas temperature BIT, circulation gas specific heat GCP). .
【0021】 ST[t /h ]=V[N m3 /h ]×(BIT−BOT)[℃] ×GCP[Mcal /N m3 ・℃]×10-3 /625[t /Mcal ] …(1)ST [t / h] = V [N m 3 / h] × (BIT-BOT) [° C.] × GCP [Mcal / N m 3 · ° C.] × 10 −3 / 625 [t / Mcal] ... (1)
【0022】ここで、BOTはボイラ出口ガス温度(操
業中ほぼ一定)、625[t /Mcal ]は蒸気のエンタ
ルピーである。Here, BOT is the boiler outlet gas temperature (almost constant during operation), and 625 [t / Mcal] is the steam enthalpy.
【0023】この(1)式において、他の2つの因子を
固定することにより、STと各因子間の感度定数を求め
ることができ、循環ガス量Vと回収蒸気量ST間の感度
定数a1 =3.91×10-4[t /N m3 ]、ボイラ入
口ガス温度BITと回収蒸気量ST間の感度定数 a2 =
0.103[(t /h )/℃]、循環ガス比熱GCPと
回収蒸気量ST間の感度定数 a3 =231[(t /h )
/N m3 ・℃]が得られた。これをまとめると、次の
(2)式のようになる。In this equation (1), the sensitivity constant between ST and each factor can be obtained by fixing the other two factors, and the sensitivity constant a 1 between the circulating gas amount V and the recovered vapor amount ST can be obtained. = 3.91 × 10 −4 [t / N m 3 ], the sensitivity constant between the boiler inlet gas temperature BIT and the recovered steam amount ST a 2 =
0.103 [(t / h) / ° C], sensitivity constant between circulating gas specific heat GCP and recovered vapor amount ST a 3 = 231 [(t / h)]
/ N m 3 · ° C] was obtained. This can be summarized as the following formula (2).
【0024】 ST=3.91×10-4・V+0.103・BIT +231・GCP …(2)ST = 3.91 × 10 −4 · V + 0.103 · BIT + 231 · GCP (2)
【0025】このように、循環ガス量V、ボイラ入口ガ
ス温度BIT、循環ガス比熱GCPのそれぞれと、回収
蒸気量STとの間には、それぞれ正の相関がある。As described above, there is a positive correlation between each of the circulating gas amount V, the boiler inlet gas temperature BIT, and the circulating gas specific heat GCP, and the recovered steam amount ST.
【0026】一方、循環ガス量Vはコークス切出量T/
Hにより一義的に定義されるので、V=Vmax の条件で
ボイラ入口ガス温度BITの制御に関して同様の解析を
行ったところ、例えばプレチャンバ温度PTはボイラ入
口ガス温度BITと時間遅れ6分(=τ4 )で正の相
関、燃焼エアー量AIRはボイラ入口ガス温度BITと
時間遅れ2分(=τ5 )で正の相関、コークス切出量T
/Hはボイラ入口ガス温度BITと時間遅れ8分(=τ
6 )で正の相関が見られた。On the other hand, the circulating gas amount V is the coke cutting amount T /
Since it is uniquely defined by H, the same analysis was performed for the control of the boiler inlet gas temperature BIT under the condition of V = Vmax. For example, the prechamber temperature PT was 6 minutes (= τ 4 ) has a positive correlation, and the combustion air amount AIR has a positive correlation with the boiler inlet gas temperature BIT and a time delay of 2 minutes (= τ 5 ), and the coke cutting amount T
/ H is boiler inlet gas temperature BIT and time delay 8 minutes (= τ
A positive correlation was found in 6 ).
【0027】以上、ボイラ入口ガス温度BITを制御す
る因子について整理すると、次式の関係が得られた。When the factors controlling the boiler inlet gas temperature BIT are summarized as above, the following equation is obtained.
