JPH06210129A - Waste gas treatment - Google Patents
Waste gas treatmentInfo
- Publication number
- JPH06210129A JPH06210129A JP5007701A JP770193A JPH06210129A JP H06210129 A JPH06210129 A JP H06210129A JP 5007701 A JP5007701 A JP 5007701A JP 770193 A JP770193 A JP 770193A JP H06210129 A JPH06210129 A JP H06210129A
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- potassium
- absorbent
- amine
- absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はボイラなどの排ガスから
硫黄酸化物と二酸化炭素を同時に除去する方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simultaneously removing sulfur oxides and carbon dioxide from exhaust gas from a boiler or the like.
【0002】[0002]
【従来の技術】近年、懸念されている地球環境問題の中
で、二酸化炭素の大量排出による地球温暖化と硫黄酸化
物による酸性雨が大きな問題となっている。排ガス中の
二酸化炭素を除去する技術に関しては、吸収剤を用いた
圧力スイング吸着法(PSA)や、アミン系二酸化炭素
吸収剤を用いた化学吸収法が提案されているが未だ研究
段階である。一方、排ガスから硫黄酸化物を除去する技
術としては、湿式の石灰石膏法が主流で実用化されてい
る。2. Description of the Related Art In recent years, global warming caused by a large amount of carbon dioxide emission and acid rain caused by sulfur oxides have become major problems in the concern of global environment. Regarding the technology for removing carbon dioxide in exhaust gas, a pressure swing adsorption method (PSA) using an absorbent and a chemical absorption method using an amine-based carbon dioxide absorbent have been proposed, but they are still in the research stage. On the other hand, as a technique for removing sulfur oxides from exhaust gas, a wet lime gypsum method has been put into practical use in the mainstream.
【0003】従来、排ガス中の二酸化炭素あるいは硫黄
酸化物を除去する技術はそれぞれ単独の排ガスを対象と
するものであった。硫黄酸化物と二酸化炭素の同時除去
に関しては原理的にはアミン系二酸化炭素吸収剤を利用
した化学吸収法でも可能であると考えられるが、この場
合には硫黄酸化物の共存によりアミン系吸収剤が分解
し、吸収剤の損失が大きいという問題を有する。さら
に、炭酸カリウムを吸収剤として用いた場合でも原理的
にはアミン系吸収剤と同様に硫黄酸化物と二酸化炭素の
同時除去が可能であるが、二酸化炭素の吸収速度が遅い
という問題を有する。Conventionally, the technology for removing carbon dioxide or sulfur oxides in exhaust gas has been aimed at individual exhaust gas. Simultaneous removal of sulfur oxides and carbon dioxide may be possible in principle by a chemical absorption method using an amine-based carbon dioxide absorbent, but in this case, coexistence of sulfur oxides causes the amine-based absorbent to coexist. Is decomposed, and the loss of the absorbent is large. Further, even when potassium carbonate is used as an absorbent, it is possible in principle to remove sulfur oxides and carbon dioxide at the same time as with an amine-based absorbent, but there is a problem that the absorption rate of carbon dioxide is slow.
【0004】[0004]
【発明が解決しようとする課題】上記したように、排ガ
ス中の硫黄酸化物と二酸化炭素の同時除去方法に関し
て、アミン系吸収剤などの化学吸収法の場合、硫黄酸化
物の共存による吸収剤の分解損失が大きいという問題を
有し、炭酸カリウムを吸収剤として用いた場合は二酸化
炭素の吸収速度が遅いという問題があった。As described above, regarding the simultaneous removal method of sulfur oxides and carbon dioxide in the exhaust gas, in the case of the chemical absorption method such as amine-based absorbent, There is a problem that the decomposition loss is large, and when potassium carbonate is used as an absorbent, there is a problem that the absorption rate of carbon dioxide is slow.
【0005】本発明は上記技術水準に鑑み、従来技術及
び従来技術より考えられる方法の不具合を解消し得る排
ガス中の硫黄酸化物と二酸化炭素の同時除去を可能とし
た方法を提供しようとするものである。In view of the above-mentioned state of the art, the present invention intends to provide a method capable of removing sulfur oxides and carbon dioxide in exhaust gas at the same time, which can solve the problems of the prior art and the methods considered from the prior art. Is.
