Nothing Special   »   [go: up one dir, main page]

JPH06200398A - Far-infrared ray radiator and its manufacture - Google Patents

Far-infrared ray radiator and its manufacture

Info

Publication number
JPH06200398A
JPH06200398A JP4360595A JP36059592A JPH06200398A JP H06200398 A JPH06200398 A JP H06200398A JP 4360595 A JP4360595 A JP 4360595A JP 36059592 A JP36059592 A JP 36059592A JP H06200398 A JPH06200398 A JP H06200398A
Authority
JP
Japan
Prior art keywords
far
amount
less
content
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4360595A
Other languages
Japanese (ja)
Inventor
Mamoru Matsuo
守 松尾
Kenzo Okada
健三 岡田
Seiju Maejima
正受 前嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Sky Aluminium Co Ltd
Original Assignee
Fujikura Ltd
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Sky Aluminium Co Ltd filed Critical Fujikura Ltd
Priority to JP4360595A priority Critical patent/JPH06200398A/en
Publication of JPH06200398A publication Critical patent/JPH06200398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To provide a far-infrared ray radiator consisting of an aluminum alloy as the base material, which can be manufactured even in some complicated shapes by using various manufacturing methods and hardly generates cracks even at a high temp. and further has excellent far-infrared radiation characteristics, and the anodically oxidized film of which has a gray color tone, and to provide the manufacturing method of the far-infrared radiator. CONSTITUTION:This far-infrared radiator is manufactured by forming the gray color anodically oxidized film having a <10mum thickness on the surface of the base material consisting essentially of an Al-Si alloy which contains 1 to 3wt.% Si. Particularly, the separated Si is controlled so that more than 80wt.% of the separated Si particles have >=0.05mum particle diameter, and the total Si content (Awt.%) and the amount of the residual Si in the solid solution (Bwt.% on the same base as above) can meet the relational expressions: B<=A-0.5 when A<1.5 and B<=1 when A>=1.5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、暖房、調理、乾燥、
材料の熱処理、その他各種の輻射加熱のために遠赤外線
を放射する部材に関するものであり、特に基材としてア
ルミニウム合金を用いて陽極酸化皮膜を形成した遠赤外
線放射体およびその製造方法に関するものである。
This invention relates to heating, cooking, drying,
The present invention relates to a member that radiates far infrared rays for heat treatment of materials and various other types of radiant heating, and particularly relates to a far infrared radiator having an anodic oxide film formed by using an aluminum alloy as a base material and a manufacturing method thereof. .

【0002】[0002]

【従来の技術】一般に遠赤外線を利用したヒーター類に
おいては、放射体の遠赤外線放射率が高く、しかも10
0℃以上の比較的低い表面温度で可視領域の放射が少な
い反面、遠赤外線領域の放射の多いものが要求される。
このような要求を満たす放射体としては、従来はアルミ
ナ、グラファイト、ジルコニア等の各種セラミック材料
で構成したものが実用化されている。そしてこれらの材
料のうちでも、遠赤外線放射特性の面ではアルミナが他
のセラミック材料と比較して優れた性能を有することが
知られている。
2. Description of the Related Art Generally, in heaters utilizing far infrared rays, the far infrared ray emissivity of the radiator is high and 10
At a relatively low surface temperature of 0 ° C. or higher, the amount of radiation in the visible region is small, but the amount of radiation in the far infrared region is large.
As a radiator satisfying such requirements, those made of various ceramic materials such as alumina, graphite and zirconia have been put into practical use. Among these materials, it is known that alumina has excellent performance in terms of far infrared radiation characteristics as compared with other ceramic materials.

【0003】しかしながら従来のセラミック材料からな
る遠赤外線放射体は、その重量が大きく、また割れ易
く、さらには薄いものを作成することが困難であり、ま
た熱伝導性が劣るため、放射体の加熱効率が悪い等の問
題があった。
However, conventional far-infrared radiators made of ceramic materials have a large weight, are easily broken, and it is difficult to make thin ones, and the thermal conductivity is poor, so that the radiator is heated. There was a problem such as inefficiency.

【0004】そこで金属基材の表面にセラミックを溶射
した放射体も実用化されているが、この場合は製造に高
コストを要し、また薄板や複雑形状の放射体を得ること
が困難である等の問題がある。
Therefore, a radiator in which ceramics are sprayed on the surface of a metal substrate has been put into practical use, but in this case, the manufacturing cost is high and it is difficult to obtain a thin plate or a radiator having a complicated shape. There is a problem such as.

【0005】ところでセラミック材料のうちでもアルミ
ナについては、アルミニウムの表面を陽極酸化処理して
アルマイト皮膜(陽極酸化皮膜)を生成することによ
り、アルミニウム基材表面にアルミナからなる層を容易
に生成することができる。この場合は、基材がアルミニ
ウムであるため熱伝導性が良好となり、しかも表面の陽
極酸化皮膜はアルミナであるため遠赤外線放射特性も良
好であり、したがって熱伝導性と遠赤外線放射特性との
両者を満たすことができる。そこで最近では上述のよう
にアルミニウム基材の表面を陽極酸化処理した遠赤外線
放射体が試みられている。
By the way, regarding alumina among the ceramic materials, it is possible to easily form a layer made of alumina on the surface of an aluminum substrate by anodizing the surface of aluminum to form an alumite film (anodic oxide film). You can In this case, since the base material is aluminum, the thermal conductivity is good, and since the anodic oxide film on the surface is alumina, the far-infrared radiation characteristics are also good. Therefore, both the thermal conductivity and the far-infrared radiation characteristics are good. Can meet. Therefore, recently, a far-infrared radiator in which the surface of the aluminum base material is anodized as described above has been tried.

【0006】しかしながら、従来のアルミニウム基材の
表面に陽極酸化皮膜を形成した遠赤外線放射体は、20
0℃以上の高温で使用する場合には、熱衝撃によって陽
極酸化皮膜にクラックが生じ易く、そのため放射率が不
安定となるとともに、耐食性も悪くなるという問題があ
る。また従来のアルミニウム基材の表面に陽極酸化皮膜
を形成した遠赤外線放射体では、3〜7μmの波長域に
おける放射率が低い欠点があり、そのため全体としてよ
り高い放射量を得ようとする場合には、陽極酸化皮膜を
厚く形成せざるを得なかったが、その場合には熱衝撃に
よるクラックが一層生じ易くなるという問題があった。
However, the conventional far-infrared radiator having an anodized film formed on the surface of an aluminum substrate is 20
When it is used at a high temperature of 0 ° C. or higher, the anodic oxide film is apt to crack due to thermal shock, which causes instability of emissivity and deterioration of corrosion resistance. Further, the conventional far-infrared radiator having an anodized film formed on the surface of an aluminum substrate has a drawback that the emissivity is low in the wavelength range of 3 to 7 μm, and therefore, when trying to obtain a higher radiation amount as a whole. Had to form a thick anodic oxide film, but in that case, there was a problem that cracks due to thermal shock were more likely to occur.

【0007】そこで本発明者等は、既に特開平4−11
0493号において、Mnを0.3〜4.3%含有し、
MnとAlとの金属間化合物を微細かつ均一に分散析出
させたアルミニウム合金を基材とし、そのアルミニウム
合金材表面に望ましくは10μm程度以上の厚みで陽極
酸化皮膜を形成した遠赤外線放射部材を提案している。
なおこの遠赤外線放射部材の陽極酸化皮膜は、通常は黒
色を呈している。
Therefore, the present inventors have already disclosed in Japanese Patent Laid-Open No. 4-11.
No. 0493, containing 0.3 to 4.3% of Mn,
A far-infrared radiation member is proposed, in which an aluminum alloy having an intermetallic compound of Mn and Al finely and uniformly dispersed and deposited is used as a base material, and an anodized film is formed on the surface of the aluminum alloy material, preferably with a thickness of about 10 μm or more. is doing.
The far-infrared radiation member usually has a black anodic oxide film.

【0008】上記提案の放射部材によれば、200℃以
上の高温でも陽極酸化皮膜にクラックが生じにくく、し
かも3〜7μmの波長域においてもかなりの優れた放射
特性を示すことが確認されている。
It has been confirmed that the radiating member proposed above does not easily cause cracks in the anodic oxide film even at a high temperature of 200 ° C. or higher, and exhibits considerably excellent radiating characteristics even in the wavelength range of 3 to 7 μm. .

【0009】[0009]

【発明が解決しようとする課題】最近では、遠赤外線の
放射特性を利用した用途が種々拡大しつつあり、そのた
め前記提案の放射体では必ずしも満足できない場合があ
ることが判明した。
Recently, various applications utilizing the radiation characteristics of far-infrared rays have been expanded, and it has been found that the above-mentioned proposed radiator may not always be satisfactory.

【0010】すなわち、遠赤外線放射部材の用途によっ
ては、圧延加工材のみならず、鋳造材や押出材からなる
アルミニウム合金基材を用いることが望まれることも多
いが、前記提案の放射部材におけるアルミニウム合金基
材は、Al−Mn系金属間化合物を微細かつ均一に析出
させる必要がある関係上、圧延材が最も適しており、鋳
造材や押出材、鍛造材には適用しにくいのが実情であ
る。
That is, depending on the application of the far-infrared radiation member, it is often desired to use not only a rolled material but also an aluminum alloy base material made of a cast material or an extruded material. As the alloy base material, the rolled material is most suitable because it is necessary to finely and uniformly deposit the Al-Mn-based intermetallic compound, and in reality, it is difficult to apply it to the cast material, the extruded material, and the forged material. is there.

【0011】また、前述のように200℃以上の高温で
の使用を目的とした遠赤外線放射部材は、従来一般に
は、余り人目に触れないかまたは人目に触れたとしても
余り目立たない部分で使用されることがほとんどであっ
たため、皮膜の色調などの美観上の点については、従来
はさほど問題とされておらず、そのため前記提案の如く
陽極酸化皮膜が黒色の色調を有することは、美観上の欠
点とは認識されておらず、むしろ遠赤外線放射特性の点
からは黒色の色調が有利であると考えられていた。
Further, as described above, the far-infrared radiation member intended to be used at a high temperature of 200 ° C. or higher is generally used in a portion which is not so much visible to the eyes or is not so conspicuous even if it is exposed to the eyes. Since it was mostly done, the aesthetic point such as the color tone of the film has not been so much a problem in the past, and therefore the black color tone of the anodic oxide film as described above is aesthetically significant. However, a black color tone was considered to be advantageous from the viewpoint of far infrared radiation characteristics.