【0028】 BIT=0.15・PT(τ4 =6分)+0.005・AIR(τ5 =2分) +0.44・T/H(τ6 =8分)+C …(3)BIT = 0.15 · PT (τ 4 = 6 minutes) + 0.005 · AIR (τ 5 = 2 minutes) + 0.44 · T / H (τ 6 = 8 minutes) + C (3)
【0029】又、循環ガス比熱GCPの制御に関して、
燃焼エアー量AIRは時間遅れ2分(=τ7 )で循環ガ
ス比熱GCPに対して正の相関があり、プレチャンバ注
水量WATは、時間遅れ6分(=τ8 )で循環ガス比熱
GCPに対して正の相関があった。Regarding the control of the specific heat of circulation gas GCP,
The combustion air amount AIR has a positive correlation with the circulation gas specific heat GCP with a time delay of 2 minutes (= τ 7 ), and the pre-chamber water injection amount WAT has a circulation gas specific heat GCP with a time delay of 6 minutes (= τ 8 ). There was a positive correlation.
【0030】以上、循環ガス比熱GCPに関する因子を
整理すると、次式の関係が得られた。From the above, when the factors relating to the specific heat GCP of the circulating gas are arranged, the following equation is obtained.
【0031】 GCP=2.02×10-6・AIR(τ7 =2分) +0.003・WAT(τ8 =6分)+ε1 −C …(4)GCP = 2.02 × 10 −6 · AIR (τ 7 = 2 minutes) +0.003 · WAT (τ 8 = 6 minutes) + ε 1 -C (4)
【0032】又、プレチャンバ温度PTの制御に関し
て、プレチャンバ注水量WATは、時間遅れ4分(=τ
9 )でプレチャンバ温度PTに対して負の相関が見られ
た。Regarding the control of the prechamber temperature PT, the prechamber water injection amount WAT is a time delay of 4 minutes (= τ
In (9 ), a negative correlation was found with the prechamber temperature PT.
【0033】以上、プレチャンバ温度PTに関する因子
を整理すると、次式の関係が得られた。From the above, when the factors relating to the pre-chamber temperature PT are arranged, the following relationship is obtained.
【0034】 PT=−79.4・WAT(τ9 =4分)+ε2 +C …(5)PT = −79.4 · WAT (τ 9 = 4 minutes) + ε 2 + C (5)
【0035】以上の解析で得られた結果を図2に当て嵌
めると、図3のようになる。When the results obtained by the above analysis are applied to FIG. 2, it becomes as shown in FIG.
【0036】この図3の解析結果から、CDQの操業状
態が変化したとき、即ち、赤熱コークス投入スケジュー
ルが変化したときや、赤熱コークス火落ち状態が変化し
た等には、何分後にどれだけのアクションをとればボイ
ラ入口ガス温度BITが何度変化し、回収蒸気量STが
何トン変化するかが予測できる。従って、その予測値に
合せて燃焼エアー量AIR等のアクションをとれば、廃
熱ボイラ入口ガス温度BITの管理上限値を越えること
なく、その操業条件下での最大回収蒸気量を得ることが
可能となる。From the analysis result of FIG. 3, when the operating condition of the CDQ is changed, that is, when the red hot coke charging schedule is changed, or when the red hot coke burn-off condition is changed, etc. If action is taken, it is possible to predict how many times the boiler inlet gas temperature BIT will change and how many tons the recovered steam amount ST will change. Therefore, if the action such as the combustion air amount AIR is taken according to the predicted value, it is possible to obtain the maximum amount of recovered steam under the operating conditions without exceeding the control upper limit value of the waste heat boiler inlet gas temperature BIT. Becomes
【0037】[0037]
【実施例】以下図面を参照して、本発明の実施例を詳細
に説明する。Embodiments of the present invention will now be described in detail with reference to the drawings.
【0038】図1は、本発明の一実施例を示すシステム
構成図である。FIG. 1 is a system configuration diagram showing an embodiment of the present invention.
