JPH0618605A - Defect detecting method for macromolecule insulated power cable - Google Patents
Defect detecting method for macromolecule insulated power cableInfo
- Publication number
- JPH0618605A JPH0618605A JP19756092A JP19756092A JPH0618605A JP H0618605 A JPH0618605 A JP H0618605A JP 19756092 A JP19756092 A JP 19756092A JP 19756092 A JP19756092 A JP 19756092A JP H0618605 A JPH0618605 A JP H0618605A
- Authority
- JP
- Japan
- Prior art keywords
- cable
- induced current
- insulator
- laser pulses
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Relating To Insulation (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電力ケーブル、特に高分
子絶縁ケーブルの欠陥を検出するための方法に関するも
のである。FIELD OF THE INVENTION The present invention relates to a method for detecting defects in power cables, especially polymer insulated cables.
【0002】[0002]
【従来の技術】電力ケーブル、特に高分子絶縁ケーブル
の性能は、絶縁体中に存在するボイド、異物、或いは半
導電層の突起に基づき、著しく低下してしまうこととな
る。従って、これらの欠陥を事前に検出し、当該ケーブ
ルの出荷前にこれの良否を判定することが重要である。2. Description of the Related Art The performance of power cables, especially polymer insulated cables, is significantly degraded by the presence of voids, foreign matter, or protrusions of the semiconductive layer in the insulator. Therefore, it is important to detect these defects in advance and judge the quality of the cable before shipping.
【0003】従来、このような出荷前の欠陥検出法とし
ては、X線に依る欠陥検出、製品全長の商用周波或いは
直流課電に依る耐圧試験、コロナ放電に依る欠陥検出が
採用されている。 その他には、製品全長ではないが、
製品における前後位置のケーブル絶縁体に対するボイ
ド、異物、突起の存在を実測し、これに基づき製品の欠
陥状況を推測すると言うような欠陥検出手法も採られて
いる。Conventionally, as such a defect detection method before shipment, a defect detection by X-ray, a breakdown voltage test by commercial frequency or DC voltage of the entire product, and a defect detection by corona discharge are adopted. Other than that, it is not the full length of the product,
A defect detection method is also used in which the existence of voids, foreign matter, and protrusions on the cable insulator at the front and rear positions in the product is actually measured, and the defect status of the product is estimated based on this.
【0004】[0004]
【発明が解決しようとする課題】上述したような従来の
検出法であると、感度が低く、検出可能とする欠陥が、
ある程度以上の大きさを具えたものに限られ、従って、
出荷試験として十分であるとは到底称し得ないものであ
った。 そのため、感度が優れた欠陥検出法が要求され
たが、現実にはこれに応じる検出法は開発されていなか
った。本発明はこのような要望に答える新規な欠陥検出
法を提供するものである。In the conventional detection method as described above, the sensitivity is low and the defects that can be detected are
It is limited to those with a certain size or more, therefore,
It could never be said that it was sufficient as a shipping test. Therefore, a defect detection method having excellent sensitivity has been demanded, but in reality, a detection method corresponding to this has not been developed. The present invention provides a novel defect detection method that meets such a demand.
【0005】[0005]
【課題を解決するための手段】本発明は、ケーブルの欠
陥検出手段として、あらかじめ直流電圧を印加したケー
ブルの外面に対し、レーザーパルスをあてることにより
生ずる誘起電流を解析して行うように成し、これに依り
著しく高感度な欠陥検出が可能化されるようにしたもの
である。According to the present invention, as a cable defect detecting means, an induced current generated by applying a laser pulse to an outer surface of a cable to which a direct current voltage is applied in advance is analyzed and analyzed. This makes it possible to detect defects with extremely high sensitivity.
【0006】[0006]
【実施例】図1は本発明に係る欠陥検出法の測定回路を
示したものである。 同図において、Aは高分子絶縁電
力ケーブルであって、中心部に設けられているケーブル
導体1の外周に、内部半導電層2、ケーブル絶縁体3、
外部半導電層4が順次層状に設けて成るものである。
尚、図示の高分子絶縁電力ケーブルAは従来のこの種ケ
ーブルの一例を表したに過ぎず、本発明にかかる検出法
の検出対象が図示のケーブルに限定されるものではな
い。1 shows a measuring circuit of a defect detecting method according to the present invention. In the figure, A is a polymer-insulated power cable, in which the inner semiconductive layer 2, the cable insulator 3, and the outer periphery of the cable conductor 1 provided in the central portion are provided.
