JPH06257401A - Manufacture of ceramic disc wheel - Google Patents
Manufacture of ceramic disc wheelInfo
- Publication number
- JPH06257401A JPH06257401A JP6937993A JP6937993A JPH06257401A JP H06257401 A JPH06257401 A JP H06257401A JP 6937993 A JP6937993 A JP 6937993A JP 6937993 A JP6937993 A JP 6937993A JP H06257401 A JPH06257401 A JP H06257401A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- impeller
- unit blocks
- degreasing
- hydrostatic pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Supercharger (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、セラミック製翼車の製
造方法に関するものであり、特にセラミックタ−ボチャ
−ジャ−ロ−タ−,セラミックガスタ−ビン等に好適に
利用され得る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a ceramic impeller, which can be suitably used particularly for a ceramic turbine charger, a rotor and a ceramic gas turbine.
【0002】[0002]
【従来の技術】タ−ボチャ−ジャ−付きエンジンでは、
タ−ボラグと呼ばれる加速応答遅れが存在し、その改善
として高温ガス気流によって回転するロ−タ,タ−ビン
翼,ホイ−ル等翼車の部分が軽量なセラミックで製造さ
れたタ−ボチャ−ジャ−が実用化されている。セラミッ
ク製のものは、従来のNi合金製のものに比べて30%
以上も軽く、回転に必要な力を示す慣性モーメントも4
5%低くて良い。従って、上記ターボラグを金属製のも
のより20%程度短縮できる。また、高温化による燃料
消費の改善を目的としてガスタ−ビンの翼車を耐熱性に
優れたセラミックで製造する事が研究されている。2. Description of the Related Art In an engine with a turbocharger,
There is an acceleration response delay called a turbo lag, and as an improvement, a turbine body made of lightweight ceramic is used for parts of rotors, turbine blades, wheels, etc. that are rotated by a high temperature gas flow. Jar has been put to practical use. Ceramic products are 30% more than conventional Ni alloy products
The above is also light and the moment of inertia showing the force required for rotation is 4
It can be as low as 5%. Therefore, the turbo lug can be shortened by about 20% as compared with the metallic one. Further, it has been studied to manufacture gas turbine turbine wheels from ceramics having excellent heat resistance for the purpose of improving fuel consumption due to high temperature.
【0003】従来、このようなセラミック製翼車を製造
する方法としては、一体型射出成形方法及び嵌合型射出
成形方法が知られている。一体型射出成形方法は、セラ
ミック粉末と樹脂等との混練物を、図1に示すような翼
車の全体積の形状となるように1サイクルで射出成形し
次いで脱脂した後、成形体を焼成する方法である。この
方法は、工数が少ないというメリットがある。Conventionally, as a method of manufacturing such a ceramic impeller, an integral type injection molding method and a fitting type injection molding method are known. The integral injection molding method is one in which a kneaded material of ceramic powder and resin is injection-molded in one cycle so as to have the shape of the entire volume of an impeller as shown in FIG. 1, then degreased, and then the molded body is fired. Is the way to do it. This method has an advantage that the number of steps is small.
【0004】また、嵌合型射出成形方法は、軸孔を有す
る翼車を1サイクルで射出成形し脱脂し、別途他の成形
方法にて成形し脱脂した軸をその軸孔に嵌入し、その状
態で静水圧力を加えて一体化した後、焼成する方法であ
る。この方法は、一体型射出成形方法を適用しようとす
ると成形時の温度分布及び圧力分布が広がりすぎて均質
な成形体が得られないほど翼車の全体積が大きい場合で
も、比較的均質に成形することができる。従って、大き
な成形体を得ることができるというメリットがある。Further, in the fitting type injection molding method, an impeller having a shaft hole is injection molded and degreased in one cycle, and a shaft molded and degreased by another molding method is fitted into the shaft hole. In this state, hydrostatic pressure is applied to integrate them, followed by firing. Even if the total volume of the impeller is so large that the temperature distribution and pressure distribution during molding will spread too much and a uniform molded product cannot be obtained when the integrated injection molding method is applied, this method is relatively homogeneous. can do. Therefore, there is an advantage that a large molded body can be obtained.