【0039】図において、30はプロセスコンピュータ
であり、これに、プレチャンバ12のコークス在庫量、
流量計32による消火塔10下部からのコークス切出量
T/H、ガス分析計34による循環ガス成分分析値、温
度計36による廃熱ボイラ入口ガス温度BIT、プレチ
ャンバ注水量WAT、流量計38による発生蒸気量S
T、温度計40による蒸気温度等の操業データを、1分
毎に転送して入力する。In the figure, 30 is a process computer to which the amount of coke stock in the prechamber 12,
Coke cutout amount T / H from the lower part of the fire extinguishing tower 10 by the flow meter 32, circulating gas component analysis value by the gas analyzer 34, waste heat boiler inlet gas temperature BIT by the thermometer 36, prechamber water injection amount WAT, flowmeter 38 Generated steam amount S
Operation data such as T and steam temperature by the thermometer 40 is transferred and input every minute.
【0040】プロセスコンピュータ30は、コークス切
出量T/H、プレチャンバ温度PTの変動により、廃熱
ボイラ入口ガス温度BITが現状より例えば5分後に何
℃になるかを予測し、廃熱ボイラ入口ガス温度BITの
管理上限値に極力近付けるように燃焼エアー量AIR及
びプレチャンバ注水量WATを設定して、フィード・フ
ォワード制御を行う。The process computer 30 predicts what temperature the waste heat boiler inlet gas temperature BIT will be, for example, 5 minutes after the present condition by the fluctuations in the coke cutout amount T / H and the prechamber temperature PT, and the waste heat boiler The feed-forward control is performed by setting the combustion air amount AIR and the prechamber water injection amount WAT so as to be as close as possible to the control upper limit value of the inlet gas temperature BIT.
【0041】このとき、燃焼空気量過多による爆発を防
止するために、循環ガス中O2 濃度が、例えば0.02
%以上になると、燃焼エアー量AIRを瞬時に遮断する
インターロックを設ける。At this time, in order to prevent an explosion due to an excessive amount of combustion air, the O 2 concentration in the circulating gas is, for example, 0.02.
When it becomes more than%, an interlock is provided to instantly shut off the combustion air amount AIR.
【0042】図4は、本発明を実施した際の回収蒸気量
増加効果を示したものである。図4の横軸には、廃熱ボ
イラ入口ガス温度BIT、縦軸には循環ガス比熱GCP
をとって、等回収蒸気量線を引いている。アクション実
施前の操業点●印のとき、プレチャンバ注水量WATを
1.0t /h アップすると、このアクションが廃熱ボイ
ラ入口ガス温度BITに影響するのが10分後である。
従って、廃熱ボイラ入口ガス温度BITを極力上限に近
付けるための燃焼エアー量AIRの増加アクションは、
4000N m3 /h となる。FIG. 4 shows the effect of increasing the amount of recovered steam when the present invention is carried out. The horizontal axis of FIG. 4 is the waste heat boiler inlet gas temperature BIT, and the vertical axis is the circulating gas specific heat GCP.
Is taken to draw a line of equal recovery steam. Operation point before action execution When the mark ● indicates that the prechamber water injection amount WAT is increased by 1.0 t / h, this action affects the waste heat boiler inlet gas temperature BIT 10 minutes later.
Therefore, the action to increase the combustion air amount AIR to bring the waste heat boiler inlet gas temperature BIT as close as possible to the upper limit is:
It will be 4000 N m 3 / h.
【0043】[0043]
【発明の効果】以上説明した通り、本発明によれば、コ
ークス切出量、燃焼エアー量、プレチャンバ注水量等の
制御因子が、廃熱ボイラ入口ガス温度や回収蒸気量等の
目的関数に影響を与えるまでの遅れ時間を考慮したの
で、制御遅れのないCDQ操業を行うことができる。As described above, according to the present invention, control factors such as the amount of coke cut out, the amount of combustion air, and the amount of water injected into the prechamber are used as objective functions such as the waste heat boiler inlet gas temperature and the amount of recovered steam. Since the delay time until the influence is taken into consideration, the CDQ operation without the control delay can be performed.
【図1】本発明に係るCDQ操業方法が実施されるシス
テムの構成を示すブロック線図FIG. 1 is a block diagram showing the configuration of a system in which a CDQ operating method according to the present invention is implemented.