【0012】しかしながら、最近では一般家庭での食品
の加熱あるいは室内暖房など、遠赤外線放射部材の用途
が拡大するに伴ない、その放射部材の色調としても周囲
の色調と調和した色調が望まれたり、あるいは汚れが付
着した場合にその汚れを判別し易い色調が望まれたりす
るようになり、これらの要求に対しては、前記提案のよ
うな黒色の色調を有する放射部材では満足できないとい
う問題が生じるようになってきた。
However, recently, as the use of far-infrared radiation members such as heating food in homes or indoor heating expands, the color tone of the radiation member is desired to be in harmony with the surrounding color tone. Or, when a stain is attached, a color tone that makes it easy to discriminate the stain is desired, and there is a problem that a radiating member having a black color tone like the above proposal cannot satisfy these requirements. It has started to occur.

【0013】さらに、最近では主として陽極酸化皮膜の
生成のための工程のコストを低減するため、陽極酸化皮
膜を極力薄質化することが望まれており、また陽極酸化
皮膜は硬質で脆いことから、陽極酸化皮膜の厚みが大き
ければ、ドリル加工等の各種加工時において皮膜が割れ
易くなるおそれがあり、また薄質な箔(通常は厚さ0.
4mm程度)として用いる場合も、陽極酸化皮膜が10μ
m程度以上に厚くなれば、箔として靭性が低くなって裂
け易くなってしまい、これらの観点からも陽極酸化皮膜
が薄質であることが望まれるようになっており、そこで
10μm程度より薄い陽極酸化皮膜でも充分な放射特性
を満たすようなアルミニウム合金を基材とする放射部材
が望まれているが、前記提案の放射部材は、この点でも
必ずしも充分とは言えないのが実情であった。
Further, recently, in order to reduce the cost of the process mainly for forming an anodized film, it has been desired to make the anodized film as thin as possible, and the anodized film is hard and brittle. If the thickness of the anodized film is large, the film may be easily cracked during various processes such as drilling, and a thin foil (usually having a thickness of 0.
4mm), the anodic oxide film is 10μ
If the thickness is more than about m, the toughness of the foil becomes low and the foil tends to tear easily. From these viewpoints, it is desired that the anodic oxide film be thin, and the anode thinner than about 10 μm is desired. A radiating member based on an aluminum alloy that satisfies the sufficient radiating properties even with an oxide film is desired, but the radiating member proposed above is not always sufficient in this respect.

【0014】この発明は以上の事情を背景としてなされ
たもので、200℃以上の高温においても陽極酸化皮膜
にクラックが生じにくくかつ3〜7μmの波長域でも遠
赤外線放射特性が優れるばかりでなく、周囲の色調と調
和させやすくしかも衛生的な面からも汚れの付着を判別
し易い色調を有し、かつまた鋳造や押出し、鍛造等の種
々の方法での基材の製造を容易とし、さらには薄い陽極
酸化皮膜でも良好な遠赤外線放射特性が得られるように
した、アルミニウム合金を基材とする遠赤外線放射部材
を提供することを目的とするものである。
The present invention has been made in view of the above circumstances. Not only does the anodized film hardly crack even at a high temperature of 200 ° C. or more and the far-infrared radiation characteristics are excellent even in the wavelength range of 3 to 7 μm, It has a color tone that is easy to match with the color tone of the surroundings and is easy to distinguish the adhesion of stains from the viewpoint of hygiene, and also facilitates the production of the base material by various methods such as casting, extrusion, and forging. It is an object of the present invention to provide a far-infrared emitting member having an aluminum alloy as a base material, which can obtain good far-infrared emitting characteristics even with a thin anodic oxide film.

【0015】[0015]

【課題を解決するための手段】本発明者等は既に特願平
4−141084号において、Al−1〜3%Si系合
金を基材とし、膜厚が10μm以上の黒色の陽極酸化皮
膜が形成された遠赤外線放射部材を提案している。この
提案の放射部材の場合、200℃以上の高温でも陽極酸
化皮膜にクラックが生じにくく、かつ3〜7μmの波長
域でも放射特性が優れ、しかも圧延材のみならず、鋳造
材や押出剤、鍛造材などにも容易に適用できる長所を有
する。そこで上記提案の放射部材についてさらに実験・
検討を進めるとともに、前述のような課題を解決するべ
く鋭意実験・検討を重ねた結果、上述の特願平4−14
1084号の提案の放射部材で用いているアルミニウム
合金を基材として用いた場合、10μm未満の薄質な陽
極酸化皮膜でもかなりの程度に優れた遠赤外線放射特性
を発揮し得ること、また陽極酸化皮膜の厚みを10μm
未満とすれば、表面の色調として、周囲の色調に調和さ
せやすくかつ汚れの付着も判別しやすい比較的薄い灰色
から白色に近い色調が得られ、したがって前述の課題を
全て解決し得ることを見出しこの発明をなすに至ったの
である。
The inventors of the present invention have already disclosed in Japanese Patent Application No. 4-141084 that a black anodic oxide film having a thickness of 10 μm or more is formed by using an Al-1 to 3% Si alloy as a base material. The formed far-infrared radiation member is proposed. In the case of the proposed radiating member, cracks are unlikely to occur in the anodized film even at a high temperature of 200 ° C. or higher, and the radiation characteristics are excellent even in the wavelength range of 3 to 7 μm. It has the advantage that it can be easily applied to materials and the like. Therefore, further experiments on the proposed radiation member
As a result of further study and earnest experiments and studies to solve the above problems, the above-mentioned Japanese Patent Application No. 4-14
When the aluminum alloy used in the radiating member proposed in No. 1084 is used as a base material, even a thin anodic oxide film having a thickness of less than 10 μm can exhibit far-infrared radiation characteristics that are considerably excellent, and anodic oxidation is also possible. Film thickness 10 μm
If it is less than the above, as a surface color tone, it is easy to harmonize with the surrounding color tone and it is easy to determine the adhesion of stains, and a relatively light gray to white color tone can be obtained, and thus it is possible to solve all the above-mentioned problems. The invention was made.

【0016】すなわち本発明者等は、基材のアルミニウ
ム合金を、1%以上3%未満ののSiを含有する成分系
とし、また基材表面における金属Si粒子の分散状態を
適切に調整し、さらには表面に形成される陽極酸化皮膜
の厚みを10μm未満とすることによって、前述の課題
を解決し得ることを見出し、この発明をなすに至った。
That is, the present inventors set the aluminum alloy of the base material as a component system containing 1% or more and less than 3% of Si, and appropriately adjust the dispersion state of the metal Si particles on the surface of the base material. Further, they have found that the above-mentioned problems can be solved by setting the thickness of the anodized film formed on the surface to less than 10 μm, and have completed the present invention.

【0017】具体的には、請求項1に記載の発明の遠赤
外線放射体は、Si1wt%以上3wt%未満を含有し、残
部がAlおよび不可避的不純物よりなる合金を基材と
し、その基材の表面に膜厚10μm未満の灰色の陽極酸
化皮膜が形成されていることを特徴とするものである。
Specifically, the far-infrared radiator of the present invention according to claim 1 uses as an base material an alloy containing Si in an amount of 1 wt% or more and less than 3 wt%, with the balance being Al and inevitable impurities. Is characterized in that a gray anodic oxide film having a film thickness of less than 10 μm is formed on the surface thereof.

【0018】また請求項2に記載の発明の遠赤外線放射
体は、Si1wt%以上3wt%未満を含有し、かつFe
0.05〜1.5wt%、Mg0.05〜1.0wt%、C
u0.05〜1.0wt%、Mn0.05〜1.0wt%、
Ni0.05〜1.0wt%、Cr0.05〜0.5wt
%、V0.05〜0.5wt%、Zr0.05〜0.5wt
%、Ti0.005〜0.2wt%のうちの1種または2
種以上を含有し、残部がAlおよび不可避的不純物より
なる合金を基材とし、その基材の表面に膜厚10μm未
満の灰色の陽極酸化皮膜が形成されていることを特徴と
するものである。
The far infrared radiator according to the second aspect of the present invention contains Si in an amount of 1 wt% or more and less than 3 wt% and Fe.
0.05-1.5 wt%, Mg 0.05-1.0 wt%, C
u 0.05-1.0 wt%, Mn 0.05-1.0 wt%,
Ni0.05-1.0wt%, Cr0.05-0.5wt
%, V0.05-0.5wt%, Zr0.05-0.5wt
%, Ti 0.005 to 0.2 wt%, one or two
It is characterized in that an alloy containing at least one kind and having the balance of Al and unavoidable impurities is used as a base material, and a gray anodic oxide film having a film thickness of less than 10 μm is formed on the surface of the base material. .

【0019】さらに請求項3に記載の発明の遠赤外線放
射体は、請求項1もしくは請求項2の遠赤外線放射体に
おける基材として、その基材における全析出Si粒子の
うち、個数にして80%以上の析出Si粒子のサイズが
0.05μm以上であり、しかも残留固溶Si量がSi
含有量に応じて、Si含有量が1wt%以上1.5wt%未
満の場合は 残留固溶Si量(wt%)≦Si含有量(wt%)−0.5 を満たし、またSi含有量が1.5wt%以上3wt%未満
の場合は 残留固溶Si量(wt%)≦1 を満たしていることを特徴とするものである。
Further, the far-infrared radiator according to a third aspect of the present invention is used as the base material in the far-infrared radiator according to the first or second aspect, and the total number of precipitated Si particles in the base material is 80. % Or more of the precipitated Si particles is 0.05 μm or more, and the amount of residual solid solution Si is Si.
Depending on the content, when the Si content is 1 wt% or more and less than 1.5 wt%, the residual solid solution Si amount (wt%) ≦ Si content (wt%) − 0.5 is satisfied, and the Si content is When the content is 1.5 wt% or more and less than 3 wt%, the residual solid solution Si amount (wt%) ≦ 1 is satisfied.

