JPH0623423B2 - Method for manufacturing Al-Cu-Mg alloy soft material - Google Patents
Method for manufacturing Al-Cu-Mg alloy soft materialInfo
- Publication number
- JPH0623423B2 JPH0623423B2 JP59098238A JP9823884A JPH0623423B2 JP H0623423 B2 JPH0623423 B2 JP H0623423B2 JP 59098238 A JP59098238 A JP 59098238A JP 9823884 A JP9823884 A JP 9823884A JP H0623423 B2 JPH0623423 B2 JP H0623423B2
- Authority
- JP
- Japan
- Prior art keywords
- soft material
- alloy
- less
- cooling rate
- average
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Conductive Materials (AREA)
Description
【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明は、アルミニウム合金展伸材の製造方法に関する
もので、更に詳しくは、Al-Cu-Mg系合金軟質材の製造方
法に関するものである。The present invention relates to a method for producing an aluminum alloy wrought material, and more particularly to a method for producing an Al-Cu-Mg alloy soft material. It is a thing.
(従来の技術) 一般に高力アルミニウム合金は成形加工性が劣るため軟
質材の状態で加工し施し、その後、溶体化、焼入れ処理
を行なう。本願発明の対象であるAl-Cu-Mg系合金、たと
えばJIS A 2024,2017,2014なども、その例にもれない。(Prior Art) Generally, since a high-strength aluminum alloy is inferior in formability, it is processed in the state of a soft material, and then solution treatment and quenching are performed. Al-Cu-Mg alloys, such as JIS A 2024, 2017, 2014, which are the subject of the present invention, are not examples.
この軟質材の製造法として従来からバッチ炉による焼鈍
が行なわれてきたが、この場合加熱速度が遅い(50℃/H
r未満)ために軟質材の結晶粒は粗大化し、成形性は低
下する。さらに、焼入処理後焼入処理による歪を矯正す
るために若干の加工を行なう際にも、結晶粒が大きいと
肌荒れや微小な割れが発生する。特に軟質材で加工率10
〜30%の低加工を受けた部分は、その後の溶体化・焼入
れ工程で著しく粗大な再結晶粒組織となりこの歪矯正の
際に肌荒れ、微小割れがおこり製品の外観品質上大きな
問題となる。As a method of manufacturing this soft material, annealing in a batch furnace has been conventionally performed, but in this case, the heating rate is slow (50 ° C / H
(less than r), the crystal grains of the soft material are coarsened and the formability is lowered. Further, when a slight amount of work is performed after the quenching process to correct the distortion due to the quenching process, roughening of the surface and minute cracks occur if the crystal grains are large. Processing rate of 10 especially for soft materials
The portion that has undergone a low processing of -30% becomes a remarkably coarse recrystallized grain structure in the subsequent solution heat treatment and quenching process, and roughening and microcracking occur during this strain correction, which is a serious problem in the appearance quality of the product.
(発明が解決しようとする問題点) 本発明は上記したようなAl-Cu-Mg系合金の軟質材の成形
性、及び溶体化処理時の結晶粒粗大化等について、軟質
材の製造法の点から解決を図らんとするものである。(Problems to be solved by the invention) The present invention relates to the formability of the soft material of the Al-Cu-Mg alloy as described above, and the crystal grain coarsening at the time of solution treatment. The point is to solve the problem.
すなわち、軟質材の状態で結晶粒が微細であり、かつ伸
び、エリクセン値等で表わされる成形性が良好でさらに
この状態でどんな加工率の冷間加工を受けてもその後の
溶体化処理によって再結晶粒が粗大にならないAl-Cu-Mg
系合金材の製造法を提供するものである。That is, in the soft material state, the crystal grains are fine, and the formability represented by elongation, Erichsen value, etc. is good, and even if cold working at any processing rate is performed in this state, it is re-processed by the solution treatment. Al-Cu-Mg where crystal grains do not become coarse
A method for manufacturing a base alloy material is provided.