【図2】本発明の原理を説明するための操業モデルを示
すブロック線図FIG. 2 is a block diagram showing an operation model for explaining the principle of the present invention.
【図3】本発明による解析結果の一例を示す操業モデル
の線図FIG. 3 is a diagram of an operation model showing an example of analysis results according to the present invention.
【図4】本発明を実施した際の回収蒸気量増加効果を示
す線図FIG. 4 is a diagram showing the effect of increasing the amount of recovered steam when the present invention is carried out.
10…消火塔、 12…プレチャンバ、 14…送風機、 16…冷却室、 22…廃熱ボイラ、 26…供給空気導入弁、 30…プロセスコンピュータ。 10 ... Fire extinguisher, 12 ... Prechamber, 14 ... Blower, 16 ... Cooling room, 22 ... Waste heat boiler, 26 ... Supply air introduction valve, 30 ... Process computer.
Claims (1)
量、プレチャンバ注水量を制御因子とし、これら各因子
が目的関数の回収蒸気量に与える影響の大きさと、影響
が出るまでの遅れ時間を考慮したモデルを用いて、 コークス炉乾式消火設備の操業状態が変化しても、常に
その操業状態下での最大の回収蒸気量が得られる様、少
なくともコークス切出量、燃焼エアー量、プレチャンバ
注水量をフィード・フォワード制御することを特徴とす
るコークス炉乾式消火設備の操業方法。1. At least the amount of coke cut out, the amount of combustion air, and the amount of water injected into the prechamber are used as control factors, and the magnitude of the influence of each of these factors on the amount of recovered steam of the objective function and the delay time until such influence is taken into consideration. Even if the operating condition of the coke oven dry fire extinguishing equipment changes, at least the maximum amount of recovered steam under the operating condition can be obtained by using this model. A method for operating a dry fire extinguishing system of a coke oven, which is characterized by feed-forward control of water amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4136716A JPH06264062A (en) | 1992-05-28 | 1992-05-28 | Operation of coke oven dry quencher |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4136716A JPH06264062A (en) | 1992-05-28 | 1992-05-28 | Operation of coke oven dry quencher |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06264062A true JPH06264062A (en) | 1994-09-20 |
Family
ID=15181827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4136716A Pending JPH06264062A (en) | 1992-05-28 | 1992-05-28 | Operation of coke oven dry quencher |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06264062A (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016109854A1 (en) * | 2015-01-02 | 2016-07-07 | Suncoke Technology And Development Llc | Integrated coke plant automation and optimization using advanced control and optimization techniques |
US9580656B2 (en) | 2014-08-28 | 2017-02-28 | Suncoke Technology And Development Llc | Coke oven charging system |
US9683740B2 (en) | 2012-07-31 | 2017-06-20 | Suncoke Technology And Development Llc | Methods for handling coal processing emissions and associated systems and devices |
US9862888B2 (en) | 2012-12-28 | 2018-01-09 | Suncoke Technology And Development Llc | Systems and methods for improving quenched coke recovery |
US10016714B2 (en) | 2012-12-28 | 2018-07-10 | Suncoke Technology And Development Llc | Systems and methods for removing mercury from emissions |
US10041002B2 (en) | 2012-08-17 | 2018-08-07 | Suncoke Technology And Development Llc | Coke plant including exhaust gas sharing |
US10047295B2 (en) | 2012-12-28 | 2018-08-14 | Suncoke Technology And Development Llc | Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods |
US10053627B2 (en) | 2012-08-29 | 2018-08-21 | Suncoke Technology And Development Llc | Method and apparatus for testing coal coking properties |
US10526542B2 (en) | 2015-12-28 | 2020-01-07 | Suncoke Technology And Development Llc | Method and system for dynamically charging a coke oven |
US10526541B2 (en) | 2014-06-30 | 2020-01-07 | Suncoke Technology And Development Llc | Horizontal heat recovery coke ovens having monolith crowns |