【0020】そしてまた請求項4に記載の発明の遠赤外
線放射体の製造方法は、Si1wt%以上3wt%未満を含
有し、さらに必要に応じてFe0.05〜1.5wt%、
Mg0.05〜1.0wt%、Cu0.05〜1.0wt
%、Mn0.05〜1.0wt%、Ni0.05〜1.0
wt%、Cr0.05〜0.5wt%、V0.05〜0.5
wt%、Zr0.05〜0.5wt%、Ti0.005〜
0.2wt%のうちの1種または2種以上を含有し、残部
がAlおよび不可避的不純物よりなる合金を鋳造し、さ
らに必要に応じて熱間加工および/または冷間加工を施
して所定の寸法の基材を得、その後陽極酸化処理を施し
て表面に10μm未満の陽極酸化皮膜を形成するにあた
り、前記鋳造の後、もしくは熱間加工の後、または冷間
加工の中途もしくは後に、250〜550℃の範囲内の
温度に加熱することによって、Siを、全析出Si粒子
のうち個数にして80%以上の析出Si粒子が0.05
μm以上であってしかも残留固溶Si量がSi含有量に
応じて、そのSi含有量が1wt%以上1.5wt%未満の
場合には 残留固溶Si量(wt%)≦Si含有量(wt%)−0.5 を満たすように、またSi含有量が1.5wt%以上3wt
%未満の場合には 残留固溶Si量(wt%)≦1 を満たすように、析出させることを特徴とするものであ
る。
The method for producing a far-infrared radiator according to a fourth aspect of the present invention contains Si in an amount of 1 wt% or more and less than 3 wt%, and if necessary, Fe 0.05 to 1.5 wt%,
Mg0.05-1.0wt%, Cu0.05-1.0wt
%, Mn 0.05 to 1.0 wt%, Ni 0.05 to 1.0
wt%, Cr 0.05 to 0.5 wt%, V 0.05 to 0.5
wt%, Zr 0.05-0.5 wt%, Ti 0.005-
An alloy containing one or more of 0.2 wt% and the balance of Al and unavoidable impurities is cast, and if necessary, hot working and / or cold working is performed to obtain a predetermined alloy. When a base material having a size is obtained and then anodized to form an anodized film of less than 10 μm on the surface, after the casting, or after hot working, or during or after cold working, 250 to By heating to a temperature in the range of 550 ° C., the Si content in the total number of precipitated Si particles is 80% or more, and the precipitated Si particles are 0.05% or more.
If the residual solid solution Si content is 1 μm or more and less than 1.5 wt% depending on the Si content, the residual solid solution Si content (wt%) ≦ Si content ( wt%)-0.5 and the Si content is 1.5 wt% or more and 3 wt
When it is less than%, it is characterized in that precipitation is performed so as to satisfy the residual solid solution Si amount (wt%) ≦ 1.

【0021】[0021]

【作用】この発明の遠赤外線放射体は、基本的には1wt
%以上3wt%未満のSiを含有するAl−Si系のアル
ミニウム合金を基材とし、その表面に厚みが10μm未
満の灰色の陽極酸化皮膜を生成したものである。
The far-infrared radiator of the present invention is basically 1 wt.
% -Less than 3 wt% of Si is used as a base material, and a gray anodic oxide film having a thickness of less than 10 μm is formed on the surface of the base material.

【0022】このように1wt%以上3wt%未満のSiを
含有するアルミニウム合金では、後に改めて説明するよ
うに適切な熱処理を施すことによって金属Si粒子がそ
の組織中に分散析出し、その基材表面を陽極酸化処理さ
せれば、陽極酸化皮膜中にも析出Si粒子が金属Si粒
子のまま取込まれる。そして陽極酸化皮膜中に金属Si
粒子が分散しているため、入射光が散乱吸収されて、遠
赤外線の放射特性が向上する。さらに、陽極酸化処理時
において陽極酸化皮膜(多孔質層)が成長する過程で
は、ポアは金属Si粒子を避けるようにして成長するこ
とから、皮膜中のポアは枝分かれした構造となり、この
ような枝分かれポア構造によって入射光に対する陽極酸
化皮膜内での散乱吸収が良好となり、遠赤外線の放射特
性が一層向上する。そしてこのように遠赤外線放射特性
が著しく向上されているところから、10μm未満と比
較的薄い陽極酸化皮膜でも実用上支障ない程度の良好な
遠赤外線放射性能を示すことができる。
As described above, in the aluminum alloy containing 1 wt% or more and less than 3 wt% of Si, the metal Si particles are dispersed and precipitated in the structure by an appropriate heat treatment as described later, and the surface of the base material is Is anodized, the precipitated Si particles are incorporated into the anodized film as metal Si particles. And metal Si is contained in the anodized film.
Since the particles are dispersed, the incident light is scattered and absorbed, and the radiation characteristic of far infrared rays is improved. Furthermore, in the process of growing the anodized film (porous layer) during the anodizing treatment, the pores grow while avoiding the metallic Si particles, so the pores in the film have a branched structure, and such branching occurs. The pore structure improves the scattering and absorption of incident light in the anodic oxide film, and further improves the radiation characteristics of far infrared rays. Since far-infrared radiation characteristics are remarkably improved in this way, it is possible to exhibit good far-infrared radiation performance that is practically unproblematic even with a relatively thin anodic oxide film of less than 10 μm.

【0023】また、上述のように陽極酸化皮膜の厚みが
10μm未満と比較的薄いため、皮膜の外観の色調も、
黒色よりは淡い灰色から白色に近いものとなる。また硬
質な陽極酸化皮膜の厚みが薄いため、ドリル加工等の機
械加工を行なっても皮膜に割れが生じるおそれは少な
く、かつ薄い箔地とした場合にも、箔として靭性が低く
なって裂け易くなることが防止される。
Further, as described above, since the thickness of the anodized film is relatively thin, less than 10 μm, the color tone of the appearance of the film is also
The color is light gray to near white rather than black. Also, since the hard anodic oxide film is thin, there is little risk of cracks in the film even when mechanical processing such as drilling is performed, and even when made into a thin foil, the toughness of the foil is low and it is easy to tear. Is prevented.

【0024】さらに、陽極酸化皮膜中に分散して存在す
る金属Si粒子は応力の緩和点としても機能し、また前
述のようなポアの枝分かれ構造は歪の吸収能力が高く、
そのため熱衝撃によりクラックが生じにくいとともに、
仮にクラックが発生してもその伝播が阻止される。
Further, the metallic Si particles dispersedly present in the anodized film also function as a stress relaxation point, and the branched structure of pores as described above has a high strain absorbing ability,
As a result, cracks are less likely to occur due to thermal shock,
Even if a crack occurs, its propagation is blocked.

【0025】ここで、この発明の遠赤外線放射体の基材
アルミニウム合金における成分組成の限定理由について
述べる。
Here, the reasons for limiting the component composition in the base aluminum alloy of the far infrared radiator of the present invention will be described.

【0026】Si:Siはこの発明において基本的に重
要な合金成分である。Siは鋳造時にその添加量に応じ
て固溶し、その固溶Siは熱処理によって金属Siとし
て析出する。この析出Si粒子は、前述のように陽極酸
化処理時に金属Si粒子として陽極酸化皮膜中に取込ま
れ、入射光に対する散乱、吸収を通じて遠赤外線放射特
性の向上に寄与するとともに、クラックの発生防止に寄
与する。さらに金属Si粒子は、前述のように皮膜内の
ポアを枝分かれ構造とすることに寄与するとともに、応
力緩和物質として機能し、これによっても遠赤外線放射
特性の向上とクラック発生防止に寄与する。基材アルミ
ニウム合金のSi量が1wt%未満では、陽極酸化皮膜中
の金属Si粒子の体積率が少なく、遠赤外線の放射特性
が不充分となる。一方Si量が3wt%以上となれば、鋳
造時の共晶Si粒子の数が多くなり、陽極酸化皮膜の耐
食性が低下してしまう。したがってSi量は1wt%以
上、3wt%未満の範囲内とした。
Si: Si is an alloy component which is basically important in the present invention. Si is solid-dissolved at the time of casting depending on the amount added, and the solid-solution Si is precipitated as metal Si by heat treatment. As described above, the precipitated Si particles are taken into the anodized film as metal Si particles during the anodizing treatment, contribute to the improvement of far infrared radiation characteristics through scattering and absorption of incident light, and prevent cracks from occurring. Contribute. Further, the metal Si particles contribute to forming the pores in the film into a branched structure as described above, and also function as a stress relaxation material, which also contributes to the improvement of far infrared radiation characteristics and the prevention of cracks. When the Si content of the base aluminum alloy is less than 1 wt%, the volume ratio of the metal Si particles in the anodized film is small and the far infrared radiation characteristics are insufficient. On the other hand, if the amount of Si is 3 wt% or more, the number of eutectic Si particles during casting increases, and the corrosion resistance of the anodized film decreases. Therefore, the amount of Si is set to be in the range of 1 wt% or more and less than 3 wt%.

【0027】基材のアルミニウム合金の成分元素として
は、上記のSiのほかは、基本的にはAlおよび不可避
的不純物とすれば良い。すなわち、Al,Si以外の元
素は不可避的不純物扱いとして、請求項2で規定する下
限値未満としても、この発明の所期の目的は達成するこ
とができる。
As the constituent elements of the aluminum alloy of the base material, basically, in addition to the above Si, Al and inevitable impurities may be used. That is, even if the elements other than Al and Si are treated as unavoidable impurities and the amount is less than the lower limit value defined in claim 2, the intended object of the present invention can be achieved.

【0028】但し、請求項2で規定しているように、強
度向上のためにFe,Mg,Cu,Mn,Ni,Cr,
V,Zr,Tiのうちの1種または2種以上を含有して
いても良い。これらの添加理由は次の通りである。
However, as defined in claim 2, in order to improve strength, Fe, Mg, Cu, Mn, Ni, Cr,
You may contain 1 type, or 2 or more types of V, Zr, and Ti. The reason for adding these is as follows.

【0029】Fe:Feは強度向上および結晶粒微細化
のために有効である。Fe量が0.05wt%未満ではそ
の効果が得られず、1.5wt%を越えれば陽極酸化皮膜
の強度と耐食性が低下する。またFe量が1.5wt%を
越えれば、SiがFeと化合してAl−Fe−Si系の
金属間化合物の量が増加し、遠赤外線放射特性が低下す
る。したがってFeを添加する場合のFe量は0.05
〜1.5wt%の範囲とする。
Fe: Fe is effective for improving strength and refining crystal grains. If the Fe content is less than 0.05 wt%, the effect cannot be obtained, and if it exceeds 1.5 wt%, the strength and corrosion resistance of the anodic oxide film are deteriorated. On the other hand, if the amount of Fe exceeds 1.5 wt%, Si combines with Fe to increase the amount of Al—Fe—Si based intermetallic compounds, which deteriorates the far infrared radiation characteristics. Therefore, the amount of Fe when adding Fe is 0.05
˜1.5 wt%.

