JPH0623121B2 - Hexafluoropropene oxide oligoether derivative having terminal isopropenyl group and method for producing the same - Google Patents
Hexafluoropropene oxide oligoether derivative having terminal isopropenyl group and method for producing the sameInfo
- Publication number
- JPH0623121B2 JPH0623121B2 JP13358089A JP13358089A JPH0623121B2 JP H0623121 B2 JPH0623121 B2 JP H0623121B2 JP 13358089 A JP13358089 A JP 13358089A JP 13358089 A JP13358089 A JP 13358089A JP H0623121 B2 JPH0623121 B2 JP H0623121B2
- Authority
- JP
- Japan
- Prior art keywords
- formula
- reaction
- compound
- oligoether
- isopropenyl group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyethers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下記式(1) (但し、式中nは1〜4の整数である。) で示される末端イルプロペニル基を有する新規なヘキサ
フルオロプロペンオキシド(HFPO)オリゴエーテル誘導体
及びその製造方法に関する。該化合物は、テトラフルオ
ロエチレンやビニリデンフロライドのような重合性モノ
マーとの共重合成分として、これらモノマーの単独重合
ポリマーの耐熱性、化学的安定性、非粘着性、撥水撥油
性、溶融成形性等を改良するため有効である。また、下
記式(6) (但し、式中nは1〜4、xは0〜3の整数である。) で示され、耐熱性、低温特性に優れ、撥水撥油性で防汚
性の表面エネルギーの低い特性を有する新規な含フッ素
有機ケイ素化合物の合成中間体として有用である。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention provides the following formula (1): (In the formula, n is an integer of 1 to 4.) A novel hexafluoropropene oxide (HFPO) oligoether derivative having a terminal ylpropenyl group represented by: and a method for producing the same. The compound, as a copolymerization component with a polymerizable monomer such as tetrafluoroethylene or vinylidene fluoride, is heat-resistant, chemically stable, non-adhesive, water- and oil-repellent, melt-molded by a homopolymer of these monomers. It is effective for improving the sex. Also, the following formula (6) (However, in the formula, n is an integer of 1 to 4 and x is an integer of 0 to 3.) and has excellent heat resistance and low temperature characteristics, water and oil repellency, and antifouling properties with low surface energy. It is useful as a synthetic intermediate for a novel fluorine-containing organosilicon compound.
従来より、テトラフルオロエチレンやビニリデンフロラ
イドの単独重合体はその優れた特性から種々の用途に広
く使用され、また更に他の特性を付与するため種々の共
重合成分と共重合させた共重合体も広く分野を見い出し
ているが、更にこれらポリテトラフルオロエチレン、ポ
リビニリデンフロライドの耐熱性、化学的安定性、非粘
着性、撥水撥油性、更には溶融成形といった特性を高
め、或いは付与することが望まれる。Traditionally, homopolymers of tetrafluoroethylene and vinylidene fluoride have been widely used in various applications due to their excellent properties, and copolymers copolymerized with various copolymerization components to impart other properties. Although it has found a wide range of fields, it further enhances or imparts the properties of these polytetrafluoroethylene and polyvinylidene fluoride such as heat resistance, chemical stability, non-adhesiveness, water and oil repellency, and melt molding. Is desired.
また、有機樹脂、シリコーンオイルコンパウンド、シリ
コーンゴム等に配合されるシリカ表面に存在する≡Si−
OH基のシリカ処理剤、種々の半導体デバイスの生産工程
におけるレジスト等の密着性向上剤、光学レンズ、眼鏡
レンズ、ガラス器具等のガラス表面に撥水撥油性及び防
汚性を付与するための表面処理剤として有用な含フッ素
有機ケイ素化合物、或いは低温特性も良好で、耐熱性、
撥水撥油性、防汚性といった特性を有する新規オルガノ
ポリシロキサンも要望されている。In addition, ≡Si- present on the surface of silica compounded with organic resin, silicone oil compound, silicone rubber, etc.
OH-based silica treatment agent, adhesion improver for resists in the production process of various semiconductor devices, surface for imparting water and oil repellency and antifouling property to the glass surface of optical lenses, spectacle lenses, glass appliances, etc. Fluorine-containing organosilicon compound useful as a treatment agent, or good low temperature characteristics, heat resistance,
A novel organopolysiloxane having properties such as water and oil repellency and antifouling property is also desired.
本発明者は、上記要望に応えるため鋭意検討を行なった
結果、ヘキサフルオロプロペンオキシド(HFPO)を金属フ
ッ化物−アプロティックソルベント系で吹き込むことに
よりHFPOオリゴマーを合成した後、メタノールを反応さ
せ、更にグリニャール試薬CH3MgXを反応させることによ
り、下記式(2) で示される末端ジメチルカルビノール基を有する新規な
HFPOオリゴエーテル誘導体が得られること、更にこれを
脱水することにより、下記式(1) で示される末端イソプロペニル基を有する新規なHFPOオ
リゴエーテル誘導体が得られることを見い出した。The present inventor, as a result of intensive studies to meet the above-mentioned demand, after synthesizing an HFPO oligomer by blowing hexafluoropropene oxide (HFPO) with a metal fluoride-aprotic solvent system, reacting with methanol, and further By reacting the Grignard reagent CH 3 MgX, the following formula (2) A novel compound having a terminal dimethylcarbinol group represented by
By obtaining an HFPO oligoether derivative and further dehydrating it, the following formula (1) It was found that a novel HFPO oligoether derivative having a terminal isopropenyl group represented by is obtained.