US10619101B2 (en) | 2013-12-31 | 2020-04-14 | Suncoke Technology And Development Llc | Methods for decarbonizing coking ovens, and associated systems and devices |
US10760002B2 (en) | 2012-12-28 | 2020-09-01 | Suncoke Technology And Development Llc | Systems and methods for maintaining a hot car in a coke plant |
CN111635770A (en) * | 2020-04-08 | 2020-09-08 | 宜兴市炉顶密封工程有限公司 | Energy-saving type over-temperature pouring method for coke tank |
US10851306B2 (en) | 2017-05-23 | 2020-12-01 | Suncoke Technology And Development Llc | System and method for repairing a coke oven |
US10883051B2 (en) | 2012-12-28 | 2021-01-05 | Suncoke Technology And Development Llc | Methods and systems for improved coke quenching |
US10927303B2 (en) | 2013-03-15 | 2021-02-23 | Suncoke Technology And Development Llc | Methods for improved quench tower design |
US10947455B2 (en) | 2012-08-17 | 2021-03-16 | Suncoke Technology And Development Llc | Automatic draft control system for coke plants |
US10968393B2 (en) | 2014-09-15 | 2021-04-06 | Suncoke Technology And Development Llc | Coke ovens having monolith component construction |
US10968395B2 (en) | 2014-12-31 | 2021-04-06 | Suncoke Technology And Development Llc | Multi-modal beds of coking material |
US10975309B2 (en) | 2012-12-28 | 2021-04-13 | Suncoke Technology And Development Llc | Exhaust flow modifier, duct intersection incorporating the same, and methods therefor |
US11008518B2 (en) | 2018-12-28 | 2021-05-18 | Suncoke Technology And Development Llc | Coke plant tunnel repair and flexible joints |
US11021655B2 (en) | 2018-12-28 | 2021-06-01 | Suncoke Technology And Development Llc | Decarbonization of coke ovens and associated systems and methods |
US11060032B2 (en) | 2015-01-02 | 2021-07-13 | Suncoke Technology And Development Llc | Integrated coke plant automation and optimization using advanced control and optimization techniques |
US11071935B2 (en) | 2018-12-28 | 2021-07-27 | Suncoke Technology And Development Llc | Particulate detection for industrial facilities, and associated systems and methods |
US11098252B2 (en) | 2018-12-28 | 2021-08-24 | Suncoke Technology And Development Llc | Spring-loaded heat recovery oven system and method |
US11142699B2 (en) | 2012-12-28 | 2021-10-12 | Suncoke Technology And Development Llc | Vent stack lids and associated systems and methods |
US11261381B2 (en) | 2018-12-28 | 2022-03-01 | Suncoke Technology And Development Llc | Heat recovery oven foundation |
US11395989B2 (en) | 2018-12-31 | 2022-07-26 | Suncoke Technology And Development Llc | Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems |
US11486572B2 (en) | 2018-12-31 | 2022-11-01 | Suncoke Technology And Development Llc | Systems and methods for Utilizing flue gas |
US11508230B2 (en) | 2016-06-03 | 2022-11-22 | Suncoke Technology And Development Llc | Methods and systems for automatically generating a remedial action in an industrial facility |
US11760937B2 (en) | 2018-12-28 | 2023-09-19 | Suncoke Technology And Development Llc | Oven uptakes |
US11767482B2 (en) | 2020-05-03 | 2023-09-26 | Suncoke Technology And Development Llc | High-quality coke products |
US11851724B2 (en) | 2021-11-04 | 2023-12-26 | Suncoke Technology And Development Llc. | Foundry coke products, and associated systems, devices, and methods |
US11946108B2 (en) | 2021-11-04 | 2024-04-02 | Suncoke Technology And Development Llc | Foundry coke products and associated processing methods via cupolas |
US12110458B2 (en) | 2022-11-04 | 2024-10-08 | Suncoke Technology And Development Llc | Coal blends, foundry coke products, and associated systems, devices, and methods |
-
1992
- 1992-05-28 JP JP4136716A patent/JPH06264062A/en active Pending
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9683740B2 (en) | 2012-07-31 | 2017-06-20 | Suncoke Technology And Development Llc | Methods for handling coal processing emissions and associated systems and devices |