【0030】Mg:Mgも強度向上に寄与する。Mg量
が0.05wt%未満ではその効果が得られず、一方1.
0wt%を越えればMgとSiとが結合してMg2 Siの
生成量が増加し、遠赤外線放射特性が低下する。したが
ってMgを添加する場合のMg量は0.05〜1.0wt
%の範囲内とする。
Mg: Mg also contributes to the strength improvement. If the amount of Mg is less than 0.05 wt%, the effect cannot be obtained, while 1.
If it exceeds 0 wt%, Mg and Si are combined with each other to increase the amount of Mg 2 Si produced and the far infrared radiation characteristics deteriorate. Therefore, when adding Mg, the amount of Mg should be 0.05 to 1.0 wt.
Within the range of%.

【0031】Cu:Cuの添加も強度向上に寄与する。
Cu量が0.05wt%未満ではその効果が得られず、一
方1.0wt%を越えれば鋳造性、耐食性、塑性加工性が
低下する。したがってCuを添加する場合のCu量は
0.05〜1.0wt%の範囲内とした。
Cu: The addition of Cu also contributes to the improvement of strength.
If the Cu content is less than 0.05 wt%, the effect cannot be obtained, while if it exceeds 1.0 wt%, the castability, corrosion resistance, and plastic workability deteriorate. Therefore, when Cu is added, the amount of Cu is set within the range of 0.05 to 1.0 wt%.

【0032】Mn:Mnは強度向上に寄与するととも
に、結晶粒微細化、耐熱性向上に寄与する。Mn量が
0.05wt%未満ではこれらの効果が得られず、一方
1.0wt%を越えればMnがSiと結合してAl−Mn
−Si系の金属間化合物の生成量が増加し、遠赤外線放
射特性が低下する。したがってMnを添加する場合のM
n量は0.05〜1.0wt%の範囲内とした。
Mn: Mn contributes to the improvement of strength, refinement of crystal grains, and improvement of heat resistance. If the amount of Mn is less than 0.05 wt%, these effects cannot be obtained. On the other hand, if the amount of Mn exceeds 1.0 wt%, Mn is combined with Si to form Al-Mn.
The amount of -Si-based intermetallic compound produced increases, and the far-infrared radiation characteristics deteriorate. Therefore, M when Mn is added
The amount of n was set in the range of 0.05 to 1.0 wt%.

【0033】Ni:Niも強度向上に寄与するととも
に、耐熱性向上に寄与する。Ni量が0.05wt%未満
ではこれらの効果が得られず、一方1.0wt%を越えれ
ば耐食性が低下する。したがってNiを添加する場合の
Ni量は0.05〜1.0wt%の範囲内とした。
Ni: Ni contributes not only to improving strength but also to improving heat resistance. If the amount of Ni is less than 0.05 wt%, these effects cannot be obtained, while if it exceeds 1.0 wt%, the corrosion resistance decreases. Therefore, when Ni is added, the amount of Ni is set within the range of 0.05 to 1.0 wt%.

【0034】Cr,Zr,V:これらの元素は、強度向
上に寄与するとともに、結晶粒微細化に寄与する。いず
れも0.05wt%未満ではその効果が得られず、一方
0.5wt%を越えれば粗大な金属間化合物が生成されて
かえって強度を低下させる。したがってCr,Zr,V
の1種または2種以上を添加する場合の添加量は、いず
れも単独量で0.05〜0.5wt%の範囲内とする。な
おスラブ、ビレットなどの圧延や押出、あるいは鍛造を
適用する場合は、これらの元素の単独添加量が0.3wt
%を越えれば塑性加工性が低下して製造が困難となるか
ら、単独添加量で0.3wt%以下とすることが好まし
い。
Cr, Zr, V: These elements contribute to the improvement of strength and also to the refinement of crystal grains. If the amount is less than 0.05% by weight, the effect cannot be obtained. On the other hand, if the amount is more than 0.5% by weight, a coarse intermetallic compound is produced and the strength is rather lowered. Therefore, Cr, Zr, V
In the case of adding one kind or two kinds or more, the addition amount is in the range of 0.05 to 0.5 wt% as a single amount. When rolling, extrusion, or forging of slabs, billets, etc. is applied, the single addition amount of these elements is 0.3 wt.
If it exceeds 0.1%, the plastic workability is lowered and the production becomes difficult.

【0035】Ti:Tiは鋳塊結晶粒の微細化を通じて
組織の微細化に寄与する。Ti量が0.005wt%未満
ではその効果が得られず、一方0.2wt%を越えれば粗
大な金属間化合物が生成されて好ましくない。したがっ
てTiを添加する場合のTi量は0.005〜0.2wt
%の範囲内とした。なお鋳塊結晶粒微細化のためには、
TiとともにBを共存させることが効果的である。この
場合B量が1ppm 未満ではその効果が得られず、一方1
00ppm を越えればその効果が飽和するから、Tiと併
せてBを添加する場合のB量は1〜100ppm の範囲内
とすることが好ましい。
Ti: Ti contributes to refinement of the structure through refinement of ingot crystal grains. If the Ti content is less than 0.005 wt%, the effect cannot be obtained, while if it exceeds 0.2 wt%, a coarse intermetallic compound is formed, which is not preferable. Therefore, the amount of Ti when adding Ti is 0.005-0.2 wt.
Within the range of%. In addition, in order to refine the ingot crystal grains,
It is effective to make B coexist with Ti. In this case, if the amount of B is less than 1 ppm, the effect cannot be obtained.
Since the effect is saturated if it exceeds 00 ppm, the amount of B when B is added together with Ti is preferably in the range of 1 to 100 ppm.

【0036】以上の各元素のほか、溶解時の酸化防止の
ためにBeを1〜100ppm 程度添加することは特に支
障はない。またZnは原材料にスクラップを使用した場
合に必然的に混入する元素であり、この発明の場合Zn
を積極的に添加する必要はないが、1.0wt%程度以下
であれば、特に遠赤外線放射特性等の特性に悪影響を与
えることはない。さらにその他の元素も、合計で1wt%
以下程度の微量であれば特に遠赤外線放射特性に悪影響
を及ぼすことはない。
In addition to the above elements, it is not particularly problematic to add Be in an amount of about 1 to 100 ppm for preventing oxidation during dissolution. Further, Zn is an element that is inevitably mixed when scrap is used as the raw material.
However, if the content is about 1.0 wt% or less, the characteristics such as far-infrared radiation characteristics are not adversely affected. In addition, other elements are 1wt% in total
Far-infrared radiation characteristics are not adversely affected as long as the trace amount is below.

【0037】次にこの発明の遠赤外線放射体の基材アル
ミニウム合金の組織状態、特に金属Si粒子の分散状態
について説明する。
Next, the texture state of the base aluminum alloy of the far-infrared radiator of the present invention, particularly the dispersed state of metal Si particles will be described.

【0038】既に述べたように、1wt%以上3wt%未満
のSiを含有する系のアルミニウム合金では、鋳造時に
その添加量に応じてSiが固溶する。そして鋳造後に熱
処理された場合に、その固溶SiがAlマトリックス中
から金属Siとして析出する。この析出Si粒子は、陽
極酸化処理後においてもそのまま金属Si粒子として皮
膜中に残存する。そしてこの陽極酸化皮膜中の金属Si
粒子は、赤外線放射特性や陽極酸化皮膜の耐クラック性
に大きな影響を与える。
As described above, in an aluminum alloy of a system containing 1 wt% or more and less than 3 wt% Si, Si forms a solid solution during casting depending on the amount added. Then, when heat treated after casting, the solid solution Si is precipitated as metallic Si from the Al matrix. The deposited Si particles remain in the coating as metal Si particles as they are even after the anodizing treatment. And the metallic Si in this anodized film
The particles have a great influence on the infrared radiation characteristics and the crack resistance of the anodized film.

【0039】すなわち、陽極酸化皮膜中に金属Si粒子
が分散するため、入射光が散乱、吸収されて、遠赤外線
の放射特性が向上する。さらに陽極酸化処理時における
ポアの成長過程で、ポアが金属Si粒子を避けるように
して成長するため、ポアが枝分かれ構造となり、そのた
め入射光に対する陽極酸化皮膜中での散乱、吸収が助長
され、遠赤外線放射特性が一層向上する。
That is, since the metallic Si particles are dispersed in the anodized film, incident light is scattered and absorbed, and the radiation characteristic of far infrared rays is improved. Furthermore, in the process of growing pores during anodizing treatment, the pores grow while avoiding metallic Si particles, so that the pores have a branched structure, which promotes scattering and absorption of incident light in the anodized film, and The infrared radiation characteristics are further improved.

【0040】一方、陽極酸化皮膜中の金属Si粒子は応
力の緩和点としても機能し、またポアの枝分かれ構造は
歪の吸収能が高く、したがってクラックが生じにくくな
るとともに、仮にクラックが発生してもその伝播が阻止
される。
On the other hand, the metal Si particles in the anodic oxide film also function as stress relaxation points, and the branched structure of the pores has a high strain absorbing ability, so that cracks are less likely to occur, and if cracks occur, Its transmission is blocked.

【0041】ここで、良好な遠赤外線の放射特性を得る
ためには、析出した金属Si粒子のサイズ(粒径)とそ
の析出量が重要である。すなわち、先ず全析出Si粒子
のうち、個数にして80%以上のものが0.05μm以
上の粒径を有することが必要である。析出Si粒子の径
が0.05μm未満の場合には、遠赤外線の散乱吸収が
不充分であって、良好な放射特性が得られなくなる。ま
た0.05μm以上の析出Si粒子が存在しても、その
個数割合が80%より少なければ、前記同様な問題が生
じる。したがってこの発明の所期の目的を達成するため
には、粒径が0.05μm以上の析出Si粒子が全析出
Si粒子の個数の80%以上を占めることが必須であ
る。
Here, in order to obtain good far infrared radiation characteristics, the size (particle size) of the deposited metal Si particles and the amount of deposition thereof are important. That is, first, it is necessary that 80% or more of all the precipitated Si particles have a particle size of 0.05 μm or more. If the diameter of the precipitated Si particles is less than 0.05 μm, the far infrared absorption and absorption are insufficient, and good radiation characteristics cannot be obtained. Even if precipitated Si particles of 0.05 μm or more exist, the same problem as described above occurs if the number ratio is less than 80%. Therefore, in order to achieve the intended object of the present invention, it is essential that the precipitated Si particles having a particle size of 0.05 μm or more account for 80% or more of the total number of precipitated Si particles.