【0005】[0005]
【発明が解決しようとする課題】しかし、どちらの方法
も射出成形時の成形材料(混練物)の充填体積が大きい
ために、依然として成形サイクル中での成形体内部にお
ける温度分布及び圧力分布が大きく、均質な成形体を得
ることが困難である。従って、そのような成形体を焼成
して完成されたセラミック製翼車は、回転体としてのバ
ランスが悪い。However, in both methods, since the filling volume of the molding material (kneaded material) at the time of injection molding is large, the temperature distribution and the pressure distribution inside the molding during the molding cycle are still large. However, it is difficult to obtain a homogeneous molded body. Therefore, the ceramic impeller completed by firing such a molded body has poor balance as a rotating body.
【0006】また、充填体積が大きいために、脱脂時に
発生する揮発ガス及び熱分解ガスが成形体中を拡散移動
する距離が長い。その結果、脱脂を完了するのに長時間
を要するし、脱脂している間に成形体中に亀裂を生じる
こともある。更に射出成形用の金型の構造が複雑で正確
な寸法精度も要求されるので、コストが高い。本発明の
目的は、このような課題を解決し、均質なセラミック製
翼車を少ない工数で製造することである。Further, since the filling volume is large, the volatile gas and the pyrolysis gas generated at the time of degreasing have a long distance to diffuse and move in the molded body. As a result, it takes a long time to complete degreasing, and cracks may occur in the molded body during degreasing. Further, the structure of the mold for injection molding is complicated and accurate dimensional accuracy is required, so that the cost is high. An object of the present invention is to solve such problems and to manufacture a homogeneous ceramic impeller with a small number of steps.
【0007】[0007]
【課題を解決するための手段】その第一の手段は、セラ
ミック粉末の混練物を、翼車をその回転中心軸に沿って
ほぼ等分割してなる形状の単位ブロックに射出成形し、
脱脂前又は脱脂後にそれらの単位ブロックを組み合わ
せ、露出している表面に架橋被膜を塗布した後、静水圧
力を加えて一体化し、次いで焼成することを特徴とす
る。[Means for Solving the Problems] The first means is to injection-mold a kneaded material of ceramic powder into unit blocks each having a shape in which an impeller is divided into approximately equal parts along its rotation center axis,
Before or after degreasing, these unit blocks are combined, the exposed surface is coated with a cross-linked film, hydrostatic pressure is applied to integrate the units, and then firing is performed.
【0008】第二の手段は、セラミック粉末の混練物
を、翼車の外周部をその回転中心軸に沿ってほぼ等分割
してなる形状の単位ブロックに射出成形し、脱脂前又は
脱脂後にそれらの単位ブロックと翼車の軸部成形体とを
組み合わせ、露出している表面に架橋被膜を塗布した
後、静水圧力を加えて一体化し、次いで焼成することを
特徴とする。A second means is to injection-mold the kneaded material of the ceramic powder into unit blocks each having a shape in which the outer peripheral portion of the impeller is divided into approximately equal parts along the rotation center axis thereof, and before or after degreasing. The combination of the unit block of 1) and the shaft part molded body of the impeller is applied to the exposed surface, a cross-linking film is applied, hydrostatic pressure is applied to integrate, and then firing is performed.
【0009】[0009]
【作用】射出成形して得られる形状は、翼車全体ではな
く、それを分割してなる単位ブロックである。従って、
射出成形時の成形材料(混練物)の充填体積が小さい。
そのため、成形サイクル中での成形体内部における温度
分布及び圧力分布が小さくなり、残留歪が軽減される。
また、充填体積が小さいために、脱脂時に発生する揮発
ガス及び熱分解ガスが成形体中を拡散移動する距離が短
い。従って、拡散移動が円滑に進行する。The shape obtained by injection molding is not the entire impeller but a unit block obtained by dividing the impeller. Therefore,
The filling volume of the molding material (kneaded material) at the time of injection molding is small.