US10611965B2 (en) | 2012-08-17 | 2020-04-07 | Suncoke Technology And Development Llc | Coke plant including exhaust gas sharing |
US10041002B2 (en) | 2012-08-17 | 2018-08-07 | Suncoke Technology And Development Llc | Coke plant including exhaust gas sharing |
US11441077B2 (en) | 2012-08-17 | 2022-09-13 | Suncoke Technology And Development Llc | Coke plant including exhaust gas sharing |
US10947455B2 (en) | 2012-08-17 | 2021-03-16 | Suncoke Technology And Development Llc | Automatic draft control system for coke plants |
US11692138B2 (en) | 2012-08-17 | 2023-07-04 | Suncoke Technology And Development Llc | Automatic draft control system for coke plants |
US10053627B2 (en) | 2012-08-29 | 2018-08-21 | Suncoke Technology And Development Llc | Method and apparatus for testing coal coking properties |
US11117087B2 (en) | 2012-12-28 | 2021-09-14 | Suncoke Technology And Development Llc | Systems and methods for removing mercury from emissions |
US10760002B2 (en) | 2012-12-28 | 2020-09-01 | Suncoke Technology And Development Llc | Systems and methods for maintaining a hot car in a coke plant |
US10016714B2 (en) | 2012-12-28 | 2018-07-10 | Suncoke Technology And Development Llc | Systems and methods for removing mercury from emissions |
US9862888B2 (en) | 2012-12-28 | 2018-01-09 | Suncoke Technology And Development Llc | Systems and methods for improving quenched coke recovery |
US10323192B2 (en) | 2012-12-28 | 2019-06-18 | Suncoke Technology And Development Llc | Systems and methods for improving quenched coke recovery |
US11939526B2 (en) | 2012-12-28 | 2024-03-26 | Suncoke Technology And Development Llc | Vent stack lids and associated systems and methods |
US10047295B2 (en) | 2012-12-28 | 2018-08-14 | Suncoke Technology And Development Llc | Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods |
US11008517B2 (en) | 2012-12-28 | 2021-05-18 | Suncoke Technology And Development Llc | Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods |
US10975309B2 (en) | 2012-12-28 | 2021-04-13 | Suncoke Technology And Development Llc | Exhaust flow modifier, duct intersection incorporating the same, and methods therefor |
US11359145B2 (en) | 2012-12-28 | 2022-06-14 | Suncoke Technology And Development Llc | Systems and methods for maintaining a hot car in a coke plant |
US11845037B2 (en) | 2012-12-28 | 2023-12-19 | Suncoke Technology And Development Llc | Systems and methods for removing mercury from emissions |
US11142699B2 (en) | 2012-12-28 | 2021-10-12 | Suncoke Technology And Development Llc | Vent stack lids and associated systems and methods |
US10883051B2 (en) | 2012-12-28 | 2021-01-05 | Suncoke Technology And Development Llc | Methods and systems for improved coke quenching |
US11746296B2 (en) | 2013-03-15 | 2023-09-05 | Suncoke Technology And Development Llc | Methods and systems for improved quench tower design |
US10927303B2 (en) | 2013-03-15 | 2021-02-23 | Suncoke Technology And Development Llc | Methods for improved quench tower design |
US10619101B2 (en) | 2013-12-31 | 2020-04-14 | Suncoke Technology And Development Llc | Methods for decarbonizing coking ovens, and associated systems and devices |
US11359146B2 (en) | 2013-12-31 | 2022-06-14 | Suncoke Technology And Development Llc | Methods for decarbonizing coking ovens, and associated systems and devices |
US10526541B2 (en) | 2014-06-30 | 2020-01-07 | Suncoke Technology And Development Llc | Horizontal heat recovery coke ovens having monolith crowns |
US9580656B2 (en) | 2014-08-28 | 2017-02-28 | Suncoke Technology And Development Llc | Coke oven charging system |
US10920148B2 (en) | 2014-08-28 | 2021-02-16 | Suncoke Technology And Development Llc | Burn profiles for coke operations |