【0042】さらに析出Si粒子の粒径のみならず、そ
の析出量も重要である。Al−Si系の合金では、Si
は一般に鋳造の段階で生成される晶出Siの形態と、そ
の後の熱処理で析出される析出Siの形態と、固溶Si
の形態で存在する。鋳造時の段階では晶出Siと固溶S
iの状態で存在するが、このうち固溶Siからは、その
後の熱処理によって金属Siが析出する。鋳造時に固溶
するSiの量は、ほぼ0.5wt%以上である。一方本発
明者等の研究によれば、遠赤外線を有効に放射するため
に必要な析出Siの量はほぼ0.5wt%であることが確
認されている。したがって析出金属Si粒子の量が合金
全重量に対し0.5wt%以上となるように定めれば良
い。しかしながら、実際の合金においては、析出Si粒
子の量を直接調べることは困難である。すなわち、合金
中の金属Siの総量は図1に示すような塩酸不溶性のS
i分析によって可能であるが、この場合の金属Siに
は、析出Siのみならず、鋳造時の大きな晶出Siも含
まれ、この大きな晶出Siは遠赤外線放射特性の向上に
寄与しないから、金属Siのうち晶出Siは対象外とす
る必要がある。そこで先ず鋳造のままで金属Siを分析
して晶出Si量を求め、その後、Si析出のための熱処
理を行なってから、改めて金属Siの分析を行なえば、
その差を求めることによって析出Siの量を求めること
も可能であると考えられる。しかしながら、一般には鋳
造後の段階と熱処理後の段階とで同一箇所での分析を行
なうことは困難であり、そのため上述のようにして求め
た析出Si量を直接遠赤外線放射特性の目安にすること
はできない。そこで本発明者等は、Si析出後の残留固
溶Si量によって析出Si量を推定することを試みた。
その結果、全含有Si量に応じて残留固溶Si量がある
関係を満たす場合に、析出Si量がほぼ0.5wt%以上
となり、充分に優れた遠赤外線放射特性が得られること
を見出した。
Further, not only the particle size of the precipitated Si particles but also the amount of precipitation thereof is important. In Al-Si alloys, Si
Is generally the morphology of crystallized Si produced in the casting stage, the morphology of precipitated Si deposited in the subsequent heat treatment, and the solid solution Si.
Exists in the form of. At the stage of casting, crystallized Si and solid solution S
Although existing in the state of i, metallic Si is precipitated from the solid solution Si by the subsequent heat treatment. The amount of Si that forms a solid solution during casting is approximately 0.5 wt% or more. On the other hand, according to the research conducted by the present inventors, it has been confirmed that the amount of precipitated Si required to effectively radiate far infrared rays is approximately 0.5 wt%. Therefore, the amount of precipitated metal Si particles may be set to 0.5 wt% or more with respect to the total weight of the alloy. However, in an actual alloy, it is difficult to directly investigate the amount of precipitated Si particles. That is, the total amount of metallic Si in the alloy is S insoluble in hydrochloric acid as shown in FIG.
Although it is possible by i analysis, the metal Si in this case includes not only precipitated Si but also large crystallized Si at the time of casting, and since this large crystallized Si does not contribute to the improvement of far infrared radiation characteristics, It is necessary to exclude crystallized Si out of metallic Si. Therefore, first, the metal Si is analyzed in the as-cast state to obtain the amount of crystallized Si, after which the heat treatment for Si precipitation is performed, and then the metal Si is analyzed again,
It is considered possible to obtain the amount of precipitated Si by obtaining the difference. However, in general, it is difficult to perform the analysis at the same place after the casting and after the heat treatment. Therefore, the amount of precipitated Si obtained as described above should be used as a guide for the far-infrared radiation characteristics. I can't. Therefore, the present inventors tried to estimate the amount of precipitated Si by the amount of residual solid solution Si after Si precipitation.
As a result, it was found that when the residual solid solution Si amount depends on the total Si amount, the precipitated Si amount becomes approximately 0.5 wt% or more, and sufficiently excellent far infrared radiation characteristics can be obtained. .

【0043】すなわち、Al−Si系の合金において
は、Si量がほぼ1.5wt%以上で共晶Siが晶出する
ことに着目し、Si量1.5wt%を境界として添加Si
量(全Si含有量)と、残留固溶Si量と、析出Si量
との関係を研究した。なおここで、残留固溶Si量は、
全Si含有量(Si添加量)から、金属Si量(例えば
図1に示す方法による)と、総金属間化合物中のSi量
(例えば図2に示す方法による)とを差引いて求めた。
これは、Siは金属Siとして晶出、析出するほか、F
e,Mn,Mg等と化合物を生成するのが通常であり、
したがって全Si含有量から金属Si量を差引いた値と
残留固溶Si量との間には総金属間化合物中のSi量に
相当する分だけ誤差が生じるからである。
That is, in the Al--Si type alloy, paying attention to the fact that the eutectic Si crystallizes out when the Si amount is approximately 1.5 wt% or more, and the Si content of 1.5 wt% is added as a boundary.
The relationship between the amount (total Si content), the amount of residual solid solution Si, and the amount of precipitated Si was studied. Here, the residual solid solution Si amount is
It was determined by subtracting the metallic Si amount (for example, by the method shown in FIG. 1) and the Si amount in the total intermetallic compound (for example, by the method shown in FIG. 2) from the total Si content (Si added amount).
This is because Si crystallizes and precipitates as metallic Si, and F
It is common to form compounds with e, Mn, Mg, etc.,
Therefore, an error occurs between the value obtained by subtracting the metallic Si amount from the total Si content and the residual solid solution Si amount by the amount corresponding to the Si amount in the total intermetallic compound.

【0044】このようにして残留固溶Si量と全Si含
有量との関係を調べた結果、先ずSi含有量が1wt%以
上、1.5wt%未満の場合には、 残留固溶Si量(wt%)≦全含有Si量(wt%)−0.
5 を満たし、またSi含有量が1.5wt%以上、3.0wt
%未満の場合には、 残留固溶Si量(wt%)≦1.0 を満たしていれば、析出Siの総量が0.5wt%以上と
なり、優れた遠赤外線放射特性が得られることを見出し
た。すなわち、これらの関係を満たさない場合には、析
出Si量が0.5wt%より少なくなり、たとえ析出Si
粒子のサイズが0.05μm以上であっても遠赤外線放
射特性が不充分となってしまうのである。
As a result of investigating the relationship between the residual solid solution Si amount and the total Si content in this manner, first, when the Si content is 1 wt% or more and less than 1.5 wt%, the residual solid solution Si amount ( wt%) ≤total Si content (wt%)-0.
5 and the Si content is 1.5 wt% or more, 3.0 wt
%, If the amount of residual solid solution Si (wt%) ≦ 1.0 is satisfied, the total amount of precipitated Si is 0.5 wt% or more, and excellent far infrared radiation characteristics can be obtained. It was That is, when these relationships are not satisfied, the amount of precipitated Si becomes less than 0.5 wt%, and
Even if the size of the particles is 0.05 μm or more, the far infrared radiation characteristics are insufficient.

【0045】前述のような析出Si粒子の析出状態を得
るためには、鋳造後、あるいはそれよりさらに後の段階
で、析出処理を行なう必要がある。すなわち、この発明
の遠赤外線放射体の製造方法では、基材は、前述のよう
な成分組成の合金を鋳造し、あるいはさらに鋳造後に必
要に応じて熱間鍛造、熱間押出、熱間圧延等の熱間加工
および/または冷間圧延等の冷間加工を行なって得るこ
とができるが、その基材の製造過程における鋳造後の段
階に析出処理を施したり、また鋳造後に熱間加工および
/または冷間加工を行なう場合には、熱間加工の後、も
しくは冷間加工の中途、あるいは冷間加工の後に析出処
理を行なえば良い。
In order to obtain the above-mentioned precipitation state of the precipitated Si particles, it is necessary to perform the precipitation treatment after the casting or at a later stage. That is, in the method for producing a far infrared radiator of the present invention, the base material is cast from an alloy having the above-described composition, or after casting, if necessary, hot forging, hot extrusion, hot rolling, etc. It can be obtained by carrying out hot working and / or cold working such as cold rolling. However, precipitation treatment is performed at a stage after casting in the manufacturing process of the base material, or hot working and / or post casting is performed. Alternatively, when cold working is performed, the precipitation treatment may be performed after hot working, in the middle of cold working, or after cold working.

【0046】この析出処理は、250〜550℃の範囲
内の温度に0.5〜24時間加熱すれば良い。析出処理
の温度が250℃未満では、析出Si粒子のサイズが小
さくなって0.05μm未満となりやすく、一方550
℃を越えれば一旦析出したSiの再固溶が生じて、Si
析出量の絶対量が不足する。また析出処理の時間が0.
5時間未満では固溶Siから金属Siを充分に析出させ
ることが困難となり、一方24時間を越えても経済的に
無駄となるだけである。なおこのような析出処理は、独
立して行なっても、あるいは他の熱処理と兼ねて行なっ
ても良い。すなわち鋳造後に熱間加工を行なう場合に
は、その熱間加工の前の鋳塊加熱と兼ねて析出処理を行
なうこともでき、あるいは熱間加工と冷間加工との間や
冷間加工の中途において中間焼鈍を行なう場合にはその
中間焼鈍と兼ねて析出処理を行なうことができ、さらに
冷間加工の後に最終焼鈍を行なう場合は、その最終焼鈍
と兼ねて析出処理を行なうこともでき、要は前述のよう
な析出Si粒子の析出状態が得られるような条件で熱処
理が行なわれれば良い。
This precipitation treatment may be performed by heating to a temperature in the range of 250 to 550 ° C. for 0.5 to 24 hours. If the temperature of the precipitation treatment is less than 250 ° C., the size of the precipitated Si particles becomes small and the particle size tends to be less than 0.05 μm.
If the temperature exceeds ℃, re-dissolution of the once precipitated Si occurs,
The absolute amount of precipitation is insufficient. In addition, the time for the precipitation treatment is 0.
If it is less than 5 hours, it becomes difficult to sufficiently deposit metallic Si from the solid solution Si, while if it exceeds 24 hours, it is economically wasteful. Such precipitation treatment may be performed independently or may be performed in combination with other heat treatment. That is, when hot working is performed after casting, the precipitation treatment can also be performed in combination with ingot heating before the hot working, or between hot working and cold working or during cold working. In the case of performing the intermediate annealing in, the precipitation treatment can be performed in combination with the intermediate annealing, and in the case of performing the final annealing after the cold working, the precipitation treatment can be performed in combination with the final annealing. The heat treatment may be performed under the condition that the above-described precipitation state of precipitated Si particles is obtained.