そして、この新規化合物(1)は、テトラフルオロエチレ
ン、ビニリデンフロライドの共重合成分として、これら
モノマーの単独重合ポリマーの耐熱性、化学的安定性、
非粘着性、撥水撥油性、溶融成形性等を改良するため有
用であることを知見した。And, this novel compound (1), tetrafluoroethylene, as a copolymerization component of vinylidene fluoride, heat resistance of the homopolymerization polymer of these monomers, chemical stability,
It has been found that it is useful for improving non-adhesiveness, water and oil repellency, melt moldability and the like.
更に、この(1)式の化合物に で示されるシランを反応させることにより、下記一般式
(6) (式中nは1〜4、xは0〜3の整数である) で示される新規含フッ素有機ケイ素化合物が得られるこ
と、この新規化合物(6)は、クロロシランの反応性とフ
ルオロカーボンの特性とを兼備し、有機樹脂、シリコー
ンオイルコンパウンド及びシリコーンゴム等に配合され
るシリカ表面に存在する 基のシリカ処理剤、種々の半導体デバイスの生産工程に
おけるレジスト等の密着性向上剤、光学レンズ、眼鏡レ
ンズ、ガラス器具等のガラス表面に撥水撥油性及び防汚
性を付与するための表面処理剤としても有効に使用され
ると共に、他方該化合物から得られるポリシロキサンは
低温特性も良好で、耐熱性、撥水撥油性及び防汚性の特
性があることを知見し、それ故上記(1)式の化合物は(6)
式の化合物の合成中間体としても有効であることを知見
し、本発明をなすに至った。Furthermore, the compound of formula (1) By reacting a silane represented by
(6) (Wherein n is 1 to 4 and x is an integer of 0 to 3), a novel fluorine-containing organosilicon compound is obtained, and the novel compound (6) has reactivity of chlorosilane and properties of fluorocarbon. Is present on the surface of silica compounded with organic resins, silicone oil compounds, silicone rubber, etc. -Based silica treatment agent, adhesion improver for resists in various semiconductor device production processes, surface treatment for imparting water and oil repellency and stain resistance to the glass surface of optical lenses, spectacle lenses, glassware, etc. While being effectively used as an agent, on the other hand, it was found that the polysiloxane obtained from the compound has good low-temperature properties, heat resistance, water and oil repellency, and antifouling properties. The compound of formula is (6)
The inventors have found that the compound of the formula is also effective as a synthetic intermediate, and have completed the present invention.
従って、本発明は上記一般式(1)で示される末端イソプ
ロペニル基を有する新規なヘキサフルオロプロペンオキ
シドオリゴエーテル誘導体及びその製造方法を提供す
る。Accordingly, the present invention provides a novel hexafluoropropene oxide oligoether derivative having a terminal isopropenyl group represented by the above general formula (1) and a method for producing the same.
ここで、上記(1)式で示されるHFPOオリゴエーテル誘導
体の合成スキームは下記の通りである。Here, the synthetic scheme of the HFPO oligoether derivative represented by the above formula (1) is as follows.
オリゴマー化 エステル化 カルビノール化 脱水 まず、のオリゴマー化は公知の方法を採用して行なう
ことができる。例えば、(5)式のHFPOをフッ化カリウム
(KF)、フッ化セシウム(CsF)等の金属フッ化物−アプロ
ティックソルベント系に低温下で吹きこむことにより、
(4)式のHFPOオリゴマー酸フッ化物を得ることができ
る。この場合、アプロティックソルベント(非プロトン
性極性溶媒)としては、例えばジグライム、テトラグラ
イム、テトラヒドロフラン(THF)、ジメチルホルムアマ
イド(DMF)、アセトニトリルなどを使用することができ
る。なお、例えばフッ化セシウム(CsF)・テトラグライ
ム系において、3量体の割合が最大となる反応条件は、
HFPO/CsFのモル比103、CsF/H2Oのモル比2.83、HFPO
の供給速度1.57g/min、反応温度−5〜0℃、反応時間
216時間程度であり、この反応条件のとき、収率は9
4%、生成するオリゴマー分布は2量体34%、3量体
52%、4量体12%程度である。これらのオリゴマー
酸フッ化物は沸点差が50℃程度あり、精留することに
より容易に分離できる。Oligomerization Esterification Carbinolization dehydration First, the oligomerization can be carried out by employing a known method. For example, HFPO of formula (5) is converted to potassium fluoride
(KF), cesium fluoride (CsF) and other metal fluorides-by blowing into an aprotic solvent system at low temperature,
An HFPO oligomeric acid fluoride of the formula (4) can be obtained. In this case, as the aprotic solvent (aprotic polar solvent), for example, diglyme, tetraglyme, tetrahydrofuran (THF), dimethylformamide (DMF), acetonitrile or the like can be used. In addition, for example, in cesium fluoride (CsF) / tetraglyme system, the reaction condition that maximizes the proportion of trimer is
HFPO / CsF molar ratio 103, CsF / H 2 O molar ratio 2.83, HFPO
At a feed rate of 1.57 g / min, a reaction temperature of -5 to 0 ° C., and a reaction time of about 216 hours.