【0006】[0006]
【課題を解決するための手段】上記のような状況におい
て、本発明者らは硫黄酸化物が共存しても安定な炭酸カ
リウムを吸収剤として用い、カリウムの損失を抑制する
ため、硫黄酸化物のカリウム塩を分離して、このカリウ
ム塩よりカリウムを再生し、硫黄あるいは石膏を回収す
る方法において、二酸化炭素の吸収を促進させるため、
炭酸カリウムを含有する吸収液に促進剤としてアミン系
二酸化炭素吸収剤を添加する方法を見い出し、この知見
に基づいて本発明を完成するに至った。In the above situation, the present inventors use potassium carbonate, which is stable even if sulfur oxide coexists, as an absorbent to suppress the loss of potassium. In order to accelerate the absorption of carbon dioxide in the method of separating potassium salt of, regenerating potassium from this potassium salt, and recovering sulfur or gypsum,
The inventors have found a method of adding an amine-based carbon dioxide absorbent as an accelerator to an absorbent containing potassium carbonate, and have completed the present invention based on this finding.
【0007】すなわち、本発明は、炭酸カリウムを含有
する吸収液により排ガスから硫黄酸化物と二酸化炭素を
除去する吸収工程、吸収工程より抜き出した吸収液を加
熱して二酸化炭素を放散する放散工程、放散工程より抜
き出した吸収液から固体化した硫酸カリウムを分離する
分離工程、分離工程で得られた硫酸カリウムよりカリウ
ムを再生する再生工程および再生工程で得られる炭酸カ
リウムあるいは水酸化カリウム水溶液を吸収工程で再利
用する工程からなる排ガスの処理方法において、炭酸カ
リウムを含有する吸収液にアミン系二酸化炭素吸収剤を
添加することを特徴とする排ガスの処理方法である。That is, the present invention relates to an absorption step of removing sulfur oxides and carbon dioxide from exhaust gas with an absorption solution containing potassium carbonate, a diffusion step of heating the absorption solution extracted from the absorption step to diffuse carbon dioxide, Separation step of separating solidified potassium sulfate from the absorption liquid extracted from the stripping step, regeneration step of regenerating potassium from potassium sulfate obtained in the separation step, and absorption step of potassium carbonate or potassium hydroxide aqueous solution obtained in the regeneration step In the method for treating exhaust gas, which comprises the step of reusing, the exhaust gas treatment method is characterized in that an amine-based carbon dioxide absorbent is added to an absorption liquid containing potassium carbonate.
【0008】本発明に使用されるアミン系二酸化炭素吸
収剤としては、モノエタノールアミン、ジグリコールア
ミンのような1級アミン、ジエタノールアミン、ジイソ
プロパノールアミンのような2級アミン、トリエタノー
ルアミン、メチルジエタノールアミンのような3級アミ
ン、2−アミノ−2メチル−1−プロパノール、1,8
−P−メンテンジアミン、2−ピペリジンエタノールの
ようなヒンダードアミンなどがあげられる。The amine-based carbon dioxide absorbent used in the present invention includes primary amines such as monoethanolamine and diglycolamine, secondary amines such as diethanolamine and diisopropanolamine, triethanolamine and methyldiethanolamine. Tertiary amines such as, 2-amino-2-methyl-1-propanol, 1,8
Examples thereof include hindered amines such as -P-menthenediamine and 2-piperidine ethanol.
【0009】[0009]
【作用】図1に本発明の実施態様例を示し、この図を用
いて本発明の作用を説明する。入口ダクト1から導かれ
た排ガス中の硫黄酸化物と二酸化炭素は吸収塔2で炭酸
カリウムを含有する吸収液3と接触し、以下の反応によ
って吸収される。 (二酸化炭素) CO2 +K2 CO3 +H2 O → 2KHCO3 (硫黄酸化物) SO2 +2K2 CO3 +H2 O → K2 SO3 +2K
HCO3 K2 SO3 +1/2O2 → K2 SO4 FIG. 1 shows an embodiment of the present invention, and the operation of the present invention will be described with reference to this drawing. Sulfur oxides and carbon dioxide in the exhaust gas introduced from the inlet duct 1 come into contact with the absorption liquid 3 containing potassium carbonate in the absorption tower 2 and are absorbed by the following reaction. (Carbon dioxide) CO 2 + K 2 CO 3 + H 2 O → 2KHCO 3 (Sulfur oxide) SO 2 + 2K 2 CO 3 + H 2 O → K 2 SO 3 + 2K
HCO 3 K 2 SO 3 + 1 / 2O 2 → K 2 SO 4
【0010】硫黄酸化物は炭酸カリウムにより吸収さ
れ、亜硫酸カリウムを生成し、さらに排ガス中の酸素に
より酸化されて硫酸カリウムを生成する。もし、排ガス
中の酸素濃度が低いあるいは硫黄酸化物の濃度が高いな
どの理由により、亜硫酸カリウムが十分に酸化されない
場合は吸収液中に系外から空気あるいは酸素を供給して
亜硫酸カリウムを酸化することもある。吸収処理された
排ガスは出口ダクト4から排出される。Sulfur oxide is absorbed by potassium carbonate to produce potassium sulfite, and further oxidized by oxygen in exhaust gas to produce potassium sulfate. If potassium sulfite is not sufficiently oxidized due to low oxygen concentration or high sulfur oxide concentration in exhaust gas, oxidize potassium sulfite by supplying air or oxygen from outside the system into the absorbing solution. Sometimes. The exhaust gas that has been absorbed is discharged from the outlet duct 4.