【0047】次にアルミニウム合金基材に施す陽極酸化
処理について説明する。
Next, the anodic oxidation treatment applied to the aluminum alloy substrate will be described.

【0048】前述のような化学成分と金属組織を有する
アルミニウム合金基材に陽極酸化処理を施せば、優れた
遠赤外線放射特性を示す陽極酸化皮膜が得られる。すな
わち陽極酸化処理時には、金属Si粒子が皮膜中にその
まま残存した状態で陽極酸化皮膜が成長する。そのため
皮膜中のポアの成長が金属Si粒子により妨げられ、枝
分れした微細なポアを有する多孔質の皮膜が生成され
る。さらに陽極酸化皮膜中にそのまま存在する金属Si
粒子と前述の枝分れした微細なポアが入射光を散乱吸収
し、その結果遠赤外線の放射特性が良好となる。そして
また前述の枝分れした微細なポア構造と皮膜中の金属S
i粒子が熱応力の緩和点として機能し、そのため皮膜に
クラックが生じにくくなり、500℃程度の高温に至る
までクラックが生じることがなく使用可能となる。
By subjecting the aluminum alloy substrate having the above-mentioned chemical composition and metal structure to anodizing treatment, an anodized film exhibiting excellent far-infrared radiation characteristics can be obtained. That is, during the anodizing treatment, the anodized film grows with the metallic Si particles remaining in the film as they are. Therefore, the growth of pores in the film is hindered by the metal Si particles, and a porous film having branched fine pores is produced. Furthermore, metallic Si that is present in the anodized film as it is
The particles and the fine pores that are branched as described above scatter and absorb the incident light, and as a result, the far infrared radiation characteristics are improved. And again, the above-mentioned branched fine pore structure and metal S in the film
The i-particles function as a relaxation point for thermal stress, so that cracks are less likely to occur in the film, and the film can be used without cracking up to a high temperature of about 500 ° C.

【0049】ここで陽極酸化皮膜の膜厚は10μm未満
とする。すなわち種々の使用環境に調和した淡い灰色の
色調とするためには、膜厚は10μm未満とする必要が
あり、また膜厚が10μm未満であれば、ドリル加工等
の加工を行なっても皮膜の割れが生じにくくなり、また
薄い箔として用いる場合も、充分な靭性を確保すること
ができる。そしてこのように膜厚が10μm未満であっ
ても、基材として前述のようなアルミニウム合金を用い
ることによって、広い波長域での安定した遠赤外線放射
特性を得ることができる。なおここで陽極酸化皮膜の灰
色とは、通常はマルセル値で明度4.5を越える値を示
すものであれば良い。
Here, the film thickness of the anodized film is set to less than 10 μm. That is, in order to obtain a light gray color tone that is in harmony with various usage environments, it is necessary that the film thickness be less than 10 μm. Cracking is less likely to occur, and sufficient toughness can be secured even when used as a thin foil. Even if the film thickness is less than 10 μm, stable far-infrared radiation characteristics in a wide wavelength range can be obtained by using the above-described aluminum alloy as the base material. Here, the gray color of the anodic oxide film may be any color that normally exhibits a Marcel value of more than 4.5.

【0050】なお陽極酸化処理の条件は特に限定される
ものではなく、硫酸、シュウ酸などの無機酸、あるいは
有機酸、さらにはこれらの混合酸などの電解浴を用い、
直流、交流、あるいは交直併用、交直重畳波形など、任
意の波形を用いて陽極酸化処理を行なえば良い。但し、
経済性や作業効率の観点からは、硫酸浴で直流電流を用
いることが好ましい。また陽極酸化処理の前には脱脂、
苛性エッチング等の前処理を行なうのが一般的であり、
苛性エッチングを行なった場合には引続いて硝酸等の酸
でデスマット処理を施すのが一般的である。そのほか必
要に応じて、切削加工、酸洗浄、化学研磨処理、ヘアラ
イン加工、シヨットブラスト等の機械的前処理などを実
施しても良いことはもちろんである。
The conditions of the anodic oxidation treatment are not particularly limited, and an inorganic acid such as sulfuric acid and oxalic acid, an organic acid, or an electrolytic bath of a mixed acid thereof is used.
The anodic oxidation treatment may be performed using an arbitrary waveform such as direct current, alternating current, alternating-current / direct-current combination, alternating-current / direct current superimposed waveform, or the like. However,
From the viewpoint of economy and work efficiency, it is preferable to use a direct current in a sulfuric acid bath. Also, degreasing before anodizing,
It is common to perform pretreatment such as caustic etching,
When caustic etching is performed, it is common to subsequently perform desmutting treatment with an acid such as nitric acid. In addition, it is needless to say that mechanical pretreatment such as cutting, acid cleaning, chemical polishing, hairline processing, and sailboat blasting may be carried out if necessary.

【0051】[0051]

【実施例】【Example】

実施例1 表1の合金番号1〜3に示す成分組成の合金について2
0mm×200mm×200mmの形状に砂型鋳造した。なお
鋳造に先立って、予め脱ガス処理を施した。得られた鋳
物のうち、一部は鋳造のままの材料とし、残りのものに
ついては400℃もしくは150℃で5時間の加熱処理
を施した後、10℃/hrの冷却速度で徐冷した。
Example 1 Alloys having compositional compositions shown in alloy numbers 1 to 3 in Table 1 2
A sand mold was cast into a shape of 0 mm x 200 mm x 200 mm. Prior to casting, degassing treatment was performed in advance. A part of the obtained casting was used as it was, and the rest was heat-treated at 400 ° C. or 150 ° C. for 5 hours, and then gradually cooled at a cooling rate of 10 ° C./hr.

【0052】各材料について表面を機械的に切削した
後、10%苛性ソーダで60℃×5分間エッチングし、
水洗後30%硝酸を用いてデスマット処理した。その
後、15%濃度の硫酸浴を用い、電流密度1.5A/dm
2 、電解温度20℃で陽極酸化処理を施して、膜厚7μ
mの陽極酸化皮膜を形成した。
After mechanically cutting the surface of each material, etching was performed with 10% caustic soda at 60 ° C. for 5 minutes,
After washing with water, desmutting was performed using 30% nitric acid. Then, using a 15% sulfuric acid bath, the current density is 1.5 A / dm
2. Anodizing treatment at electrolysis temperature 20 ℃, film thickness 7μ
m anodized film was formed.

【0053】陽極酸化処理後の各材料についてマンセル
明度を測定するとともに、300℃での分光放射率を測
定した。ここで、従来の一般的な陽極酸化皮膜の遠赤外
線放射特性としては、通常3〜7μmの波長での分光放
射率が劣っているところから、その範囲内の代表的な波
長6μmでの分光放射率を測定した。また各材料のSi
析出物サイズおよび固溶Si量を調べた。Si析出物サ
イズは先ず光学顕微鏡を用いて、さらに光学顕微鏡では
判定し難い0.05μmに近い析出物が析出していると
思われる場合には、透過電子顕微鏡を用いて判別した。
また固溶Si量は、材料中の金属Si量を図1に示す方
法によって分析し、また全金属間化合物中のSi量を図
2に示すフェノール残渣法で分析し、全Si含有量(S
i添加量)から前者の金属Si量と後者の金属間化合物
中のSi量とを差引いて求めた。これらの結果を表2中
に示す。なおここで、マンセル明度としてはその値が
4.5を越える場合に、使用環境に調和した灰色〜白色
に近い色調を有していると判定できる。また波長6μm
での分光放射率が0.7以上の値となっている場合に良
好な遠赤外線放射特性を有していると判定できる。
The Munsell brightness was measured for each material after the anodizing treatment, and the spectral emissivity at 300 ° C. was measured. Here, as the far-infrared radiation characteristics of the conventional general anodic oxide film, since the spectral emissivity at a wavelength of 3 to 7 μm is usually inferior, the spectral radiation at a typical wavelength of 6 μm within that range is obtained. The rate was measured. In addition, Si of each material
The precipitate size and the amount of solid solution Si were investigated. The Si precipitate size was first determined using an optical microscope, and further, when it was considered that a precipitate near 0.05 μm, which was difficult to determine by an optical microscope, was deposited, it was determined using a transmission electron microscope.
For the amount of solid solution Si, the amount of metallic Si in the material is analyzed by the method shown in FIG. 1, and the amount of Si in the total intermetallic compound is analyzed by the phenol residue method shown in FIG.
It was determined by subtracting the former amount of metallic Si and the latter amount of Si in the intermetallic compound from (i addition amount). The results are shown in Table 2. Here, when the value of the Munsell lightness exceeds 4.5, it can be determined that the Munsell lightness has a color tone close to gray to white in harmony with the use environment. Wavelength 6 μm
When the spectral emissivity in 1 is 0.7 or more, it can be determined that the far-infrared radiation characteristic is good.

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【表2】 [Table 2]

【0056】実施例1において、合金番号1,2の40
0℃加熱材はSiに関する条件がこの発明で規定する条
件範囲を満たしており、これらはいずれもマンセル明
度、分光放射率が所定の値を満たすこと、すなわち目視
の色調が灰色〜白色に近い色調となっており、かつ遠赤
外線放射特性が優れていることが判る。また、これらの
合金番号1,2の400℃加熱材は、陽極酸化処理後5
00℃に加熱した後表面を目視で観察しても、クラック
は観察されなかった。
In Example 1, alloy Nos. 1 and 40
In the 0 ° C. heating material, the conditions regarding Si satisfy the condition range specified in the present invention, and all of these have Munsell brightness and spectral emissivity satisfying predetermined values, that is, the visual color tone is close to gray to white. And the far infrared radiation characteristics are excellent. In addition, these 400 ° C. heating materials of Alloy Nos. 1 and 2 are 5 after the anodizing treatment.
No crack was observed when the surface was visually observed after heating to 00 ° C.

【0057】しかしながら、合金番号1,2の鋳造のま
まの材料、および合金番号3の各材料は、陽極酸化処理
後に500℃に加熱した後表面を観察すれば、目視でも
多数のクラックが認められた。なお合金番号1,2,3
の150℃加熱材は、光学顕微鏡で観察する限りでは、
デンドライトの部分に析出Siは認められなかった。そ
こで、電子顕微鏡によりこの部分の観察を行なったとこ
ろ、0.01〜0.03μmもしくは0.01〜0.0
2μmの微細な析出Si粒子の存在が認められた。これ
らの微細な析出Si粒子は、たとえ析出していても、遠
赤外線の吸収点として働かないため、遠赤外線放射特性
は向上していない。
However, the as-cast materials of Alloy Nos. 1 and 2 and the alloys of No. 3 each had a large number of cracks visually when the surface was observed after heating to 500 ° C. after anodizing. It was Alloy numbers 1, 2, 3
As long as the 150 ° C heating material is observed with an optical microscope,
No precipitated Si was found in the dendrite portion. Then, when this portion was observed with an electron microscope, it was 0.01 to 0.03 μm or 0.01 to 0.0
The presence of fine precipitated Si particles of 2 μm was observed. Even if these fine deposited Si particles are deposited, they do not act as absorption points for far infrared rays, and therefore far infrared radiation characteristics are not improved.