発明の構成 (問題点を解決するための手段) 本発明におけるAl-Cu-Mg系合金軟質材の製造法は、軟質
への調質に、パッチ炉でなく、いわゆる連続焼鈍炉を用
いることを念願においてもので、 1.Cu1.0〜6.0%(重量%、以下同じ)、Mg0.1〜2.0
%、必要に応じてさらにMn0.01〜1.2%、Si0.01〜1.2
%、Cr0.005〜0.3%、Ti0.005〜0.15%、Zr0.005〜0.20
%のうち1種または2種以上を含有し、残部不可避的不
純物とAlとよりなる合金鋳塊を常法に従って塑性加工し
所定の寸法とした材料を、325〜430℃の温度に平均11℃
/min (分の意味以下同じ)よりはやい昇温速度で急速
に加熱し軟化させ、その後平均30℃/Hr (時間の意味、
以下同じ)未満の冷却速度で冷却することを特徴とする
成形性の優れたAl-Cu-Mg系合金軟質材の製造方法。Configuration of the Invention (Means for Solving the Problems) The method for producing the Al-Cu-Mg alloy soft material in the present invention is to use a so-called continuous annealing furnace, not a patch furnace, for the softening. In the long-cherished desire, 1. Cu1.0-6.0% (weight%, same below), Mg0.1-2.0
%, If necessary Mn0.01-1.2%, Si0.01-1.2
%, Cr 0.005-0.3%, Ti 0.005-0.15%, Zr 0.005-0.20
% Of 1% or 2% or more, and the alloy ingot composed of the balance unavoidable impurities and Al is plastically processed into a predetermined size by a conventional method, and the average temperature is 11 ° C at a temperature of 325 to 430 ° C.
/ Min (meaning the same below for minutes) at a faster heating rate to soften rapidly and then average 30 ℃ / Hr (meaning time,
The same applies hereinafter), a method for producing an Al-Cu-Mg alloy soft material having excellent formability, which comprises cooling at a cooling rate of less than.
2.Cu1.0〜6.0%、Mg0.1〜2.0%、必要に応じてさらに
Mn0.01〜1.2%、Si0.01〜1.2%、Cr0.005〜0.3%、Ti0.
005〜0.15%、Zr0.005〜0.20%のうち1種または2種以
上を含有し、残部不可避的不純物とAlとよりなる合金鋳
塊を常法に従って塑性加工し所定の寸法とした材料を、
325〜430℃の温度に平均11℃/min よりはやい昇温速度
で急速に加熱し軟化させ、その後平均30℃/Hr 以上の冷
却速度で冷却し、さらに250〜430℃に加熱し24時間以内
保持し平均30℃/Hr 未満の冷却速度で冷却することを特
徴とする成形性の優れたAl-Cu-Mg系合金軟質材の製造方
法。2. Cu1.0-6.0%, Mg0.1-2.0%, further as needed
Mn0.01-1.2%, Si0.01-1.2%, Cr0.005-0.3%, Ti0.
A material containing one or more of 005 to 0.15% and Zr0.005 to 0.20%, and plastically working an alloy ingot made of the balance unavoidable impurities and Al into a predetermined size by an ordinary method,
Rapidly heats to a temperature of 325 to 430 ° C at a heating rate faster than 11 ° C / min to soften, then cools at an average cooling rate of 30 ° C / Hr or more, and further heats to 250 to 430 ° C within 24 hours. A method for producing an Al-Cu-Mg-based alloy soft material having excellent formability, which comprises holding and cooling at an average cooling rate of less than 30 ° C / Hr.
である。Is.
(作用) 以下本願発明の構成についてその作用とともに詳述す
る。(Operation) The structure of the present invention will be described in detail below together with its operation.
対象となる合金は、硬化要素としてθ相(CuAl2)、s相
(CuMgAl2)を含むAl-Cu-Mg系合金であり、前述のJIS A 2
024,2117,2014などが含まれるがこれらに限定しれるも
のではない。The target alloys are θ phase (CuAl 2 ) and s phase as hardening factors.
(CuMgAl 2 ), which is an Al-Cu-Mg-based alloy containing JIS A 2
024,2117,2014 and the like are included, but are not limited to these.