【0011】炭酸カリウムを含有する吸収液に、例えば
アミン系二酸化炭素吸収剤の一種であるジエタノールア
ミンを添加した場合には、以下の反応式のごとくジエタ
ノールアミンは二酸化炭素とアミンカルバミン酸塩中間
体を生成し、さらにこの中間体から重炭酸塩への転換反
応が起こりアミンが再生され、ジエタノールアミンは二
酸化炭素の吸収促進剤として触媒的な作用を示す。 CO2 +(C2 H5 OH)2 NH → (C2 H5 O
H)2 NCOOH (C2 H5 OH)2 NCOOH+K2 CO3 +H2 O → 2KHCO3 +(C2 H5 OH)2 NHWhen diethanolamine, which is one of the amine-based carbon dioxide absorbents, is added to the absorbent containing potassium carbonate, diethanolamine produces carbon dioxide and an amine carbamate intermediate as shown in the following reaction formula. Then, a conversion reaction from this intermediate to bicarbonate occurs to regenerate the amine, and diethanolamine exhibits a catalytic action as a carbon dioxide absorption promoter. CO 2 + (C 2 H 5 OH) 2 NH → (C 2 H 5 O
H) 2 NCOOH (C 2 H 5 OH) 2 NCOOH + K 2 CO 3 + H 2 O → 2KHCO 3 + (C 2 H 5 OH) 2 NH
【0012】二酸化炭素と硫黄酸化物を吸収した吸収液
は放散塔5に送られ、蒸気などの加熱媒体6により加熱
される。加熱された吸収液から以下の反応式で二酸化炭
素が放散され、放散ダクト7を通して排出される。しか
し、硫酸カリウムは分圧をもたないため放散されない。 2KHCO3 → CO2 +K2 CO3 +H2 OThe absorbing liquid that has absorbed carbon dioxide and sulfur oxide is sent to the stripping tower 5 and heated by a heating medium 6 such as steam. Carbon dioxide is diffused from the heated absorption liquid according to the following reaction formula, and is discharged through the diffusion duct 7. However, potassium sulphate is not released because it has no partial pressure. 2KHCO 3 → CO 2 + K 2 CO 3 + H 2 O
【0013】一方、この時、吸収液の硫酸カリウムはそ
の溶解度以上の濃度に保たれるように運転され、吸収液
中には硫酸カリウムの結晶が存在する。これは、図2に
示すように硫酸カリウムの溶解度が、炭酸カリウムある
いは重炭酸カリウムの溶解度に比較して小さいことを巧
みに利用したものである。On the other hand, at this time, the potassium sulphate of the absorption liquid is operated so as to be maintained at a concentration equal to or higher than its solubility, and crystals of potassium sulphate exist in the absorption liquid. This takes advantage of the fact that the solubility of potassium sulfate is smaller than that of potassium carbonate or potassium bicarbonate as shown in FIG.
【0014】硫酸カリウムの結晶を含有した吸収液の一
部は固液分離器8に導かれ、固体の硫酸カリウムが分離
される。母液9は放散塔5へ戻される。A part of the absorbing solution containing crystals of potassium sulfate is guided to the solid-liquid separator 8 to separate solid potassium sulfate. The mother liquor 9 is returned to the stripping tower 5.