Therefore, the temperature distribution and the pressure distribution inside the molded body during the molding cycle are reduced, and the residual strain is reduced.
Further, since the filling volume is small, the distance that the volatile gas and the pyrolysis gas generated at the time of degreasing diffuse and move in the molded body is short. Therefore, the diffusion movement proceeds smoothly.
【0010】しかも単位ブロックが、翼車又は翼車の外
周部をその回転中心軸に沿ってほぼ等分割してなる形状
をしているので、翼車形状に組み合わせた後、静水圧力
を加える際及び焼成する際、単位ブロック間においても
温度及び圧力のばらつきがほとんどなくなる。これら各
作用を、従来の一体型射出成形方法による作用及び嵌合
型射出成形方法による作用と対比すると表1の通りとな
る。Further, since the unit block has a shape in which the impeller or the outer peripheral portion of the impeller is divided into substantially equal parts along the rotation center axis thereof, when combined with the impeller shape, hydrostatic pressure is applied. Also, when firing, there is almost no variation in temperature and pressure between unit blocks. Table 1 shows each of these actions in comparison with the action by the conventional integral injection molding method and the action by the fitting type injection molding method.
【0011】[0011]
【表1】 単位ブロックの形状は、1以上の翼を挟む2つのハブラ
インを稜線とするものであるのが望ましい。すなわち、
第一の手段の場合、図2に示すように、単位ブロック1
は、翼2を挟む2つのハブラインL、回転中心軸C及び
両端面Sで囲まれる形状が望ましい。また、第二の手段
の場合、図3に示すように、単位ブロック1は、翼を挟
む2つのハブラインL、軸部成形体との当接面P及び両
端面Sで囲まれる形状が望ましい。翼が、薄く且つ湾曲
しているので、翼まで分割した単位ブロックを成形する
のは、困難だからである。静水圧力は、4ton/cm
2以上であるのが望ましい。4ton/cm2より低い静
水圧力を加えても、単位ブロック同志が接着しにくいか
らである。[Table 1] It is desirable that the shape of the unit block has two hub lines that sandwich one or more blades as ridge lines. That is,
In the case of the first means, as shown in FIG.
Is preferably a shape surrounded by two hub lines L sandwiching the blade 2, a rotation center axis C, and both end surfaces S. Further, in the case of the second means, as shown in FIG. 3, the unit block 1 preferably has a shape surrounded by two hub lines L sandwiching the blade, an abutting surface P for contacting the shaft molded body, and both end surfaces S. Because the blade is thin and curved, it is difficult to mold the unit block divided into the blade. Hydrostatic pressure is 4 ton / cm
It is desirable that it is 2 or more. This is because the unit blocks do not easily adhere to each other even if a hydrostatic pressure lower than 4 ton / cm 2 is applied.
【0012】[0012]
【実施例】平均粒径1μmの窒化珪素Si3N4粉末10
0重量部、平均粒径1μmのアルミナAl2O3粉末5重
量部、平均粒径1μmのイットリアY2O3粉末5重量
部、エチレン酢酸ビニル共重合樹脂5重量部、マイクロ
クリスタルワックス15重量部及びジブチルフタレ−ト
4重量部で構成される射出成形用原料を混合して焼成用
窒化珪素混練物を調製した。Example Silicon nitride Si 3 N 4 powder 10 having an average particle size of 1 μm
0 parts by weight, 5 parts by weight of alumina Al 2 O 3 powder having an average particle size of 1 μm, 5 parts by weight of yttria Y 2 O 3 powder having an average particle size of 1 μm, 5 parts by weight of ethylene vinyl acetate copolymer resin, 15 parts by weight of microcrystal wax. And a raw material for injection molding composed of 4 parts by weight of dibutyl phthalate were mixed to prepare a silicon nitride kneaded product for firing.