【0058】実施例2 表1の合金番号4に示される成分組成の合金について、
400mm×1000mm×3500mmの圧延用鋳塊(スラ
ブ)をDC鋳造した。得られたスラブを面削した後、4
00℃に2時間加熱してから熱間圧延した。熱間圧延を
4mm厚まで行なった後、冷間圧延にて1mm厚まで圧延
し、これを350℃×2時間焼鈍した後、実施例1と同
様にして陽極酸化処理を施した。
Example 2 Regarding the alloy having the composition shown in alloy No. 4 in Table 1,
A 400 mm x 1000 mm x 3500 mm rolling ingot (slab) was DC cast. After chamfering the obtained slab, 4
It was heated to 00 ° C. for 2 hours and then hot rolled. After hot rolling to a thickness of 4 mm, it was cold rolled to a thickness of 1 mm, annealed at 350 ° C. for 2 hours, and then anodized in the same manner as in Example 1.

【0059】陽極酸化処理後の材料について、実施例1
と同様な測定、組織観察を行なった。その結果を表2中
に示す。
Regarding the material after anodizing treatment, Example 1
The same measurement and structure observation were performed. The results are shown in Table 2.

【0060】表2に示すように、実施例2の場合はスラ
ブ加熱および熱間圧延・冷間圧延後の焼鈍を経た圧延板
であり、製造工程中の熱処理(スラブ加熱もしくは焼
鈍)の条件を適正化することによってこれらの熱処理を
析出処理と兼ねさせて、適正なSi析出状態を得ること
ができた。そしてこの場合も遠赤外線放射特性が優れて
おり、また陽極酸化処理後に500℃に加熱した後、表
面を目視で観察してもクラックは観察されなかった。
As shown in Table 2, in the case of Example 2, the rolled plate was annealed after slab heating and hot rolling / cold rolling, and the conditions of heat treatment (slab heating or annealing) in the manufacturing process were changed. By optimizing these heat treatments, these heat treatments could also serve as precipitation treatments, and a proper Si precipitation state could be obtained. Also in this case, far-infrared radiation characteristics were excellent, and no crack was observed even when the surface was visually observed after heating to 500 ° C. after the anodizing treatment.

【0061】実施例3 表1の合金番号5,6に示される成分組成の合金を水冷
ロール間に給湯し、厚さ7mm×幅900mmの薄板連続鋳
造圧延コイルを鋳造した。このコイルを引続き2mm厚ま
で冷間圧延し、最終焼鈍として390℃×2時間加熱し
た。得られた材料について実施例1と同様にして陽極酸
化処理を施した。陽極酸化処理後の各材料について、実
施例1と同様にして測定、組織観察を行なった。その結
果を表2中に示す。
Example 3 Alloys having compositional compositions shown by alloy numbers 5 and 6 in Table 1 were heated between water-cooled rolls to cast a thin plate continuous casting and rolling coil having a thickness of 7 mm and a width of 900 mm. This coil was subsequently cold-rolled to a thickness of 2 mm and heated at 390 ° C. for 2 hours as final annealing. The obtained material was anodized in the same manner as in Example 1. For each material after anodizing treatment, measurement and structure observation were performed in the same manner as in Example 1. The results are shown in Table 2.

【0062】この実施例3の場合は、冷間圧延後の最終
焼鈍が析出処理を兼ねており、したがって本発明成分組
成範囲内の合金番号5の材料を用いた場合には最終焼鈍
によって適切なSi析出状態が得られていた。そしてこ
の合金番号5の材料では、陽極酸化処理後に500℃に
加熱した後、表面を目視で観察しても、クラックは観察
されなかった。一方合金番号6の材料は、特開平4−1
10493号において開示したAl−Mn系の合金を用
いた比較材料であり、この場合も500℃に加熱した後
にクラックは観察されなかったが、Si含有量が少ない
ため、適切なSi析出状態は得られなかった。またこの
実施例3による合金番号5,6の材料について、2.5
〜25μmの波長での分光放射率曲線を図3に示す。図
3から明らかなように、合金番号5,6のいずれの材料
とも、7μm以下の波長域での放射率の低下は認められ
なかったが、合金番号5の材料は、全般的に合金番号6
の材料よりも放射率が高いことが確認された。なお図3
には、前述の実施例1における合金番号3の純Al系の
合金を用いた比較材料(但し砂金鋳造のままの材料)に
ついての2.5〜25μmの分光放射率曲線も併せて示
す。この比較材料の場合には、全般的に放射率が低いば
かりでなく、特に6.5μm以下の波長域で急激に放射
率が低下していることが判る。
In the case of Example 3, the final annealing after cold rolling also serves as a precipitation treatment. Therefore, when the material of Alloy No. 5 within the composition range of the composition of the present invention is used, the final annealing is appropriate. A Si precipitation state was obtained. With the material of Alloy No. 5, no crack was observed even when the surface was visually observed after heating to 500 ° C. after the anodizing treatment. On the other hand, the material of Alloy No. 6 is disclosed in JP-A-4-1-1.
This is a comparative material using an Al-Mn-based alloy disclosed in No. 10493. In this case as well, no crack was observed after heating to 500 ° C, but an appropriate Si precipitation state was obtained because the Si content was small. I couldn't do it. Further, regarding the materials of alloy numbers 5 and 6 according to this Example 3, 2.5
The spectral emissivity curve at a wavelength of ~ 25 μm is shown in FIG. As is clear from FIG. 3, no decrease in emissivity was observed in the wavelength range of 7 μm or less with any of the alloys Nos. 5 and 6, but the alloy No. 5 generally had the alloy No. 6
It was confirmed that the emissivity was higher than that of the material. Figure 3
In addition, a spectral emissivity curve of 2.5 to 25 μm for a comparative material using the pure Al-based alloy of Alloy No. 3 in Example 1 described above (however, as-cast material) is also shown. In the case of this comparative material, it is found that not only the emissivity is generally low, but also the emissivity is drastically decreased particularly in the wavelength range of 6.5 μm or less.

【0063】以上のような各実施例から、この発明で規
定している成分組成範囲内の合金について、前述のよう
なSi析出条件を満たしていれば、陽極酸化皮膜の厚み
が10μm未満でも、優れた遠赤外線放射特性を示し、
しかも500℃に加熱しても陽極酸化皮膜にクラックが
生じず、さらに陽極酸化皮膜の膜厚を10μm未満とす
ることによって、種々の使用環境に調和した灰色〜白色
に近い色調が得られることが明らかである。そしてま
た、鋳造、鍛造、圧延、押出し等の任意の製造手段で、
優れた遠赤外線放射特性を有する材料の製造が可能であ
ることも明らかである。
From the above examples, if the alloys within the composition range defined in the present invention satisfy the above Si precipitation conditions, even if the thickness of the anodic oxide film is less than 10 μm, Shows excellent far infrared radiation characteristics,
Moreover, even if the anodic oxide film is heated to 500 ° C., cracks do not occur, and by setting the thickness of the anodic oxide film to less than 10 μm, it is possible to obtain a color tone close to gray to white in harmony with various usage environments. it is obvious. And again, by any manufacturing means such as casting, forging, rolling, extrusion,
It is also clear that it is possible to produce materials with excellent far infrared radiation properties.

【0064】[0064]

【発明の効果】この発明の遠赤外線放射体は、陽極酸化
皮膜の膜厚が10μm未満と比較的薄いにもかかわら
ず、良好な優れた遠赤外線放射特性を有し、特に従来の
アルミニウムの陽極酸化皮膜では劣るとされていた3〜
7μmの波長域における放射特性も優れており、しかも
500℃程度の高温まで熱歪によるクラックが陽極酸化
皮膜に生じることがなく、そのため耐熱性が良好であっ
て500℃程度までの高温での遠赤外線放射体として有
効であり、さらには、表面の色調が灰色から白色に近い
色調であるため、種々の使用環境において周囲の色調と
調和させることができるとともに、汚れの付着も容易に
判別できるため、食品加熱等、衛生面が要求される用途
にも適しており、また陽極酸化皮膜の膜厚が小さいた
め、ドリル加工等の加工時に皮膜が割れるおそれも少な
く、さらには陽極酸化処理に要するコストも低減され
る。そしてまたこの発明の遠赤外線放射体は、鋳造、鍛
造、圧延、押出し等の任意の製造手段で製造することが
でき、したがって用途や使用箇所に応じて任意の形状の
遠赤外線放射体を得ることができるとともに、複雑な形
状の放射体も容易に得ることができる。以上のようにこ
の発明の遠赤外線放射体は、各種の優れた長所を有して
おり、したがって基材アルミニウム合金が軽量であるこ
とによる軽量性の利点と合せて、極めて広範囲で遠赤外
線放射体を実用に供することが可能となる。
INDUSTRIAL APPLICABILITY The far-infrared radiator of the present invention has good far-infrared radiation characteristics despite the fact that the anodized film has a relatively small thickness of less than 10 μm. It was said that the oxide film was inferior 3 ~
It has excellent radiation characteristics in the wavelength range of 7 μm, and cracks due to thermal strain do not occur in the anodic oxide film up to a high temperature of about 500 ° C. Therefore, it has good heat resistance and long temperature at a temperature of up to about 500 ° C. It is effective as an infrared radiator, and since the surface color tone is close to gray to white, it can be harmonized with the surrounding color tone in various usage environments, and stains can be easily distinguished. It is also suitable for applications requiring hygiene such as food heating, and because the thickness of the anodized film is small, there is less risk of the film cracking during drilling and other processing, and the cost required for anodizing treatment. Is also reduced. Further, the far-infrared radiator of the present invention can be manufactured by any manufacturing means such as casting, forging, rolling, extrusion, etc. Therefore, a far-infrared radiator having an arbitrary shape can be obtained according to the application and the place of use. Besides, it is possible to easily obtain a radiator having a complicated shape. As described above, the far-infrared radiator of the present invention has various excellent merits, and therefore the far-infrared radiator has an extremely wide range in combination with the advantage of lightness due to the light weight of the base aluminum alloy. Can be put to practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルミニウム合金における金属Si量を分析す
るための方法の一例を示すフローチャートである。
FIG. 1 is a flowchart showing an example of a method for analyzing the amount of metallic Si in an aluminum alloy.