The distribution of the produced oligomers is about 34%, the dimers are 34%, the trimers are 52%, and the tetramers are 12%. These oligomeric acid fluorides have a boiling point difference of about 50 ° C. and can be easily separated by rectifying.
のエステル化反応は分離したオリゴマー酸フッ化物を
冷却下過剰のメタノール中に滴下することにより、瞬時
に反応は完結する。精製・分離は大過剰の水に注ぎ分液
し、中和、水洗後蒸溜して行なうことができる。In the esterification reaction of (1), the separated oligomeric acid fluoride is dripped into excess methanol under cooling to instantly complete the reaction. Purification / separation can be performed by pouring into a large excess of water for liquid separation, neutralization, washing with water, and distillation.
なお、HFPOのオリゴマー化後、このオリゴマーを過剰の
アルコールに注ぎ、エステル化し、同様の処理をした
後、精留することにより(3)式のエステルの各オリゴマ
ー体に分離することもできる。After the oligomerization of HFPO, the oligomer may be poured into excess alcohol, esterified, treated in the same manner, and then rectified to separate each oligomer of the ester of formula (3).
のカルビノール化は、グリニャール試薬を反応させる
ことにより行なうもので、これによって(2)式の新規な
3級アルコールを得ることができる。The carbinolation of is carried out by reacting a Grignard reagent, whereby a novel tertiary alcohol of the formula (2) can be obtained.
この場合、(3)式のエステルをエチルエーテル溶液等に
溶解し、この溶液を(3)式のエステルに対して2〜3
倍、好ましくは2.1〜2.5倍モル量のメチルグリニャール
試薬をエチルエーテル中で調製した液に、反応温度0〜
35℃、好ましくは20〜30℃で滴下して、原料のエ
ステルが消失するまで反応させることができる。反応温
度が20〜30℃では、この反応は1時間未満で完結す
る。In this case, the ester of the formula (3) is dissolved in an ethyl ether solution or the like, and this solution is added to the ester of the formula (3) for 2 to 3 times.
1 time, preferably 2.1 to 2.5 times the molar amount of methyl Grignard reagent in a solution prepared in ethyl ether, at a reaction temperature of 0 to
It can be added dropwise at 35 ° C., preferably 20 to 30 ° C., and reacted until the starting ester disappears. When the reaction temperature is 20 to 30 ° C, the reaction is completed in less than 1 hour.
なお、(4)式の酸フッ化物にメチルグリニャール試薬を
直接反応させても(2)式の3級アルコールを得ることが
できる。The tertiary alcohol of the formula (2) can be obtained by directly reacting the acid Grignard reagent of the formula (4) with a methyl Grignard reagent.
の脱水は、(2)式の3級アルコールを脱水するもの
で、これによって(1)式の本発明の目的化合物を合成す
るが、この脱水反応では(2)式の3級アルコールに対し
て95%硫酸3〜20倍モル、好ましくは4〜7倍モル
を用い、温度100〜200℃、好ましくは130〜160℃
で数時間反応させる条件で行なうことができる。The dehydration of (3) dehydrates the tertiary alcohol of the formula (2), and the target compound of the present invention of the formula (1) is synthesized by this dehydration reaction. 95% sulfuric acid 3 to 20 times mol, preferably 4 to 7 times mol, temperature 100 to 200 ° C, preferably 130 to 160 ° C
The reaction can be carried out for several hours under the conditions described above.
ここで、従来、下記の反応スキームが知られている。Here, conventionally, the following reaction schemes are known.
′カルビノール化 ′脱水 この場合、′のカルビノール化反応では、メチル及び
イソプロピルの混合グリニャール試薬を必要とし、しか
も還元剤として作用するイソプロピルグリニャール試薬
は理論量の1.5倍以上必要であり、また、目的生成物を
選択的に合成するためには反応温度を十分制御しなけれ
ばならず、その上反応時間も一昼夜以上の長時間を要す
る。更に、′の脱水反応では、(b)のアルコールから
の脱水が困難で、五酸化二リンと300〜400℃の高
温を必要とする。このように、上記(a),(b)のオリゴエ
ーテルは工業生産上多くの不利があり、生産コスト高を
招いていた。′ Carbinol conversion 'dehydration In this case, in the carbinolation reaction of ', a mixed Grignard reagent of methyl and isopropyl is required, and the isopropyl Grignard reagent acting as a reducing agent is required to be 1.5 times or more of the theoretical amount. For the synthesis, the reaction temperature must be controlled sufficiently, and the reaction time also requires a long time of one day or more. Furthermore, in the dehydration reaction of ', it is difficult to dehydrate from the alcohol of (b), and diphosphorus pentoxide and a high temperature of 300 to 400 ° C are required. As described above, the oligoethers (a) and (b) described above have many disadvantages in industrial production, resulting in high production cost.