【0015】カリウム再生工程として電解法を用いた場
合、分離された硫酸カリウムは溶解槽10で水11の添
加により再溶解され、電気分解槽12の中間室へ供給さ
れる。電気分解槽12は中間室、陽極室、および陰極室
からなり、中間室と陽極室は陰イオン交換膜で、中間室
と陰極室は陽イオン交換膜で区切られている。電気分解
のための陽極および陰極はそれぞれ陽極室および陰極室
に設置され直流電流が流れている。電気分解槽12では
以下の電気化学反応により水酸化カリウムと硫酸が生成
する。 (陽極) H2 O → 2H+ +1/2O2 +2e- 中間室より硫酸イオンが陽極室へ透過し、硫酸となる。 (陰極) 2H2 O+2e- → 2OH- +H2 中間室よりカリウムイオンが陰極室へ透過し、水酸化カ
リウムとなる。When the electrolytic method is used as the potassium regeneration step, the separated potassium sulfate is redissolved in the dissolution tank 10 by adding water 11 and supplied to the intermediate chamber of the electrolysis tank 12. The electrolysis tank 12 includes an intermediate chamber, an anode chamber, and a cathode chamber. The intermediate chamber and the anode chamber are separated by an anion exchange membrane, and the intermediate chamber and the cathode chamber are separated by a cation exchange membrane. An anode and a cathode for electrolysis are installed in the anode chamber and the cathode chamber, respectively, and a direct current flows. In the electrolysis tank 12, potassium hydroxide and sulfuric acid are produced by the following electrochemical reaction. (Anode) H 2 O → 2H + + 1 / 2O 2 + 2e − Sulfate ions permeate into the anode chamber from the intermediate chamber to become sulfuric acid. (Cathode) 2H 2 O + 2e − → 2OH − + H 2 Potassium ions permeate into the cathode chamber from the intermediate chamber and become potassium hydroxide.
【0016】陰極室で生成した水酸化カリウム13は吸
収塔2へ戻される。一方、陽極室からは硫酸14が回収
される。The potassium hydroxide 13 produced in the cathode chamber is returned to the absorption tower 2. On the other hand, sulfuric acid 14 is recovered from the anode chamber.
【0017】また、上記以外にカリウム再生工程として
分離された硫酸カリウムを炭酸カリウムおよび/または
水酸化カリウムと反応させ、石膏を回収するとともに、
カリウムを再生する方法も可能である。In addition to the above, potassium sulfate separated in the potassium regeneration step is reacted with potassium carbonate and / or potassium hydroxide to recover gypsum, and
A method of regenerating potassium is also possible.
【0018】[0018]
【実施例】以下、炭酸カリウムを含有する吸収液に例え
ばアミン系二酸化炭素吸収剤の一種であるジエタノール
アミンを添加した場合の一実施例をあげ、そこに使用さ
れる装置の諸元を示す。 (1)吸収塔 内径0.13m×高さ8.0m(有効接触部6.0m) (2)放散塔 内径0.13m×高さ8.0m(加圧蒸気加熱) (3)固液分離器 遠心分離方式;処理量20リットル/h (4)電気分解槽 イオン交換膜;某社製市販品(ジビニルベンゼン−スチレ ン 主体) 陽イオン交換膜:Na(ナトリウム)置換型 陰イオン交換膜:Cl(塩素)置換型 交換膜面積;陽イオン、陰イオン共 0.2m2 EXAMPLE An example of adding diethanolamine, which is one of amine-based carbon dioxide absorbents, to an absorbent containing potassium carbonate will be given below, and the specifications of the apparatus used therein will be shown. (1) Absorption tower inner diameter 0.13 m x height 8.0 m (effective contact area 6.0 m) (2) Dispersion tower inner diameter 0.13 m x height 8.0 m (pressurized steam heating) (3) Solid-liquid separation Centrifuge separation method; throughput 20 liters / h (4) Electrolysis tank Ion exchange membrane; commercial product from a certain company (mainly divinylbenzene-styrene) Cation exchange membrane: Na (sodium) substitution type anion exchange membrane: Cl (Chlorine) substitution type exchange membrane area; both cation and anion 0.2 m 2