組成範囲を具体的に示せば、必須成分として、Cu1.0〜
6.0%(重量%、以下同じ)、Mg0.1〜2.0%、必要に応
じてさらにMn0.01〜1.2%、Si0.01〜1.2%、Cr0.005〜
0.3%、Ti0.005〜0.15%、Zr0.005〜0.20%のうち1種
または2種以上を含有し、残部不可避的不純物とAlとよ
りなる合金である。If the composition range is specifically shown, as an essential component, Cu1.0 ~
6.0% (wt%, same below), Mg0.1-2.0%, Mn0.01-1.2%, Si0.01-1.2%, Cr0.005-
This alloy contains 0.3%, 0.005 to 0.15% of Ti, and 0.005 to 0.20% of Zr and contains one or more kinds, and the balance is unavoidable impurities and Al.
これらの合金成分の添加理由を説明する。The reason for adding these alloy components will be described.
Cu:Cuは強度を付与する元素であり、含有量が、1.0%
未満ではT4,T6処理後の強度が低下し、また6.0%をこ
えて含有されると晶出物が増加しT4,T6処理後の靭性や
伸びが低下する。よってCu含有量は1.0〜6.0%とする。Cu: Cu is an element that imparts strength, and its content is 1.0%.
If it is less than 6.0%, the strength after T4 and T6 treatment will decrease, and if it exceeds 6.0%, the amount of crystallized substances will increase and the toughness and elongation after T4 and T6 treatment will decrease. Therefore, the Cu content is 1.0 to 6.0%.
Mg:Mgは強度を付与する元素であり、含有量が、0.1%
未満ではT4,T6処理後の強度が低下し、また2.0%をこ
えて含有されるとT4,T6処理後の靭性や伸びが低下す
る。よってMg含有量は0.1〜2.0%とする。Mg: Mg is an element that gives strength, and its content is 0.1%.
If the content is less than T4, the strength after T6 treatment will decrease, and if it exceeds 2.0%, the toughness and elongation after T4 and T6 treatment will decrease. Therefore, the Mg content is 0.1 to 2.0%.
以下は、必要に応じて含有する成分である。The following are the components to be contained as necessary.
Mn:Mnは組織を安定化する元素であり、かつ強度を付与
する元素である。含有量が0.01%未満ではこの効果がな
く、また1.2%をこえて含有されると効果が飽和し、か
つ巨大晶出物を生じる。よってMn含有量は0.01〜1.2%
とする。Mn: Mn is an element that stabilizes the structure and imparts strength. If the content is less than 0.01%, this effect does not occur, and if it exceeds 1.2%, the effect is saturated and large crystallized substances are formed. Therefore, the Mn content is 0.01-1.2%
And
Si:Siは強度を付与する元素であり、含有量が、0.01%
未満ではこの効果がなく、1.2%をこえて含有される
と、T4・T6処理後の靭性が低下する。よってSi含有量
は、0.01〜1.2%とする。Si: Si is an element that imparts strength, and its content is 0.01%.
If it is less than 1.2%, this effect does not occur, and if it exceeds 1.2%, the toughness after T4 / T6 treatment decreases. Therefore, the Si content is 0.01 to 1.2%.
ただし、それほどの強度を必要としない場合や他の元素
の含有で強度レベルを維持できる場合には、Siの含有は
必須ではなく、この場合不可避的不純物として扱う。However, when the strength is not required so much or when the strength level can be maintained by containing other elements, the Si content is not essential, and in this case, it is treated as an unavoidable impurity.
Cr:Crは組織を安定化する元素であり、かつ強度を付与
する元素である。含有量が0.005%未満ではこの効果が
なく、また0.3%をこえて含有されると巨大晶出物を生
じる。よってCr含有量は、0.005〜0.3%とする。Cr: Cr is an element that stabilizes the structure and imparts strength. If the content is less than 0.005%, this effect does not occur, and if it exceeds 0.3%, large crystallized substances are produced. Therefore, the Cr content is 0.005 to 0.3%.
Ti:Tiは鋳塊組織を微細化する元素であり、含有量が0.
005%未満ではこの効果がなく、0.15%をこえて含有さ
れると巨大晶出物を生じる。よってTi含有量は、0.005
〜0.15%とする。Ti: Ti is an element that refines the ingot structure, and its content is 0.