これに対し、本発明では(3)式のエステルから(2)式の3
級アルコールを得ることができるが、これを従来の上述
した(b)の2級アルコールを製造する場合と比較する
と、本発明に係る3級アルコールはイソプロピルグリニ
ャール試薬が不要であり、また、反応温度の制御はシビ
アではなく、室温で行なうことができ、(b)の2級アル
コール製造では反応時間も一昼夜以上必要とするのに対
し、本発明では1時間程度で反応が完結し、更に、選択
率良く3級アルコールが得られるため分離精製が容易で
あり、従って、工業生産上非常に有利に製造でき、コス
ト低減を図ることができるものである。On the other hand, in the present invention, from the ester of the formula (3),
Although a primary alcohol can be obtained, the tertiary alcohol according to the present invention does not require an isopropyl Grignard reagent and the reaction temperature is higher than that in the conventional production of the secondary alcohol (b). Can be carried out at room temperature rather than severely, and the reaction time of the secondary alcohol production of (b) requires one day or more, whereas in the present invention, the reaction is completed in about 1 hour, and Since the tertiary alcohol can be obtained with good efficiency, separation and purification are easy, and therefore, the production can be very advantageous in industrial production, and the cost can be reduced.
しかも、(2)式の3級アルコールは下記脱水反応 が、従来の(b)式の2級アルコールを脱水する場合に3
00〜400℃の高温でしかも五酸化二リンを必要とす
るのに対し、150℃程度で安価な濃硫酸を使用して容
易にかつ高収率で進行するものであるため、本発明の
(1)式の末端イソプロペニル基を有する新規なHFPOのオ
リゴエーテルは工業的有利に製造でき、低コストであ
る。Moreover, the tertiary alcohol of the formula (2) is the following dehydration reaction. However, when dehydrating the conventional secondary alcohol of the formula (b), 3
While it requires diphosphorus pentoxide at a high temperature of 00 to 400 ° C., it proceeds easily and in high yield by using inexpensive concentrated sulfuric acid at about 150 ° C.
The novel oligoether of HFPO having the terminal isopropenyl group of the formula (1) can be produced industrially advantageously and is low in cost.
本発明の末端イソプロペニル基を有する新規なHFPOのオ
リゴエーテルは、テトラフルオロエチレンやビニリデン
フロライド等の単独重合性モノマーと共重合して、これ
らモノマーの単独重合体の耐熱性、化学的安定性、非粘
着性、撥水撥油性などを維持し、溶融成形を容易にする
ことができる。The novel HFPO oligoether having a terminal isopropenyl group of the present invention is copolymerized with a homopolymerizable monomer such as tetrafluoroethylene or vinylidene fluoride, and the heat resistance and chemical stability of the homopolymer of these monomers. , Non-adhesiveness, water repellency and oil repellency can be maintained, and melt molding can be facilitated.
また、この(1)式の化合物と で示されるシランとをヒドロシリル化反応させることに
より、下記一般式(6) (式中nは1〜4、xは0〜3の整数である) で示される新規な含フッ素有機ケイ素化合物が得られ
る。Also, with the compound of formula (1) By a hydrosilylation reaction with a silane represented by the following general formula (6) (Wherein n is 1 to 4 and x is an integer of 0 to 3), a novel fluorine-containing organosilicon compound is obtained.
このヒドロシリル化反応は、オートクレーブ中式(1)の
化合物に対してクロロシランを1.1〜1.5倍モル使用する
と共に、白金触媒1×10-5〜5×10-3モル使用し、
80〜150℃で1〜5日間反応させることが好適であ
る。In this hydrosilylation reaction, chlorosilane is used in an autoclave in an amount of 1.1 to 1.5 times the amount of the compound of the formula (1), and platinum catalyst of 1 × 10 −5 to 5 × 10 −3 moles is used.
It is preferable to react at 80 to 150 ° C. for 1 to 5 days.
この含フッ素化合物は、クロロシランの反応性とフルオ
ロカーボンの特性とを兼備し、有機樹脂、シリコーンオ
イルコンパウンド及びシリコーンゴム等に配合されるシ
リカ表面に存在する 基のシリカ処理剤、種々の半導体デバイスの生産工程に
おけるレジスト等の密着性向上剤、光学レンズ、眼鏡レ
ンズ、ガラス器具等のガラス表面に撥水撥油性及び防汚
性を付与するための表面処理剤としても有効に使用され
ると共に、他方該化合物から得られるポリシロキサンは
低温特性も良好で、耐熱性、撥水撥油性及び防汚性の特
性がある。This fluorine-containing compound has both the reactivity of chlorosilane and the properties of fluorocarbon, and is present on the surface of silica compounded in organic resins, silicone oil compounds, silicone rubber, etc. -Based silica treatment agent, adhesion improver for resists in various semiconductor device production processes, surface treatment for imparting water and oil repellency and stain resistance to the glass surface of optical lenses, spectacle lenses, glassware, etc. In addition to being effectively used as an agent, the polysiloxane obtained from the compound also has good low-temperature properties, and has heat resistance, water / oil repellency and antifouling properties.