【0019】以下に一実施例の運転状態の一例を示す。 (1)排ガス性状 流量 ; 200m3 N/h(dry) 組成 ; CO2 : 14.5vol%(dry) SO2 : 800ppm(dry) O2 : 4.5vol%(dry) (2)吸収塔 循環流量 ; 3.0m3 /h 温 度 ; 55℃ 圧 力 ; 大気圧 カリウム濃度 ; 2.0kgmol/m3 ジエタノールアミン濃度; 0.1kgmol/m3 (3)放散塔 供給流量 ; 3.0m3 /h 温 度 ; 55℃ 圧 力 ; 大気圧 (4)電気分解槽 供給流量 ; 30リットル/h 電流密度 ; 1800A/m2 過電圧 ; 8V 上記の装置および運転状態において、排ガスからの二酸
化炭素の除去率は45%以上であり、かつ硫黄酸化物の
除去率は99%以上であった。An example of the operating state of one embodiment will be shown below. (1) Exhaust gas properties Flow rate; 200 m 3 N / h (dry) composition; CO 2 : 14.5 vol% (dry) SO 2 : 800 ppm (dry) O 2 : 4.5 vol% (dry) (2) Absorption tower circulation Flow rate; 3.0 m 3 / h Temperature; 55 ° C. Pressure force; Atmospheric pressure Potassium concentration; 2.0 kgmol / m 3 Diethanolamine concentration; 0.1 kgmol / m 3 (3) Emission tower supply flow rate; 3.0 m 3 / h Temperature: 55 ° C Pressure: Atmospheric pressure (4) Electrolysis tank Supply flow rate: 30 liters / h Current density: 1800A / m 2 Overvoltage: 8V With the above equipment and operating conditions, the carbon dioxide removal rate from exhaust gas is It was 45% or more, and the removal rate of sulfur oxides was 99% or more.
【0020】さらに、ジエタノールアミン濃度を0.3
kgmol/m3 とした場合は排ガスからの二酸化炭素
除去率は70%以上であり、かつ硫黄酸化物の除去率は
99%以上であった。Further, the diethanolamine concentration is 0.3.
When it was set to kg mol / m 3 , the carbon dioxide removal rate from the exhaust gas was 70% or more, and the sulfur oxide removal rate was 99% or more.
【0021】また、電気分解槽から1.0mol/リッ
トルの水酸化カリウムが15リットル/h、0.5mo
l/リットルの硫酸が15リットル/hで回収できた。
回収した水酸化カリウムは吸収塔あるいは放散塔へ供給
し、吸収剤として再利用できた。また、硫酸は炭酸カル
シウムで中和し、石膏として回収した。しかし、ここで
回収される硫酸は純度が高いため、場合によっては排水
処理のpH調整などにも使用可能である。From the electrolysis tank, 1.0 mol / liter of potassium hydroxide was added at 15 liter / h and 0.5 mo.
1 / l of sulfuric acid could be recovered at 15 l / h.
The recovered potassium hydroxide was supplied to an absorption tower or a diffusion tower and could be reused as an absorbent. The sulfuric acid was neutralized with calcium carbonate and recovered as gypsum. However, since the sulfuric acid recovered here has high purity, it can be used for adjusting the pH of wastewater treatment or the like in some cases.
【0022】(比較例)炭酸カリウムを含有する吸収液
にアミン系二酸化炭素吸収剤を添加せず、装置およびそ
の他の運転状態は実施例と同一の条件で運転した場合、
排ガスからの硫黄酸化物の除去率は99%以上であっ
た。(Comparative Example) When the amine-based carbon dioxide absorbent was not added to the absorbing solution containing potassium carbonate and the apparatus and other operating conditions were the same as those of the Examples,
The removal rate of sulfur oxides from the exhaust gas was 99% or more.
【0023】また、電気分解槽から1.0mol/リッ
トルの水酸化カリウムが15リットル/h、0.5mo
l/リットルの硫酸が15リットル/hで回収できた。
回収した水酸化カリウムは吸収塔あるいは放散塔へ供給
し、吸収剤として再利用できた。また、硫酸は炭酸カル
シウムで中和し、石膏として回収した。しかし、ここで
回収される硫酸は純度が高いため、場合によっては排水
処理のpH調整などにも使用可能である。From the electrolysis tank, 1.0 mol / liter of potassium hydroxide was added at 15 liter / h and 0.5 mo.
1 / l of sulfuric acid could be recovered at 15 l / h.
The recovered potassium hydroxide was supplied to an absorption tower or a diffusion tower and could be reused as an absorbent. The sulfuric acid was neutralized with calcium carbonate and recovered as gypsum. However, since the sulfuric acid recovered here has high purity, it can be used for adjusting the pH of wastewater treatment or the like in some cases.