US9708542B2 (en) | 2014-08-28 | 2017-07-18 | Suncoke Technology And Development Llc | Method and system for optimizing coke plant operation and output |
US9976089B2 (en) | 2014-08-28 | 2018-05-22 | Suncoke Technology And Development Llc | Coke oven charging system |
US11053444B2 (en) | 2014-08-28 | 2021-07-06 | Suncoke Technology And Development Llc | Method and system for optimizing coke plant operation and output |
US10308876B2 (en) | 2014-08-28 | 2019-06-04 | Suncoke Technology And Development Llc | Burn profiles for coke operations |
US11795400B2 (en) | 2014-09-15 | 2023-10-24 | Suncoke Technology And Development Llc | Coke ovens having monolith component construction |
US10968393B2 (en) | 2014-09-15 | 2021-04-06 | Suncoke Technology And Development Llc | Coke ovens having monolith component construction |
US10975311B2 (en) | 2014-12-31 | 2021-04-13 | Suncoke Technology And Development Llc | Multi-modal beds of coking material |
US10975310B2 (en) | 2014-12-31 | 2021-04-13 | Suncoke Technology And Development Llc | Multi-modal beds of coking material |
US10968395B2 (en) | 2014-12-31 | 2021-04-06 | Suncoke Technology And Development Llc | Multi-modal beds of coking material |
US11060032B2 (en) | 2015-01-02 | 2021-07-13 | Suncoke Technology And Development Llc | Integrated coke plant automation and optimization using advanced control and optimization techniques |
WO2016109854A1 (en) * | 2015-01-02 | 2016-07-07 | Suncoke Technology And Development Llc | Integrated coke plant automation and optimization using advanced control and optimization techniques |
US11788012B2 (en) | 2015-01-02 | 2023-10-17 | Suncoke Technology And Development Llc | Integrated coke plant automation and optimization using advanced control and optimization techniques |
US11214739B2 (en) | 2015-12-28 | 2022-01-04 | Suncoke Technology And Development Llc | Method and system for dynamically charging a coke oven |
US10526542B2 (en) | 2015-12-28 | 2020-01-07 | Suncoke Technology And Development Llc | Method and system for dynamically charging a coke oven |
US11508230B2 (en) | 2016-06-03 | 2022-11-22 | Suncoke Technology And Development Llc | Methods and systems for automatically generating a remedial action in an industrial facility |
US11845898B2 (en) | 2017-05-23 | 2023-12-19 | Suncoke Technology And Development Llc | System and method for repairing a coke oven |
US10851306B2 (en) | 2017-05-23 | 2020-12-01 | Suncoke Technology And Development Llc | System and method for repairing a coke oven |
US11021655B2 (en) | 2018-12-28 | 2021-06-01 | Suncoke Technology And Development Llc | Decarbonization of coke ovens and associated systems and methods |
US11365355B2 (en) | 2018-12-28 | 2022-06-21 | Suncoke Technology And Development Llc | Systems and methods for treating a surface of a coke plant |
US11505747B2 (en) | 2018-12-28 | 2022-11-22 | Suncoke Technology And Development Llc | Coke plant tunnel repair and anchor distribution |
US12060525B2 (en) | 2018-12-28 | 2024-08-13 | Suncoke Technology And Development Llc | Systems for treating a surface of a coke plant sole flue |
US11597881B2 (en) | 2018-12-28 | 2023-03-07 | Suncoke Technology And Development Llc | Coke plant tunnel repair and flexible joints |
US11643602B2 (en) | 2018-12-28 | 2023-05-09 | Suncoke Technology And Development Llc | Decarbonization of coke ovens, and associated systems and methods |
US11680208B2 (en) | 2018-12-28 | 2023-06-20 | Suncoke Technology And Development Llc | Spring-loaded heat recovery oven system and method |
US11193069B2 (en) | 2018-12-28 | 2021-12-07 | Suncoke Technology And Development Llc | Coke plant tunnel repair and anchor distribution |
US11008518B2 (en) | 2018-12-28 | 2021-05-18 | Suncoke Technology And Development Llc | Coke plant tunnel repair and flexible joints |