以上説明したように、本発明の(1)式で示される末端イ
ソプロペニル基を有する新規なヘキサフルオロプロペン
オキシドオリゴエーテル誘導体は、工業的有利に製造し
得る低コストの新規なオリゴエーテル誘導体であり、ま
たそれ自体で広い用途を有するだけでなく、上記(6)式
で示される新規な含フッ素有機ケイ素化合物の合成中間
体としても有用である。As described above, the novel hexafluoropropene oxide oligoether derivative having a terminal isopropenyl group represented by the formula (1) of the present invention is a low-cost novel oligoether derivative which can be industrially produced advantageously. In addition to having a wide range of uses per se, it is also useful as a synthetic intermediate for the novel fluorine-containing organosilicon compound represented by the above formula (6).
以下に実施例を挙げて本発明を具体的に説明するが、本
発明は下記実施例に制限されるものではない。Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the following Examples.
〔実施例1〕 内容積3の乾燥した4つ口フラスコに削り状マグネシ
ウム36g(1.5モル)及び乾燥したエチルエーテル2
00mlを仕込んだ後、滴下ロートからヨウ化メチル(CH3
I)230g(1.5モル)のエチルエーテル(300ml)
溶液をゆっくり還流する速度で約4時間かけて滴下し
た。[Example 1] In a dry four-necked flask having an internal volume of 3, 36 g (1.5 mol) of shaving magnesium and 2 parts of dried ethyl ether were added.
After charging 00 ml, methyl iodide (CH 3
I) 230 g (1.5 mol) of ethyl ether (300 ml)
The solution was added dropwise at a rate of slow reflux over about 4 hours.
次いで、このフラスコをアイスバス中に入れ、冷却した
後、下記式 で示されるエステル302g(純度97%,0.59モル)
のエチルエーテル(500ml)溶液を反応溶液の温度を
10〜20℃に保ちながら滴下ロートより1時間かけて
滴下し、更に約10℃で1時間撹拌した。Then, after placing this flask in an ice bath and cooling, the following formula 302g of ester (purity 97%, 0.59mol)
While maintaining the temperature of the reaction solution at 10 to 20 ° C, the ethyl ether (500 ml) solution of was added dropwise from the dropping funnel over 1 hour, and further stirred at about 10 ° C for 1 hour.
次に反応溶液を冷飽和塩化アンモニウム500mlに注
ぎ、更に5N−塩酸で溶液を酸性側とした。層に分かれ
た反応溶液のうち下層の有機層を分離し、上層の水層を
エチルエーテルで2度抽出し、これを有機層と合わせた
後、この有機層を飽和炭酸水素ナトリウム、飽和食塩水
の順序で洗條し、次に硫酸マグネシウムで乾燥した。Next, the reaction solution was poured into 500 ml of cold saturated ammonium chloride, and the solution was acidified with 5N-hydrochloric acid. The lower organic layer of the reaction solution separated into layers was separated, the upper aqueous layer was extracted twice with ethyl ether, and this was combined with the organic layer, and the organic layer was saturated sodium hydrogen carbonate and saturated saline. Was washed in this order and then dried over magnesium sulfate.
次いで、溶媒を留去し、得られた反応生成物を減圧蒸溜
し、沸点84〜85℃/32mmHgにおける留分として下
記式 で示される3級アルコール245g(純度97%,収率
79%)を得た。Then, the solvent was distilled off, and the obtained reaction product was distilled under reduced pressure to obtain a fraction represented by the following formula at a boiling point of 84 to 85 ° C./32 mmHg. 245 g of tertiary alcohol (purity 97%, yield 79%) was obtained.
この3級アルコールについて元素分析及びGC−MS分析を
行ない、また、赤外線吸収スペクトル及び1H−NMRスペ
クトルを測定した。結果を次に示す。This tertiary alcohol was subjected to elemental analysis and GC-MS analysis, and infrared absorption spectrum and 1 H-NMR spectrum were measured. The results are shown below.
元素分析: GC−MS:m/e(M+) 分子量510 赤外線スペクトル: 波数3640、3470cm-1に−OH基に由来するピークが観察さ
れた。1 H−NMRスペクトル: 溶媒:DMSO−d6/CCl4 内部標準:TMS δ(ppm):4.27(s,1H,-OH) 2.70(s,6H,2×CH3) 次いで、内容積0.5のフラスコに単蒸留セットを組み
立て、フラスコに、上記3級アルコール158g(0.30
モル)、95%濃度の硫酸200g(1.94モル)及び重
合禁止剤としてt−ブチルハイドロキノン(TBHQ)0.25g
を仕込み、150℃で4時間撹拌した後、同一温度で有
機物を減圧下で留出させた。Elemental analysis: GC-MS: m / e (M + ), molecular weight 510, infrared spectrum: peaks derived from the —OH group were observed at wave numbers 3640 and 3470 cm −1 . 1 H-NMR spectrum: Solvent: DMSO-d 6 / CCl 4 Internal standard: TMS δ (ppm): 4.27 (s, 1H, -OH) 2.70 (s, 6H, 2 × CH 3 ) Then, with an internal volume of 0.5 Assemble the simple distillation set in the flask, and put 158 g (0.30
Mol), 200 g (1.94 mol) of 95% strength sulfuric acid and 0.25 g of t-butyl hydroquinone (TBHQ) as a polymerization inhibitor.
Was charged, and the mixture was stirred at 150 ° C. for 4 hours, and then organic matter was distilled off under reduced pressure at the same temperature.