If it is less than 005%, this effect does not exist, and if it exceeds 0.15%, a large crystallized substance is formed. Therefore, the Ti content is 0.005
~ 0.15%
Zr:Zrは鋳塊組織を微細化し組織を安定化する元素であ
り、含有量が0.005%未満ではこの効果がなく、0.20%
をこえて含有されると巨大晶出物を生じる。よってZr含
有量は、0.005〜0.20%とする。Zr: Zr is an element that refines the ingot structure and stabilizes the structure. If the content is less than 0.005%, this effect does not occur and 0.20%
If it is contained in excess of 100 g, a large crystallized substance is produced. Therefore, the Zr content is set to 0.005 to 0.20%.
尚、不可避的不純物としてのFe,Siは0.5%まで許容さ
れる。Fe and Si as inevitable impurities are allowed up to 0.5%.
次に、上記組成を有する合金鋳塊を常法に従って塑性加
工し所定の寸法とする。Next, the alloy ingot having the above composition is plastically worked into a predetermined size by an ordinary method.
すなわち、鋳塊に熱間加工を施し、あるいはその後さら
に冷間加工を施すことにより所定の寸法にするわけであ
るが、熱間加工のために鋳塊を加熱し、あるいはその前
にさらに均熱処理をすることが多い。この均熱処理は、
Cu,Mg,Siの固溶及びMn,Cr,Zr,Tiの析出を目的とす
るもので、塊鋳を400〜520℃で2〜48時間熱処理する。
400℃未満の温度では効果が充分でなく、520℃をこえる
と局部溶解が発生する。また、加熱も 400℃未満では熱
間加工性が低下し、520℃をこえると局部溶解が発生す
るので、 400〜520℃で熱処理する。That is, the ingot is subjected to hot working, or further cold working to obtain a predetermined size, but the ingot is heated for hot working, or before soaking. Often. This soaking is
The purpose is to form a solid solution of Cu, Mg and Si and to precipitate Mn, Cr, Zr and Ti. Ingot casting is heat treated at 400 to 520 ° C for 2 to 48 hours.
At temperatures below 400 ° C, the effect is not sufficient, and above 520 ° C, local melting occurs. Also, if the heating is less than 400 ° C, the hot workability is deteriorated, and if it exceeds 520 ° C, local melting occurs, so heat treatment is performed at 400-520 ° C.
また、冷間加工を施す場合、冷間加工前又は冷間加工の
途中で、350〜500℃で中間焼鈍しても本願発明の効果は
変わらない。Further, when cold working is performed, the effect of the present invention does not change even if intermediate annealing is performed at 350 to 500 ° C. before or during cold working.
このように所定寸法に塑性加工された材料を、325〜430
℃の温度に平均11℃/minよりはやい昇温速度で急速に加
熱し軟化させる。In this way, the material plastically processed to the specified size is
The sample is rapidly heated to a temperature of ℃ at a heating rate faster than 11 ℃ / min to soften it.
加熱温度は、325℃未満では急速加熱時に再結晶が終了
せず加工組織が残るため成形性が低下する。430℃をこ
えた温度では、Mg,Cu,Siの固溶量が多くなり、その後
の冷却により不均一な析出がおこるため、軟質材での成
形性が低下し、さらに加工を受けた部分で次の工程の溶
体化処理時に結晶粒が粗大化してしまう。If the heating temperature is less than 325 ° C., recrystallization does not end during rapid heating and a processed structure remains, resulting in deterioration of formability. At temperatures above 430 ° C, the amount of Mg, Cu, and Si dissolved in solid solution increases, and non-uniform precipitation occurs due to subsequent cooling, which reduces the formability of the soft material and further reduces the workability. The crystal grains become coarse during the solution treatment in the next step.
また昇温速度が、平均11℃/minより小さい場合には、結
晶粒が粗大化して、軟質材での成形性が低下してしま
う。On the other hand, when the rate of temperature increase is less than 11 ° C./min on average, the crystal grains become coarse and the formability of the soft material deteriorates.