【0013】別途、翼の最大外径119mm、軸部外径
22mm、翼数10枚のラジアル型タ−ビンロ−タ−
を、その回転中心軸に沿って10等分割した基本単位形
状を有する金型を製作した。また、翼の外径及び軸部の
外径を同じくする、従来の嵌合型射出成形法に用いてい
た金型及び一体型射出成形法に用いていた金型も準備し
た。尚、嵌合型射出成形法に用いられる金型は、その嵌
合径が細軸部径12mm、太軸部径22mmのストレー
トテーパー形状のものとした。Separately, a radial type turbine rotor having a maximum blade outer diameter of 119 mm, a shaft outer diameter of 22 mm, and 10 blades.
A mold having a basic unit shape obtained by dividing the above into 10 equal parts along the rotation center axis was manufactured. Further, a mold used in the conventional fitting type injection molding method and a mold used in the integral type injection molding method, which have the same outer diameter of the blade and the outer diameter of the shaft portion, were also prepared. The mold used in the fitting type injection molding method had a fitting diameter of 12 mm in the thin shaft portion and 22 mm in the thick shaft portion, and had a straight taper shape.
【0014】以下、各種の金型を用いて焼成用窒化珪素
混練物からタービンローターを製造した。その中間工程
における評価実験を説明する。 [成形性評価実験]実施例に係る基本単位形状を有する
金型に前記混練物を表2に示す条件で射出成形し、単位
ブロックを300ヶ成形した。これらの単位ブロックの
表面及び内部に欠陥発生は観られず良好な成形性が認め
られた。A turbine rotor was manufactured from a silicon nitride kneaded product for firing using various molds. The evaluation experiment in the intermediate step will be described. [Moldability evaluation experiment] The kneaded product was injection-molded under the conditions shown in Table 2 into a mold having a basic unit shape according to the example, and 300 unit blocks were molded. No defect was observed on the surface and inside of these unit blocks, and good moldability was recognized.
【0015】比較のために従来の嵌合型射出成形法にて
上記ラジアル型タ−ビンロ−タ−と同じ外形状の翼部を
30ヶと、一体型射出成形法にて上記ラジアル型タ−ビ
ンロ−タ−と同じ形状で一体のもの30ヶとを成形し
た。嵌合型射出成形法による成形体(以下、「嵌合型成
形体」)は、良好であったが、一体型射出成形法による
成形体(以下、「一体型成形体」)は、30ヶ中3ヶが
肉厚中心部にクラックを生じていた。For comparison, the conventional fitting type injection molding method uses 30 blades having the same outer shape as the radial type turbine rotor and the radial type molding machine uses the integral type injection molding method. Thirty integral pieces having the same shape as the bin rotor were molded. The molded product obtained by the fitting type injection molding method (hereinafter referred to as “fitted molded product”) was good, but the molded product obtained by the integral injection molding method (hereinafter, “integrated molded product”) was 30 pieces. Three of them had cracks in the center of thickness.
【0016】[0016]
【表2】 [脱脂性評価実験]次に、昇温速度2℃/H、5℃/
H、10℃/Hに調整した脱バインダ−炉中に単位ブロ
ックを各々100ヶづつと嵌合型成形体を各々10ヶづ
つと一体型射出成形体を各々9ヶづつとを投入し、最高
温度600℃で脱バインダ−を実施した。[Table 2] [Degreasing evaluation experiment] Next, a temperature rising rate of 2 ° C / H, 5 ° C / H
In a binder removal furnace adjusted to H, 10 ° C / H, 100 unit blocks each, 10 fitting type moldings 10 each, and integral injection moldings 9 each, the maximum The binder was removed at a temperature of 600 ° C.