留出した有機層を飽和炭酸水素ナトリウム、次いで飽和
食塩水で洗浄した後、硫酸マグネシウムを加えて乾燥し
た。The distilled organic layer was washed with saturated sodium hydrogen carbonate and then with saturated saline, and magnesium sulfate was added to dry it.
この有機層を蒸留し、沸点147〜148℃における留
分として下記式 で示されるアルケン128g(収率85%)を得た。This organic layer was distilled to obtain the following formula as a fraction at a boiling point of 147 to 148 ° C. 128 g (yield 85%) of the alkene represented by
このアルケンについて元素分析及びGC−MS分析を行な
い、また、赤外線吸収スペクトル及び1H−NMRスペクト
ルを測定した。その結果を下記に示す。The alkene was subjected to elemental analysis and GC-MS analysis, and infrared absorption spectrum and 1 H-NMR spectrum were measured. The results are shown below.
元素分析: GC−MS: m/e(M+) 分子量492,M−19 473 赤外線吸収スペクトル: チャートを第1図に示す。第1図のチャートからOH基に
由来する3640、3470cm-1のピークが消失し、新たに1660c
m-1にC=Cに基づくピークが生じたことが観察され
た。1 H−NMRスペクトル: 溶媒:CCl4 内部標準:TMS δ(ppm):5.30〜5.70(m,2H,=CH2) 1.93(s,3H,CH3) 〔参考例1〕 オートクレーブ中、上記アルケン87.4g(0.178モル)、
トリクロロシラン35.0g(0.25モル)及び塩化白金酸の
n−ブタノール変性触媒(白金濃度2.0重量%)1.50g
(1.50×10-4モル)を混合し、110℃で64時間反
応させた(GLCで転化率40%、選択率85%)。反応
終了後、はじめに常圧蒸留して沸点145〜148℃の
留分44.6g(原料のアルケン)を得、次いで減圧蒸留し
たところ、沸点86〜88℃/8mmHgの留分として下記
式で示される化合物40.4g(収率36%)が得られた。Elemental analysis: GC-MS: m / e (M + ) molecular weight 492, M-19 473 Infrared absorption spectrum: A chart is shown in FIG. From the chart in Fig. 1 , the peaks at 3640 and 3470 cm -1 originating from the OH group disappeared, and a new 1660c
It was observed that there was a peak at m -1 based on C = C. 1 H-NMR spectrum: Solvent: CCl 4 Internal standard: TMS δ (ppm): 5.30 to 5.70 (m, 2H, = CH 2 ) 1.93 (s, 3H, CH 3 ) [Reference Example 1] The above alkene in an autoclave 87.4 g (0.178 mol),
Trichlorosilane 35.0 g (0.25 mol) and chloroplatinic acid n-butanol modification catalyst (platinum concentration 2.0% by weight) 1.50 g
(1.50 × 10 −4 mol) were mixed and reacted at 110 ° C. for 64 hours (GLC conversion 40%, selectivity 85%). After completion of the reaction, first, atmospheric distillation was carried out to obtain 44.6 g of a fraction having a boiling point of 145 to 148 ° C (alkene as a raw material), and then distillation under reduced pressure was carried out, and a fraction having a boiling point of 86 to 88 ° C / 8 mmHg was represented by the following formula 40.4 g (yield 36%) of the compound was obtained.
得られた化合物を元素分析及びGC−MS分析に供し、ま
た、この化合物の赤外線スペクトル及び1H−NMRスペク
トルを測定したところ、下記の結果が得られた。 The obtained compound was subjected to elemental analysis and GC-MS analysis, and the infrared spectrum and 1 H-NMR spectrum of this compound were measured. The following results were obtained.
元素分析: GC−MS:m/e 627(M+) IRスペクトル: C=Cに由来する1660cm-1のピークは消失した。1 H−NMRスペクトル: 溶媒;CCl4 内部標準:TMS δ(ppm);5.33(m,1H,CH),3.50(m,2H,CH2) 2.70(m,3H,CH3) 〔実施例2〕 下記式 で示されるエステル104g(0.30モル)をエチルエー
テル150mlに溶解した溶液を、マグネシウム18g
(0.75モル)、ヨウ化メチル115g(0.75モル)、エ
チルエーテル150mlを用いて実施例1と同様に調製し
たCH3MgI溶液中に滴下し、室温で2時間反応させた後、
実施例1と同様に処理、精製した。Elemental analysis: GC-MS: m / e 627 (M + ) IR spectrum: The peak at 1660 cm −1 derived from C═C disappeared. 1 H-NMR spectrum: solvent; CCl 4 internal standard: TMS δ (ppm); 5.33 (m, 1H, CH), 3.50 (m, 2H, CH 2 ) 2.70 (m, 3H, CH 3 ) [Example 2 ] The following formula A solution obtained by dissolving 104 g (0.30 mol) of the ester represented by in 150 ml of ethyl ether was added with 18 g of magnesium.
(0.75 mol), 115 g (0.75 mol) of methyl iodide and 150 ml of ethyl ether were added dropwise to a CH 3 MgI solution prepared in the same manner as in Example 1 and reacted for 2 hours at room temperature,
The same treatment and purification as in Example 1 were carried out.