次に、本願第1発明では平均30℃/Hr未満の冷却速度で
冷却する。冷却速度が平均30℃/Hr未満の場合には、完
全な軟質材(0材)が得られるので素材の成形性は良好
であるが、冷却速度がこれより大きくなると、焼きが入
り時効硬化するため成形性は低下する。なお、実際には
250℃未満では移行硬化がおこらないから、冷却速度の
管理はこの温度まででよい。Next, in the first invention of the present application, cooling is performed at an average cooling rate of less than 30 ° C./Hr. When the cooling rate is less than 30 ° C / Hr on average, a completely soft material (0 material) is obtained, so the formability of the material is good, but if the cooling rate is higher than this, quenching and age hardening occur. Therefore, the moldability is lowered. In fact,
If the temperature is less than 250 ° C, migration hardening does not occur, so the cooling rate can be controlled up to this temperature.
昇温速度を前記理由から平均11℃/minよりはやくしなく
てはならないので、連続焼鈍炉を用いる場合が多いが、
冷却速度を平均30℃/Hr未満にとるということは通常の
連続焼鈍炉で効率的な生産を行なう場合不可能に近い。
このように冷却速度が平均30℃/Hr以上になってしまう
場合には、本願第2発明の方法をとれば良い。Since the temperature rising rate has to be faster than the average of 11 ° C./min for the above reason, a continuous annealing furnace is often used,
Setting the cooling rate to an average of less than 30 ° C / Hr is almost impossible for efficient production in a normal continuous annealing furnace.
When the average cooling rate is 30 ° C./Hr or more, the method of the second invention of the present application may be used.
すなわち、軟化後平均30℃/Hr以上の冷却速度で冷却
し、さらに250〜430℃に再加熱し24時間以内保持して平
均30℃/Hr未満の冷却速度で冷却する。この再加熱の場
合には昇温速度を管理する必要がないバッチ炉が使え、
そのため、冷却速度を平均30℃/Hr未満とすることがで
きる。That is, after softening, it is cooled at an average cooling rate of 30 ° C./Hr or higher, reheated to 250 to 430 ° C., held for 24 hours, and cooled at an average cooling rate of less than 30 ° C./Hr. In the case of this reheating, you can use a batch furnace that does not need to control the heating rate,
Therefore, the cooling rate can be set to less than 30 ° C./Hr on average.
このように第1段の軟化後の冷却速度がはやい場合で
も、再加熱しその後の冷却速度を遅くすることにより、
結果として成形性の良好なAl-Cu-Mg系合金軟質材を得る
ことができる。Thus, even if the cooling rate after the first stage softening is fast, by reheating and slowing the subsequent cooling rate,
As a result, it is possible to obtain an Al-Cu-Mg alloy soft material having good formability.
なおこの再加熱の温度は、1段目の急速加熱温度より低
い方が、成形性にとってより好ましい。The reheating temperature is preferably lower than the rapid heating temperature in the first step for better moldability.
(実施例) 第1表に示すA,B,Cの3種類の合金を半連続鋳造
し、その鋳塊に、490℃×10Hr の均熱処理を施した後、
460℃×3Hr の加熱を施し、熱間圧延を施し板厚4mmに
し、バッチ炉で370℃×3Hr の中間焼鈍を施し、冷間圧
延して板厚0.8mmの板材とした。(Example) After semi-continuously casting three kinds of alloys of A, B, and C shown in Table 1, and subjecting the ingots to a soaking treatment at 490 ° C. × 10 Hr,
It was heated at 460 ° C. × 3 Hr, hot-rolled to a plate thickness of 4 mm, subjected to intermediate annealing at 370 ° C. × 3 Hr in a batch furnace, and cold-rolled to a plate material having a thickness of 0.8 mm.
この材料に対し、本願発明の範囲に入る熱処理又はそれ
以外の熱処理を施し、軟質材にして機械的性質(引張強
さσB、耐力σ0.2、伸びδ、エリクセン値、肌荒れの
有無)を測定した。また、この軟質材に15%冷間圧延を
施した後、温度の上昇した炉に投入することにより溶体
化処理し(A合金,B合金で、493℃×40min,C合金で
503℃×40min)水焼入れ直後180゜曲げによる肌荒れの
程度を観察した。This material is subjected to heat treatment within the scope of the present invention or other heat treatment to make it a soft material and measure its mechanical properties (tensile strength σB, proof stress σ0.2, elongation δ, Erichsen value, rough skin). did. In addition, after subjecting this soft material to cold rolling by 15%, it is subjected to solution treatment by placing it in a furnace whose temperature has risen (A alloy, B alloy, 493 ° C x 40 min, C alloy
Immediately after water quenching, the degree of skin roughness due to 180 ° bending was observed.