【0024】一方、排ガスからの二酸化炭素の除去率は
25%であり実施例の場合と比較して著しく低かった。On the other hand, the removal rate of carbon dioxide from the exhaust gas was 25%, which was remarkably low as compared with the case of the examples.
【0025】[0025]
【発明の効果】以上、実施例で具体的に説明したよう
に、本発明は硫黄酸化物が共存しても安定な炭酸カリウ
ムを吸収剤として用い、カリウムの損失を抑制するた
め、硫黄酸化物のカリウム塩を分離して、このカリウム
塩よりカリウムを再生し、硫酸あるいは石膏を回収する
方法において、二酸化炭素の吸収を促進させるため、炭
酸カリウムを含有する吸収液に促進剤としてアミン系二
酸化炭素吸収剤を添加する方法であり、従来産業上実用
化されていなかった硫黄酸化物と二酸化炭素の同時除去
を可能とした。INDUSTRIAL APPLICABILITY As described above in detail, the present invention uses potassium carbonate, which is stable even when sulfur oxides coexist, as an absorbent and suppresses the loss of potassium. In order to accelerate the absorption of carbon dioxide in the method of regenerating potassium from the potassium salt and recovering the sulfuric acid or gypsum from the potassium salt of, the amine-based carbon dioxide as an accelerator is added to the absorption liquid containing potassium carbonate. This is a method of adding an absorbent, which enables the simultaneous removal of sulfur oxides and carbon dioxide, which had not been practically used in the past.
【図1】本発明の一実施態様例の系統図。FIG. 1 is a system diagram of an embodiment of the present invention.
【図2】本発明における塩の溶解度を示す図表。FIG. 2 is a chart showing the solubility of salts in the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高品 徹 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toru Toshin 4-2-6 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries Ltd. Hiroshima Research Institute
Claims (1)
ガスから硫黄酸化物と二酸化炭素を除去する吸収工程、
吸収工程より抜き出した吸収液を加熱して二酸化炭素を
放散する放散工程、放散工程より抜き出した吸収液から
固体化した硫酸カリウムを分離する分離工程、分離工程
で得られた硫酸カリウムよりカリウムを再生する再生工
程および再生工程で得られる炭酸カリウムあるいは水酸
化カリウム水溶液を吸収工程で再利用する工程からなる
排ガスの処理方法において、炭酸カリウムを含有する吸
収液にアミン系二酸化炭素吸収剤を添加することを特徴
とする排ガスの処理方法。1. An absorption step of removing sulfur oxides and carbon dioxide from exhaust gas with an absorption liquid containing potassium carbonate,
A diffusion process that heats the absorption liquid extracted from the absorption process to diffuse carbon dioxide, a separation process that separates solidified potassium sulfate from the absorption liquid extracted from the diffusion process, and regenerates potassium from the potassium sulfate obtained in the separation process In the method for treating exhaust gas, which comprises a regenerating step and a step of reusing the potassium carbonate or potassium hydroxide aqueous solution obtained in the regenerating step in the absorbing step, adding an amine-based carbon dioxide absorbent to the absorbing solution containing potassium carbonate. A method for treating exhaust gas, which is characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5007701A JPH06210129A (en) | 1993-01-20 | 1993-01-20 | Waste gas treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5007701A JPH06210129A (en) | 1993-01-20 | 1993-01-20 | Waste gas treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06210129A true JPH06210129A (en) | 1994-08-02 |
Family
ID=11673068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5007701A Pending JPH06210129A (en) | 1993-01-20 | 1993-01-20 | Waste gas treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06210129A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004113226A1 (en) * | 2003-06-18 | 2004-12-29 | Kabushiki Kaisha Toshiba | System and method for collecting carbon dioxide in exhaust gas |
JP2006275487A (en) * | 2005-03-30 | 2006-10-12 | Shimizu Corp | Carbon dioxide removing air conditioning system |
JP2007515261A (en) * | 2003-07-31 | 2007-06-14 | プーラー,ジヨエル | Biogas sequestration and organic assimilation of greenhouse gases |
CN101856579A (en) * | 2010-06-02 | 2010-10-13 | 清华大学 | Novel energy-saving CO2 trapping process of improved potassium carbonate |
JP2013543790A (en) * | 2010-11-10 | 2013-12-09 | シーメンス アクチエンゲゼルシヤフト | Preparation of contaminated amine solvents by the introduction of sulfur oxides |
CN104587798A (en) * | 2013-10-31 | 2015-05-06 | 现代自动车株式会社 | Absorbent for desulfurization of combustion gas and method of treating combustion gas using the same |