【0017】その結果、単位ブロックについては、いず
れの昇温速度条件に於ても、その表面及び内部に欠陥発
生は観られず良好な脱脂性が認められた。しかし、嵌合
型成形体及び一体型成形体については、昇温速度が速く
なるにつれて表面及び内部の欠陥発生率が増加する傾向
となった。As a result, no defect was found on the surface or inside of the unit block under any heating rate condition, and good degreasing property was recognized. However, with respect to the fitting type molded body and the integral type molded body, the rate of occurrence of defects on the surface and inside tends to increase as the heating rate increases.
【0018】[静水圧加圧評価実験]次に脱脂後の単位
ブロックを組み合わせてラジアル型タービンローターの
形状にし、露出している表面にラテックスラバ−コ−テ
ィング処理をした後、4ton/cm2の圧力にて静水
圧加圧処理をして一体化し、30ヶの未焼成セラミック
翼車を作成した。脱脂工程における昇温速度が10℃/
Hの脱脂体でわずか1ヶだけ単位ブロック間の接着不良
が発生したことを除き、これらの翼車表面及び内部に欠
陥発生は観られず良好な結果が得られた。[Evaluation experiment for hydrostatic pressure] Next, the unit blocks after degreasing were combined to form a radial type turbine rotor, and the exposed surface was subjected to latex rubber coating treatment, and then 4 ton / cm 2 Hydrostatic pressure treatment was performed at a pressure of 1 to integrate them to prepare 30 unfired ceramic impellers. Temperature rising rate in degreasing process is 10 ℃ /
With the exception of only one defective adhesion between the unit blocks in the degreased body of H, no defect was observed on the surface or inside of these impellers, and good results were obtained.
【0019】一方、嵌合型成形体をそれに対応する軸部
成形体と組み合わせてラジアル型タービンローターの形
状にし、同様に静水圧加圧処理をして一体化し、29ヶ
の未焼成セラミック翼車を作成した。その結果、単位ブ
ロックから得られる未焼成セラミック翼車よりも若干多
く嵌合型成形体と軸部成形体との間の接着不良が観察さ
れた。また、一体型成形体を同じ条件で静水圧加圧処理
し、23ヶの未焼成セラミック翼車を作成したところ、
脱脂後における昇温速度が5℃/Hの製品と10℃/H
の製品の表面に亀裂が発生した。On the other hand, by combining the fitting type molded body with the corresponding shaft portion molded body into the shape of a radial type turbine rotor, hydrostatic pressure treatment is similarly performed to integrate the molded body into 29 unfired ceramic impellers. It was created. As a result, a slightly greater number of poor adhesions between the fitting type molded body and the shaft portion molded body were observed as compared with the unfired ceramic impeller obtained from the unit block. In addition, when the monolithic molded body was subjected to hydrostatic pressure treatment under the same conditions to prepare 23 unfired ceramic impellers,
Products with a heating rate of 5 ° C / H and 10 ° C / H after degreasing
The product surface was cracked.
【0020】[焼成評価実験]最後に、単位ブロックか
ら得られた未焼成セラミック翼車29ヶを窒素雰囲気
中、温度1750℃で2時間焼成した。その結果、焼成
体表面及び内部に欠陥発生は観られず良好な結果が得ら
れた。[Firing Evaluation Experiment] Finally, 29 unfired ceramic impellers obtained from the unit block were fired in a nitrogen atmosphere at a temperature of 1750 ° C. for 2 hours. As a result, no defect was observed on the surface and inside of the fired body, and good results were obtained.