【図2】アルミニウム合金における全金属間化合物中の
Si量を分析する方法の一例を示すフローチャートであ
る。
FIG. 2 is a flowchart showing an example of a method for analyzing the amount of Si in all intermetallic compounds in an aluminum alloy.

【図3】実施例3の合金番号5,6の各材料、および実
施例1の合金番号3の鋳造のままの材料についての分光
放射率曲線を示すグラフである。
3 is a graph showing a spectral emissivity curve for each material of alloy numbers 5 and 6 of Example 3 and an as-cast material of alloy number 3 of Example 1. FIG.

フロントページの続き (72)発明者 前嶋 正受 東京都江東区木場1丁目5番1号 株式会 社フジクラ内Front page continuation (72) Inventor Masakazu Maejima 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si1wt%以上3wt%未満を含有し、残
部がAlおよび不可避的不純物よりなる合金を基材と
し、その基材の表面に膜厚10μm未満の灰色の陽極酸
化皮膜が形成されていることを特徴とする遠赤外線放射
体。
1. A base material is an alloy containing Si of 1 wt% or more and less than 3 wt%, the balance being Al and inevitable impurities, and a gray anodic oxide film having a thickness of less than 10 μm is formed on the surface of the base material. Far infrared radiator characterized by being present.
【請求項2】 Si1wt%以上3wt%未満を含有し、か
つFe0.05〜1.5wt%、Mg0.05〜1.0wt
%、Cu0.05〜1.0wt%、Mn0.05〜1.0
wt%、Ni0.05〜1.0wt%、Cr0.05〜0.
5wt%、V0.05〜0.5wt%、Zr0.05〜0.
5wt%、Ti0.005〜0.2wt%のうちの1種また
は2種以上を含有し、残部がAlおよび不可避的不純物
よりなる合金を基材とし、その基材の表面に膜厚10μ
m未満の灰色の陽極酸化皮膜が形成されていることを特
徴とする遠赤外線放射体。
2. Si 1 wt% or more and less than 3 wt%, Fe0.05-1.5 wt%, Mg0.05-1.0 wt
%, Cu 0.05 to 1.0 wt%, Mn 0.05 to 1.0
wt%, Ni0.05-1.0 wt%, Cr0.05-0.
5 wt%, V0.05-0.5 wt%, Zr0.05-0.
An alloy containing 5 wt% or 0.005 to 0.2 wt% of Ti 0.005 to 0.2 wt% and the balance of Al and inevitable impurities is used as a base material, and the film thickness is 10 μm on the surface of the base material.
A far-infrared radiator having a gray anodic oxide coating of less than m.
【請求項3】 前記基材における全析出Si粒子のう
ち、個数にして80%以上の析出Si粒子のサイズが
0.05μm以上であり、しかも残留固溶Si量がSi
含有量に応じて、Si含有量が1wt%以上1.5wt%未
満の場合は 残留固溶Si量(wt%)≦Si含有量(wt%)−0.5 を満たし、またSi含有量が1.5wt%以上3wt%未満
の場合は 残留固溶Si量(wt%)≦1 を満たしていることを特徴とする請求項1もしくは請求
項2に記載の遠赤外線放射体。
3. Of the total precipitated Si particles in the base material, 80% or more of the precipitated Si particles have a size of 0.05 μm or more, and the amount of residual solid solution Si is Si.
Depending on the content, when the Si content is 1 wt% or more and less than 1.5 wt%, the residual solid solution Si amount (wt%) ≦ Si content (wt%) − 0.5 is satisfied, and the Si content is The far-infrared radiator according to claim 1 or 2, wherein the content of residual solid solution Si (wt%) ≤ 1 is satisfied when the content is 1.5 wt% or more and less than 3 wt%.
【請求項4】 Si1wt%以上3wt%未満を含有し、さ
らに必要に応じてFe0.05〜1.5wt%、Mg0.
05〜1.0wt%、Cu0.05〜1.0wt%、Mn
0.05〜1.0wt%、Ni0.05〜1.0wt%、C
r0.05〜0.5wt%、V0.05〜0.5wt%、Z
r0.05〜0.5wt%、Ti0.005〜0.2wt%
のうちの1種または2種以上を含有し、残部がAlおよ
び不可避的不純物よりなる合金を鋳造し、さらに必要に
応じて熱間加工および/または冷間加工を施して所定の
寸法の基材を得、その後陽極酸化処理を施して表面に1
0μm未満の陽極酸化皮膜を形成するにあたり、前記鋳
造の後、もしくは熱間加工の後、または冷間加工の中途
もしくは後に、250〜550℃の範囲内の温度に加熱
することによって、Siを、全析出Si粒子のうち個数
にして80%以上の析出Si粒子が0.05μm以上で
あってしかも残留固溶Si量がSi含有量に応じて、そ
のSi含有量が1wt%以上1.5wt%未満の場合には 残留固溶Si量(wt%)≦Si含有量(wt%)−0.5 を満たすように、またSi含有量が1.5wt%以上3wt
%未満の場合には 残留固溶Si量(wt%)≦1 を満たすように、析出させることを特徴とする遠赤外線
放射体の製造方法。
4. Si is contained in an amount of 1 wt% or more and less than 3 wt%, and if necessary, Fe 0.05 to 1.5 wt%, Mg 0.
05-1.0 wt%, Cu 0.05-1.0 wt%, Mn
0.05-1.0 wt%, Ni 0.05-1.0 wt%, C
r0.05-0.5wt%, V0.05-0.5wt%, Z
r0.05-0.5wt%, Ti0.005-0.2wt%
A base material having a predetermined size, which is obtained by casting an alloy containing one or two or more of the above, with the balance being Al and inevitable impurities, and further subjecting it to hot working and / or cold working as necessary. , And then anodize the surface to give 1
Upon forming the anodized film of less than 0 μm, Si is heated to a temperature in the range of 250 to 550 ° C. after the casting, or after the hot working, or during or after the cold working, 80% or more of the total precipitated Si particles are 0.05 μm or more, and the amount of residual solid solution Si is 1 wt% or more and 1.5 wt% or more depending on the Si content. When the content is less than 1.0, the residual solid solution Si content (wt%) ≤ Si content (wt%)-0.5 is satisfied, and the Si content is 1.5 wt% or more and 3 wt% or less.
When it is less than%, the far-infrared radiator is produced by depositing so as to satisfy the residual solid solution Si amount (wt%) ≦ 1.
JP4360595A 1992-12-28 1992-12-28 Far-infrared ray radiator and its manufacture Pending JPH06200398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4360595A JPH06200398A (en) 1992-12-28 1992-12-28 Far-infrared ray radiator and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4360595A JPH06200398A (en) 1992-12-28 1992-12-28 Far-infrared ray radiator and its manufacture

Publications (1)

Publication Number Publication Date
JPH06200398A true JPH06200398A (en) 1994-07-19

Family

ID=18470088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4360595A Pending JPH06200398A (en) 1992-12-28 1992-12-28 Far-infrared ray radiator and its manufacture

Country Status (1)

Country Link
JP (1) JPH06200398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023023705A1 (en) * 2021-08-23 2023-03-02 A. W. Bell Pty. Ltd. Aluminium casting alloy displaying improved thermal conductivity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199610A (en) * 1975-02-28 1976-09-02 Nippon Light Metal Co KINSEINATANKAISHOKUHIMAKUOJUSURU ALLSIGOKINNO SEIZOHOHO
JPS5413028A (en) * 1977-06-29 1979-01-31 Hitachi Heating Appliance Co Ltd Far infrared heater
JPS5956559A (en) * 1982-09-27 1984-04-02 Mitsubishi Alum Co Ltd Aluminum alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199610A (en) * 1975-02-28 1976-09-02 Nippon Light Metal Co KINSEINATANKAISHOKUHIMAKUOJUSURU ALLSIGOKINNO SEIZOHOHO
JPS5413028A (en) * 1977-06-29 1979-01-31 Hitachi Heating Appliance Co Ltd Far infrared heater
JPS5956559A (en) * 1982-09-27 1984-04-02 Mitsubishi Alum Co Ltd Aluminum alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023023705A1 (en) * 2021-08-23 2023-03-02 A. W. Bell Pty. Ltd. Aluminium casting alloy displaying improved thermal conductivity

Similar Documents

Publication Publication Date Title
CN108884526B (en) Aluminum alloy with high strength and aesthetic appeal
JP5640399B2 (en) Aluminum alloy plate with anodized film and method for producing the same
JPS6115148B2 (en)
JP2020180321A (en) Aluminum alloy material and its manufacturing method
JPH076022B2 (en) Aluminum alloy for glitter disk wheels
JP7149262B2 (en) dark gray anodized aluminum
JP4040787B2 (en) Aluminum alloy rolled plate with stable gray color after anodization and method for producing the same
JPH06200398A (en) Far-infrared ray radiator and its manufacture
JP2965219B2 (en) Far infrared radiator
JP3048086B2 (en) Far-infrared radiator and manufacturing method
JPH06200397A (en) Far-infrared ray radiator
JP3200523B2 (en) Age-hardened aluminum alloy extruded profile for gray coloring and method for producing the same
JP2858068B2 (en) Light-colored thick aluminum alloy rolled sheet for building materials with stable color tone after anodizing and method for producing the same
JP3195020B2 (en) Far infrared radiator
JP2764463B2 (en) Aluminum alloy having black color after anodizing and method for producing the same
JP2544233B2 (en) Aluminum alloy having a blue-gray color tone after anodizing treatment and method for producing the same
JP3355058B2 (en) Aluminum alloy plate for lighting reflector and method of manufacturing the same
JP2524884B2 (en) Aluminum alloy material with dark gray color after anodizing treatment and method for producing the same
JP2552967B2 (en) Roll bond panel
KR810002048B1 (en) Non-erosion aluminium alloy for die-casting
JPH0971831A (en) Gray-colored aluminum alloy sheet little in yellowish and reddish color tone after anodic oxidation treatment and its production
JP2678419B2 (en) Far infrared radiation member
JP3305517B2 (en) Method for producing colored aluminum alloy, aluminum alloy material, and aluminum alloy material having reddish milky white anodic oxide film
JP3644817B2 (en) Method for producing rolled aluminum alloy sheet with gray color after anodizing treatment
CN116445778A (en) Aluminum alloy with high strength and attractive appearance

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980414