EP3620225A1 (en) * | 2018-08-29 | 2020-03-11 | INDIAN OIL CORPORATION Ltd. | Process for co2 capture from gaseous streams |
-
1993
- 1993-01-20 JP JP5007701A patent/JPH06210129A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004113226A1 (en) * | 2003-06-18 | 2004-12-29 | Kabushiki Kaisha Toshiba | System and method for collecting carbon dioxide in exhaust gas |
JP2007515261A (en) * | 2003-07-31 | 2007-06-14 | プーラー,ジヨエル | Biogas sequestration and organic assimilation of greenhouse gases |
JP2006275487A (en) * | 2005-03-30 | 2006-10-12 | Shimizu Corp | Carbon dioxide removing air conditioning system |
CN101856579A (en) * | 2010-06-02 | 2010-10-13 | 清华大学 | Novel energy-saving CO2 trapping process of improved potassium carbonate |
JP2013543790A (en) * | 2010-11-10 | 2013-12-09 | シーメンス アクチエンゲゼルシヤフト | Preparation of contaminated amine solvents by the introduction of sulfur oxides |
US9527037B2 (en) | 2010-11-10 | 2016-12-27 | Siemens Aktiengesellschaft | Preparation of an amine based solvent contaminated by the introduction of sulfur oxides |
CN104587798A (en) * | 2013-10-31 | 2015-05-06 | 现代自动车株式会社 | Absorbent for desulfurization of combustion gas and method of treating combustion gas using the same |
US9956519B2 (en) | 2013-10-31 | 2018-05-01 | Hyundai Motor Company | Absorbent for desulfurization of combustion gas and method of treating combustion gas using the same |
EP3620225A1 (en) * | 2018-08-29 | 2020-03-11 | INDIAN OIL CORPORATION Ltd. | Process for co2 capture from gaseous streams |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2234699B1 (en) | Process for producing sodium bicarbonate for flue gas desulphurization | |
JP3349346B2 (en) | Desulfurization and decarboxylation process | |
CN105457477A (en) | Sodium-calcium dual-alkali flue gas desulfurization method and system | |
EP3075430B1 (en) | Method and apparatus for reagent recovery in a flue gas processing system | |
CN111924807A (en) | Method and device for trapping carbon dioxide and simultaneously producing sulfuric acid by sodium bisulfate | |
US3944649A (en) | Multistage process for removing sulfur dioxide from stack gases | |
JP2013543790A (en) | Preparation of contaminated amine solvents by the introduction of sulfur oxides | |
US4481172A (en) | Process for removal of sulfur oxides from waste gases | |
JPH0838851A (en) | Method for scrubbing of sulfur dioxide accompanied with formation of gypsum | |
JPH06210129A (en) | Waste gas treatment | |
CN112915755A (en) | System and method for jointly recovering sulfur dioxide in flue gas and removing nitrogen oxide | |
JP2015000372A (en) | Acid gas recovery system | |
CN111729474A (en) | Method for circulating flue gas desulfurization and sulfur dioxide recovery by using organic acid magnesium solution | |
US5433936A (en) | Flue gas desulfurization process | |
JPH0686911A (en) | Method for simultaneous treatment of desulfurization and decarbonation | |
US5281317A (en) | Electrodialytic water splitting process for removing SO2 from gases | |
CA2834664C (en) | Method and apparatus for capturing sox in a flue gas processing system | |
CN1351898A (en) | Process for treating waste gas containing SO2 | |
JPH05111614A (en) | Treatment of exhaust gas | |
JPH0521610B2 (en) | ||
TW202325657A (en) | System and method for capturing carbon capture and recovering fly ash sodium salt recovery to produce sodium bicarbonate for incineration plant comprising a carbon capture unit, a salt separation unit, a sodium bicarbonate production unit, and an ammonia regeneration unit | |
JP2001348346A (en) | Method for purifying methane fermentation gas | |
JPH04346816A (en) | Treatment of exhaust gas | |
CN216572381U (en) | Liquid-solid phase separation type carbon dioxide absorption and in-situ utilization system | |
CN205461743U (en) | Two alkali flue gas desulfurization systems of sodium calcium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010116 |