【0021】一方、嵌合型成形体から得られた未焼成セ
ラミック翼車27ヶと一体型成形体から得られた未焼成
セラミック翼車19ヶとを同じ条件で焼成したところ、
前者は2ヶ、後者は3ヶの翼車が亀裂を生じていた。 [総合評価]上記各種実験の結果と原料から完成品に至
るまでの歩留まりを表3に示す。On the other hand, when 27 unfired ceramic impellers obtained from the fitting type molded body and 19 unfired ceramic impellers obtained from the integral type molded body were fired under the same conditions,
The former had two impellers and the latter had three impellers. [Comprehensive Evaluation] Table 3 shows the results of the above-mentioned various experiments and the yields from raw materials to finished products.
【0022】[0022]
【表3】 表3にみられるように、本発明製造方法に従って得られ
たセラミック翼車は、原料から完成品に至るまでの歩留
まりが、脱脂時の昇温速度が5℃/H以下の場合で10
0%、同10℃/Hの場合90%であった。[Table 3] As can be seen from Table 3, the yield of the ceramic impeller obtained according to the manufacturing method of the present invention from the raw material to the finished product was 10 when the temperature rising rate during degreasing was 5 ° C./H or less.
0% and 90% at 10 ° C./H.
【0023】これに対して、嵌合型射出成形法に従って
得られたセラミック翼車の歩留まりは、脱脂時の昇温速
度が5℃/H以下の場合で90%、同10℃/Hの場合
で70%であった。また、一体型射出成形法に従って得
られたセラミック翼車の歩留まりは、脱脂時の昇温速度
が5℃/H以下の場合で50%、同10℃/Hの場合で
40%であった。On the other hand, the yield of the ceramic impeller obtained according to the fitting type injection molding method is 90% when the heating rate during degreasing is 5 ° C./H or less, and 10% when the heating rate is 10 ° C./H. Was 70%. Further, the yield of the ceramic impeller obtained by the integral injection molding method was 50% when the temperature rising rate during degreasing was 5 ° C./H or less, and 40% when it was 10 ° C./H.
【0024】[0024]
【発明の効果】以上のように、本発明製造方法によるセ
ラミック製翼車は、均質な成形体を焼成して完成された
ものであるから、回転体としてのバランスが優れる。ま
た、脱脂を完了するのに短時間で済むし、脱脂している
間に成形体中に亀裂を生じることがないから、歩留まり
が向上する。更に、金型は、単位ブロックに対応する形
状のもののみでよいから、金型の製作コストが安くな
る。As described above, since the ceramic impeller manufactured by the manufacturing method of the present invention is completed by firing a homogeneous molded body, it has an excellent balance as a rotating body. In addition, degreasing is completed in a short time, and cracks do not occur in the molded body during degreasing, which improves the yield. Further, since the mold only needs to have a shape corresponding to the unit block, the manufacturing cost of the mold is reduced.
【図1】セラミック製翼車の斜視図である。FIG. 1 is a perspective view of a ceramic impeller.
【図2】単位ブロックの形状の例を示す斜視図である。FIG. 2 is a perspective view showing an example of the shape of a unit block.
【図3】単位ブロックの形状の他の例を示す斜視図であ
る。FIG. 3 is a perspective view showing another example of the shape of the unit block.
【符号の説明】 1 単位ブロック 2 翼 L ハブラ
イン[Explanation of symbols] 1 unit block 2 blades L Habrine
Claims (4)
回転中心軸に沿ってほぼ等分割してなる形状の単位ブロ
ックに射出成形し、脱脂前又は脱脂後にそれらの単位ブ
ロックを組み合わせ、露出している表面に架橋被膜を塗
布した後、静水圧力を加えて一体化し、次いで焼成する
ことを特徴とするセラミック製翼車の製造方法。1. A kneaded material of ceramic powder is injection-molded into unit blocks each having a shape in which an impeller is divided into substantially equal parts along its rotation center axis, and these unit blocks are combined before or after degreasing and exposed. A method for producing a ceramic impeller, comprising applying a cross-linking film to the surface of the ceramic impeller, applying hydrostatic pressure to integrate the surfaces, and then firing.