次に、得られた反応生成物を蒸留し、沸点133〜13
5℃における留分として下記式 で示される3級アルコール84g(収率81%)を得
た。Next, the obtained reaction product is distilled to give a boiling point of 133 to 13
The following formula for the fraction at 5 ° C 84 g (yield 81%) of the tertiary alcohol represented by
この3級アルコールについて元素分析及びGC−MS分析を
行ない、また、赤外線吸収スペクトル及び1H−NMRスペ
クトルを測定した。結果を次に示す。This tertiary alcohol was subjected to elemental analysis and GC-MS analysis, and infrared absorption spectrum and 1 H-NMR spectrum were measured. The results are shown below.
元素分析: GC−MS:m/e(M+) 344 赤外線吸収スペクトル: 3650、3450cm-1に−OHに由来するピークが測定された。1 H−NMRスペクトル: 溶媒:CCl4 内部標準:TMS δ(ppm):2.47(s,1H,OH) 1.40(s,6H,2×CH3) 次いで、実施例1と同一の装置を用い、95%濃度の硫
酸250g(2.42モル)に、上で得られた3級アルコー
ル82g(0.24モル)を加えて110〜120℃で5時
間強く撹拌した。次いで、同様な方法で留出、洗浄、乾
燥を行なった後、得られた反応生成物を蒸留し、沸点9
6℃における留分として下記式 で示される2−メチル−3−トリフルオロメチル−4−
オキサ−3,5,5,6,6,7,7,7−オクタフルオロペンテン−
1 73g(収率93%)を得た。Elemental analysis: GC-MS: m / e (M + ) 344 Infrared absorption spectrum: A peak derived from -OH was measured at 3650 and 3450 cm -1 . 1 H-NMR spectrum: Solvent: CCl 4 Internal standard: TMS δ (ppm): 2.47 (s, 1H, OH) 1.40 (s, 6H, 2 × CH 3 ) Then, using the same apparatus as in Example 1, To 250 g (2.42 mol) of 95% sulfuric acid was added 82 g (0.24 mol) of the tertiary alcohol obtained above, and the mixture was vigorously stirred at 110 to 120 ° C for 5 hours. Next, after distilling, washing and drying in the same manner, the obtained reaction product is distilled to obtain a boiling point of 9
The following formula for the fraction at 6 ° C 2-methyl-3-trifluoromethyl-4-
Oxa-3,5,5,6,6,7,7,7-octafluoropentene-
173 g (yield 93%) was obtained.
この化合物について実施例1と同様に元素分析及びGC−
MS分析を行ない、また、赤外線吸収スペクトル及び1H−
NMRスペクトルを測定した。その結果を下記に示す。This compound was subjected to elemental analysis and GC-in the same manner as in Example 1.
MS analysis, infrared absorption spectrum and 1 H-
The NMR spectrum was measured. The results are shown below.
元素分析: GC−MS:m/e(M+) 326 赤外線吸収スペクトル: チャートを第2図に示す。このチャートからOH基に由来
する3650、3450cm-1のピークが消失し、新たに1660cm-1
にC=Cに基づくピークが生じたことが観察された。1 H−NMRスペクトル: 溶媒:CCl4 内部標準:TMS δ(ppm):5.30〜5.60(m,2H,=CH2) 1.90(s,3H,CH3) 〔参考例2〕 オートクレーブ中、上で得られた化合物65g(0.20モ
ル)、トリクロロシラン35g(0.25モル)及び塩化白
金酸のn−ブタノール変性触媒(白金濃度2.0重量%)
0.90g(9.2×10-5モル)を混合し、110℃で64
時間反応させた(GLCで転化率92%、選択率98
%)。反応終了後、はじめ常圧蒸留して沸点93〜98
℃の留分22.0g(原料のアルケン)を得、次いで減圧蒸
留したところ、沸点66〜67℃/10mmHgにおける留
分として下記式の化合物47.8g(収率50%)が得られ
た。Elemental analysis: GC-MS: m / e (M + ) 326 Infrared absorption spectrum: A chart is shown in FIG. Derived from this chart OH groups 3650,3450cm peaks -1 disappeared, new 1660 cm -1
It was observed that a peak based on C = C was generated at. 1 H-NMR spectrum: Solvent: CCl 4 Internal standard: TMS δ (ppm): 5.30 to 5.60 (m, 2H, = CH 2 ) 1.90 (s, 3H, CH 3 ) [Reference Example 2] In the autoclave, above 65 g (0.20 mol) of the obtained compound, 35 g (0.25 mol) of trichlorosilane and an n-butanol modification catalyst of chloroplatinic acid (platinum concentration 2.0% by weight)
Mix 0.90 g (9.2 x 10 -5 mol) and mix at 110 ° C for 64
Reaction was carried out for a time (GLC conversion 92%, selectivity 98
%). After completion of the reaction, first, atmospheric distillation is carried out to give a boiling point of 93 to 98.
After obtaining 22.0 g of a distillate at a temperature of ℃ (alkene as a raw material) and then performing vacuum distillation, 47.8 g of a compound of the following formula (yield 50%) was obtained as a distillate at a boiling point of 66 to 67 ° C./10 mmHg.