これらの熱処理条件、軟質材の機械的性質、軟質材に冷
曲加工し溶体化・水焼入れ後の曲げ性を第2表、第3
表、第4表に示す。The heat treatment conditions, the mechanical properties of the soft material, and the bendability of the soft material after cold bending and solution heat treatment and water quenching are shown in Tables 2 and 3.
The results are shown in Table 4 and Table 4.
なお、表中、第1段熱処理とは本願第1発明と第2発明
に共通な急速加熱・軟化とその後の冷却をさし、第2段
熱処理とは本願第2発明の第1段熱処理後の再加熱と冷
却をさす。In the table, the first-stage heat treatment refers to rapid heating / softening and subsequent cooling common to the first and second inventions of the present application, and the second-stage heat treatment refers to after the first-stage heat treatment of the second invention of the present application. Reheat and cool.
(発明の効果) 第2表、第3表、第4表から明らかなように、本願発明
の製造法をとった材料は、軟質材の伸び・エリクセン値
が向上し、結晶粒は細かく成形加工時に肌荒れをおこさ
ず、さらに低加工後溶体化処理しても結晶粒の粗大化が
おこらないため、焼入れ後の歪矯正の際、製品外観が良
好である等多くの利点を有する。 (Effects of the invention) As is clear from Tables 2, 3, and 4, the material obtained by the production method of the present invention has improved elongation / Erichsen value of the soft material, and the crystal grains are finely processed. At times, it does not cause skin roughening, and since crystal grains do not coarsen even after solution treatment after low working, it has many advantages such as a good product appearance at the time of strain correction after quenching.
Claims (2)
1〜2.0%、必要に応じてさらにMn0.01〜1.2%、Si0.01
〜1.2%、Cr0.005〜0.3%、Ti0.005〜0.15%、Zr0.005
〜0.20%のうち1種または2種以上を含有し、残部不可
避的不純物とAlとよりなる合金鋳塊を常法に従って塑性
加工し所定の寸法とした材料を、325〜430℃の温度に平
均11℃/min(分の意味以下同じ)よりはやい昇温速度
で急速に加熱し軟化させ、その後平均30℃/Hr(時間の
意味、以下同じ)未満の冷却速度で冷却することを特徴
とする成形性の優れたAl-Cu-Mg系合金軟質材の製造方
法。1. Cu1.0 to 6.0% (weight%, the same applies hereinafter), Mg0.
1-2.0%, Mn0.01-1.2%, Si0.01 if necessary
~ 1.2%, Cr0.005-0.3%, Ti0.005-0.15%, Zr0.005
~ 0.20% of 1 or 2 or more of them, and the material with the predetermined dimensions obtained by plastically working the alloy ingot consisting of the balance unavoidable impurities and Al in accordance with the usual method, to the average temperature of 325 ~ 430 ℃ Characterized by rapidly heating and softening at a temperature rising rate faster than 11 ° C / min (the same meaning in minutes) and then cooling at an average cooling rate of less than 30 ° C / Hr (meaning time, the same below). A method for producing an Al-Cu-Mg alloy soft material having excellent formability.
1〜2.0%、必要に応じてさらにMn0.01〜1.2%、Si0.01
〜1.2%、Cr0.005〜0.3%、Ti0.005〜0.15%、Zr0.005
〜0.20%のうち1種または2種以上を含有し、残部不可
避的不純物とAlとよりなる合金鋳塊を常法に従って塑性
加工し所定の寸法とした材料を、325〜430℃の温度に平
均11℃/min よりはやい昇温速度で急速に加熱し軟化さ
せ、その後平均30℃/Hr 以上の冷却速度で冷却し、さ
らに250〜430℃に加熱し24時間以内保持し平均30℃/Hr
未満の冷却速度で冷却することを特徴とする成形性の優
れたAl-Cu-Mg系合金軟質材の製造方法。2. Cu1.0 to 6.0% (weight%, the same applies hereinafter), Mg0.