部をその回転中心軸に沿ってほぼ等分割してなる形状の
単位ブロックに射出成形し、脱脂前又は脱脂後にそれら
の単位ブロックと翼車の軸部成形体とを組み合わせ、露
出している表面に架橋被膜を塗布した後、静水圧力を加
えて一体化し、次いで焼成することを特徴とするセラミ
ック製翼車の製造方法。2. A kneaded material of ceramic powder is injection-molded into unit blocks each having a shape in which an outer peripheral portion of an impeller is approximately equally divided along a rotation center axis thereof, and the unit blocks are formed before or after degreasing. A method for manufacturing a ceramic impeller, which comprises combining with a shaft part molded body of an impeller, applying a cross-linking film on the exposed surface, applying hydrostatic pressure to integrate, and then firing.
む2つのハブラインを稜線とするものであることを特徴
とする請求項1又は2に記載のセラミック製翼車の製造
方法。3. The method for manufacturing a ceramic impeller according to claim 1, wherein the shape of the unit block is such that two hub lines that sandwich one or more blades are ridge lines.
ることを特徴とする請求項1〜3のいずれかに記載のセ
ラミック製翼車の製造方法。4. The method for producing a ceramic impeller according to claim 1, wherein the hydrostatic pressure is 4 ton / cm 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6937993A JPH06257401A (en) | 1993-03-03 | 1993-03-03 | Manufacture of ceramic disc wheel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6937993A JPH06257401A (en) | 1993-03-03 | 1993-03-03 | Manufacture of ceramic disc wheel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06257401A true JPH06257401A (en) | 1994-09-13 |
Family
ID=13400884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6937993A Pending JPH06257401A (en) | 1993-03-03 | 1993-03-03 | Manufacture of ceramic disc wheel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06257401A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010090329A1 (en) * | 2009-02-09 | 2010-08-12 | 株式会社Ihi | Process for producing sintered sialon ceramic |
-
1993
- 1993-03-03 JP JP6937993A patent/JPH06257401A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010090329A1 (en) * | 2009-02-09 | 2010-08-12 | 株式会社Ihi | Process for producing sintered sialon ceramic |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4460527A (en) | Ceramic rotor and manufacturing process therefor | |
US4866829A (en) | Method of producing a ceramic rotor | |
JPS59155501A (en) | Radial flow type ceramic turbine rotor and manufacture thereof | |
JPS59109304A (en) | Manufacture of radial type ceramic turbine rotor | |
JP2554491B2 (en) | Method of manufacturing ceramic rotating body | |
JPH0446205B2 (en) | ||
JPH06257401A (en) | Manufacture of ceramic disc wheel | |
US4701106A (en) | Radial-type ceramic turbine rotor and a method for producing the same | |
US4544327A (en) | Ceramic rotor and manufacturing process therefor | |
JPH0410905A (en) | Production of ceramic component part | |
JPH04214927A (en) | Ceramic turbo charger rotor and manufacture thereof | |
EP0112146A2 (en) | Radial blade type ceramic rotor and method of producing the same | |
JPH0375510B2 (en) | ||
JP4280533B2 (en) | Manufacturing method of ceramic joined body | |
JPS6329001A (en) | Ceramic turbo wheel | |
JPS6255498A (en) | Ceramic impeller | |
JPH05272347A (en) | Ceramic turbine rotor and manufacturing method thereof | |
JPS6265990A (en) | Production of ceramics turbo wheel | |
JPH03206301A (en) | Radial ceramic turbine rotor | |
JPS61111976A (en) | Ceramic turbine rotor and manufacture | |
JPH09125905A (en) | Multiple ceramic stationary blade and its manufacture | |
JPH0551609A (en) | Production of sintered injection-molded powder compact excellent in surface property | |
JPS61111975A (en) | Manufacture of ceramic structural material | |
JPS62202874A (en) | Manufacture of ceramic sintered body | |
JPS6259077B2 (en) |