得られた化合物を元素分析及びGC−MS分析に供し、ま
た、この化合物の赤外線スペクトル及び1H−NMRスペク
トルを測定したところ、下記の結果が得られた。 The obtained compound was subjected to elemental analysis and GC-MS analysis, and the infrared spectrum and 1 H-NMR spectrum of this compound were measured. The following results were obtained.
元素分析: GC−MS:m/e 461(M+) IRスペクトル: C=Cに由来する1660cm-1のピークは消失した。1 H−NMRスペクトル 溶媒;CCl4 内部標準;TMS δ(ppm);5.66(m,1H, ),3.80(m,2H,CH2=), 2.83(m,3H,CH3)Elemental analysis: GC-MS: m / e 461 (M + ) IR spectrum: The peak at 1660 cm -1 derived from C = C disappeared. 1 H-NMR spectrum Solvent; CCl 4 internal standard; TMS δ (ppm); 5.66 (m, 1H, ), 3.80 (m, 2H, CH 2 =), 2.83 (m, 3H, CH 3 )
第1図乃至第2図はそれぞれ実施例1〜2の目的化合物
の赤外線吸収スペクトルである。1 and 2 are infrared absorption spectra of the target compounds of Examples 1 and 2, respectively.
Claims (2)
ロプロペンオキシドオリゴエーテル誘導体。1. The following formula (1) (In the formula, n is an integer of 1 to 4.) A hexafluoropropene oxide oligoether derivative having a terminal isopropenyl group represented by:
フルオロプロペンオキシドオリゴエーテル誘導体を脱水
して請求項1記載の(1)式で示される誘導体を得ること
を特徴とする末端イソプロペニル基を有するヘキサフル
オロプロペンオキシドオリゴエーテル誘導体の製造方
法。2. The following formula (2) (In the formula, n represents an integer of 1 to 4.) A hexafluoropropene oxide oligoether derivative having a terminal dimethylcarbinol group represented by the formula is dehydrated to obtain the derivative represented by the formula (1). A process for producing a hexafluoropropene oxide oligoether derivative having a terminal isopropenyl group, which comprises:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13358089A JPH0623121B2 (en) | 1989-05-26 | 1989-05-26 | Hexafluoropropene oxide oligoether derivative having terminal isopropenyl group and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13358089A JPH0623121B2 (en) | 1989-05-26 | 1989-05-26 | Hexafluoropropene oxide oligoether derivative having terminal isopropenyl group and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02311439A JPH02311439A (en) | 1990-12-27 |
JPH0623121B2 true JPH0623121B2 (en) | 1994-03-30 |
Family
ID=15108134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13358089A Expired - Lifetime JPH0623121B2 (en) | 1989-05-26 | 1989-05-26 | Hexafluoropropene oxide oligoether derivative having terminal isopropenyl group and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0623121B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3292074B2 (en) * | 1996-12-19 | 2002-06-17 | 信越化学工業株式会社 | Fluorine-containing amide compound |
-
1989
- 1989-05-26 JP JP13358089A patent/JPH0623121B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02311439A (en) | 1990-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR840000517B1 (en) | Preparation of fluorocarbon ethers having substituted halogen site(s) | |
CA1304415C (en) | Process for the preparation of fluoroalkyl perfluorovinyl ethers | |
CA1210024A (en) | Fluorinated polyether and derivatives thereof | |
US5099053A (en) | Fluorine-containing organic silicon compounds and a manufacturing method thereof | |
CA1133002A (en) | Preparation of monomeric organosilicon esters | |
JP3540822B2 (en) | Method for producing glycerol carbonate | |
JP2563959B2 (en) | Fluorine-containing ether compound and method for producing the same | |
JP4741508B2 (en) | Fluorinated polymer, optical member, electrical member and coating material | |
JPH0623121B2 (en) | Hexafluoropropene oxide oligoether derivative having terminal isopropenyl group and method for producing the same | |
JPH0692957A (en) | Production of fluorine-containing dioxolane compound | |
JPH0623118B2 (en) | Hexafluoropropene oxide oligoether derivative having terminal dimethylcarbinol group and method for producing the same | |
CN109516897A (en) | A kind of synthetic method of octafluoro amyl propylene ether | |
JPH0377892A (en) | Fluorine-containing organic silicon compound and its preparation | |
JPH0439463B2 (en) | ||
US4739123A (en) | Fluorine-containing compounds, and their preparation and use | |
JPH0623120B2 (en) | Oligoether derivative of hexafluoropropylene oxide having vinyl group at one end | |
JPH0428273B2 (en) | ||
JP2503552B2 (en) | Novel fluorinated compound and method for producing the same | |
JPH0377893A (en) | Fluorine-containing cyclic organic silicon compound and its preparation | |
JP2972163B2 (en) | Method for producing alkylhalodifluoroacetate | |
US5214177A (en) | Fluorinated organic silicon compounds and method for making | |
JPH072663B2 (en) | Fluorine-containing compound and method for producing the same | |
CA1180348A (en) | Process to prepare fluorocarbon ethers having substituted halogen site(s) | |
JP2016135803A (en) | Manufacturing method of perfluoroalkenyl oxy group-containing arene compound | |
JP5405515B2 (en) | Method for producing fluorinated compound and fluorinated polymer |