US11760937B2 (en) | 2018-12-28 | 2023-09-19 | Suncoke Technology And Development Llc | Oven uptakes |
US11261381B2 (en) | 2018-12-28 | 2022-03-01 | Suncoke Technology And Development Llc | Heat recovery oven foundation |
US11098252B2 (en) | 2018-12-28 | 2021-08-24 | Suncoke Technology And Development Llc | Spring-loaded heat recovery oven system and method |
US11071935B2 (en) | 2018-12-28 | 2021-07-27 | Suncoke Technology And Development Llc | Particulate detection for industrial facilities, and associated systems and methods |
US11845897B2 (en) | 2018-12-28 | 2023-12-19 | Suncoke Technology And Development Llc | Heat recovery oven foundation |
US11819802B2 (en) | 2018-12-31 | 2023-11-21 | Suncoke Technology And Development Llc | Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems |
US11486572B2 (en) | 2018-12-31 | 2022-11-01 | Suncoke Technology And Development Llc | Systems and methods for Utilizing flue gas |
US11395989B2 (en) | 2018-12-31 | 2022-07-26 | Suncoke Technology And Development Llc | Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems |
CN111635770A (en) * | 2020-04-08 | 2020-09-08 | 宜兴市炉顶密封工程有限公司 | Energy-saving type over-temperature pouring method for coke tank |
US11767482B2 (en) | 2020-05-03 | 2023-09-26 | Suncoke Technology And Development Llc | High-quality coke products |
US11851724B2 (en) | 2021-11-04 | 2023-12-26 | Suncoke Technology And Development Llc. | Foundry coke products, and associated systems, devices, and methods |
US11946108B2 (en) | 2021-11-04 | 2024-04-02 | Suncoke Technology And Development Llc | Foundry coke products and associated processing methods via cupolas |
US12110458B2 (en) | 2022-11-04 | 2024-10-08 | Suncoke Technology And Development Llc | Coal blends, foundry coke products, and associated systems, devices, and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06264062A (en) | Operation of coke oven dry quencher | |
KR102294325B1 (en) | System and method of operating a batch melting furnace | |
EP2586850B1 (en) | Coke dry quenching plant and method for operating same | |
US5609730A (en) | Method of operating dry quenching apparatus for hot coke | |
KR20010067195A (en) | Method and apparatus for dry quenching of coke | |
US4328072A (en) | Method to dry quench coke | |
JP2001090901A (en) | Method of controlling generation of steam in cdq equipment | |
KR102505584B1 (en) | Cokes loss prediction systyem in cokes dry quenching plant and prediction method thereof | |
JPH039988A (en) | Operation of coke dry quencher | |
JP2001158883A (en) | Dry method for quenching coke and quenching device | |
JPH03157488A (en) | Operation of dry fire extinguishing system for coke | |
JP3869669B2 (en) | Coke dry fire extinguishing method and apparatus | |
JPH03157485A (en) | Operation of dry quenching facility for coke | |
JP5166320B2 (en) | CO concentration control method in coke dry fire extinguishing equipment | |
Ching-Han | How Baoshan Steel Works commissioned China's first coke dry quench plant | |
JPH0971782A (en) | Control of operation of coke dry quenching facility | |
JP2821985B2 (en) | Combustible gas combustion control method for coke dry fire extinguishing equipment | |
JP2002220591A (en) | Coke dry quenching facility and method for operating the same | |
JPH08283726A (en) | Method for controlling steam throughput of boiler in dry coke quencher | |
JP2001240862A (en) | Method of operating dry type coke extinguisher | |
JPH07242878A (en) | Method for operating coke dry quencher | |
JP2001192662A (en) | Coke dry quenching facility | |
JPS5927983A (en) | Operation of dry coke quenching equipment | |
JPS62236887A (en) | Method of automatically controlling amount of cutting-out of coke in code dry quenching facilities | |
JPH0765047B2 (en) | Operation control method for coke dry fire extinguishing equipment |