1-2.0%, Mn0.01-1.2%, Si0.01 if necessary
~ 1.2%, Cr0.005-0.3%, Ti0.005-0.15%, Zr0.005
~ 0.20% of 1 or 2 or more of them, and the material with the predetermined dimensions obtained by plastically working the alloy ingot consisting of the balance unavoidable impurities and Al in accordance with the usual method, to the average temperature of 325 ~ 430 ℃ Rapidly heats and softens at a heating rate faster than 11 ° C / min, then cools at an average cooling rate of 30 ° C / Hr or higher, then heats to 250-430 ° C and holds for 24 hours and averages 30 ° C / Hr.
A method for producing an Al-Cu-Mg alloy soft material having excellent formability, which comprises cooling at a cooling rate of less than 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59098238A JPH0623423B2 (en) | 1984-05-16 | 1984-05-16 | Method for manufacturing Al-Cu-Mg alloy soft material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59098238A JPH0623423B2 (en) | 1984-05-16 | 1984-05-16 | Method for manufacturing Al-Cu-Mg alloy soft material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60243255A JPS60243255A (en) | 1985-12-03 |
JPH0623423B2 true JPH0623423B2 (en) | 1994-03-30 |
Family
ID=14214377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59098238A Expired - Lifetime JPH0623423B2 (en) | 1984-05-16 | 1984-05-16 | Method for manufacturing Al-Cu-Mg alloy soft material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0623423B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113578997B (en) * | 2021-08-03 | 2024-02-02 | 南京超明精密合金材料有限公司 | Processing technology of super-easy-cutting precision alloy rod wire |
CN114959388B (en) * | 2022-04-18 | 2023-04-21 | 聊城市金之桥进出口有限公司 | Al-Cu-Mg-Ag type motor rotor aluminum alloy and preparation method and application thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57161045A (en) * | 1981-03-31 | 1982-10-04 | Sumitomo Light Metal Ind Ltd | Fine-grain high-strength aluminum alloy material and its manufacture |
-
1984
- 1984-05-16 JP JP59098238A patent/JPH0623423B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60243255A (en) | 1985-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2614686B2 (en) | Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability | |
US4838958A (en) | Aluminum-alloy rolled sheet and production method therefor | |
EP0480402B1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
JP4229307B2 (en) | Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same | |
JPH06240424A (en) | Production of aluminum alloy sheet excellent in formability and baking hardenability | |
JPH06340940A (en) | Aluminum alloy sheet excellent in press formability and baking hardenability and its production | |
JPS6050864B2 (en) | Aluminum alloy material for forming with excellent bending workability and its manufacturing method | |
JPS62278256A (en) | Manufacture of aluminum-alloy rolled sheet | |
JP2599861B2 (en) | Manufacturing method of aluminum alloy material for forming process excellent in paint bake hardenability, formability and shape freezing property | |
JPH0138866B2 (en) | ||
JPH0447019B2 (en) | ||
JPH06272000A (en) | Production of al alloy sheet excellent in formability and baking hardenability | |
JP3278119B2 (en) | Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability | |
JPH0623423B2 (en) | Method for manufacturing Al-Cu-Mg alloy soft material | |
JP2626859B2 (en) | Method for producing aluminum alloy sheet for high strength forming with low anisotropy | |
JP2738130B2 (en) | High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same | |
JP2613466B2 (en) | Manufacturing method of aluminum alloy sheet excellent in bake hardenability | |
JPS61163232A (en) | High strength al-mg-si alloy and its manufacture | |
JPH07228957A (en) | Production of aluminum alloy sheet having excellent formability and quench-hardenability | |
KR960007633B1 (en) | Al-mg alloy & the preparation | |
JP3359428B2 (en) | Manufacturing method of aluminum alloy sheet for forming | |
JPH08296011A (en) | Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability | |
JPS61288036A (en) | Copper alloy for lead frame and its production | |
JPH05247610A (en) | Production of aluminum alloy material excellent in moldability, shape freezability and hardenability in coating/baking and small in anisotropy | |
JPH0941062A (en) | Alum.-magnesium-silicon type alum. alloy sheet material for automotive body sheet small in secular change and excellent in baking hardenability and its production |