The external semiconductive layer 4 is provided in the order of layers.
The polymer-insulated power cable A shown in the figure merely represents an example of a conventional cable of this type, and the detection target of the detection method according to the present invention is not limited to the cable shown in the figure.
【0007】Bはレーザーパルス発生器であって、上記
した電力ケーブルAの外面からレーザーパルスを照射す
るためのものである。 Cは当該レーザーパルスの照射
に基づき発生する誘起電流を検知すると共にこれを増幅
するためのアンプ、Dは該アンプCで増幅された誘起電
流を波形として読取るためのオシロスコープである。Reference numeral B is a laser pulse generator for irradiating a laser pulse from the outer surface of the power cable A described above. C is an amplifier for detecting and amplifying the induced current generated based on the irradiation of the laser pulse, and D is an oscilloscope for reading the induced current amplified by the amplifier C as a waveform.
【0008】ところで、ケーブル絶縁体中に、異物、ボ
イド、突起等の欠陥が存在した場合、ケーブルに直流電
圧を印加した場合、これらの欠陥周辺に空間電荷が蓄積
することは、従来から確認されている。 そして、その
電荷蓄積領域は、欠陥の大きさの倍以上、すなわち、例
えば30μmの突起であっても60〜100μm程度まで
の電荷蓄積が生じることと成る。 本発明に係る検出法
は、このような事実を利用して成すものである。[0008] By the way, it has been conventionally confirmed that when a defect such as a foreign substance, a void, or a protrusion is present in the cable insulator, and when a DC voltage is applied to the cable, space charges are accumulated around these defects. ing. Then, in the charge storage region, the charge is accumulated more than twice the size of the defect, that is, even if the protrusion is 30 μm, the charge is accumulated up to about 60 to 100 μm. The detection method according to the present invention utilizes such facts.
【0009】本発明の具体的実施例を示せば次の通りで
ある。 図1に示す状態において、絶縁厚4mm、導体サ
イズ100mm2 の高分子絶縁電力ケーブル(XLPEケーブ
ル)に対し、直流60KV(導体負極性)を10分間印加し
た後、ケーブル導体1、内部半導体層2及び外部半導体
層4を接地した。 この状態で図1に示すようにレーザ
ーパルスを照射し、ケーブル導体1内に誘起される電流
を検出する。 レーザーパルスによる圧力波がケーブル
絶縁体中を伝搬する際に、絶縁体中に電荷層が存在する
と、外部回路に誘起電流が流れる。 この誘起電流は絶
縁体内部の電荷量に比例することとなる。The specific embodiment of the present invention is as follows. In the state shown in Fig. 1, a polymer insulated power cable (XLPE cable) having an insulation thickness of 4 mm and a conductor size of 100 mm 2 was applied with DC 60 KV (conductor negative polarity) for 10 minutes, and then the cable conductor 1 and the internal semiconductor layer 2 And the external semiconductor layer 4 was grounded. In this state, a laser pulse is emitted as shown in FIG. 1 to detect the current induced in the cable conductor 1. When a pressure wave caused by a laser pulse propagates in a cable insulator, an induced current flows in an external circuit if a charge layer exists in the insulator. This induced current is proportional to the amount of charge inside the insulator.
【0010】図2は正常ケーブルの誘起電流の波形を示
したものである。 これに依れば、正常な絶縁体3中に
は、絶縁体中の全域にマイナス電荷が若干存在するのみ
で、異常がないことが確認される。FIG. 2 shows the waveform of the induced current in a normal cable. According to this, it is confirmed that in the normal insulator 3, only a small amount of negative charge exists in the entire region of the insulator, and there is no abnormality.
【0011】図3は内部半導電層2に突起を有するケー
ブルの誘起電流波形を示したものである。 同図にあっ
ては、内部半導電層2の近傍に大きなマイナス電荷が見
られ、誘起電流測定後、レーザーパルス照射位置を切断
して解体調査したところ、内部半導電層2の真上に突起
が存在することが確認された。FIG. 3 shows an induced current waveform of a cable having protrusions on the inner semiconductive layer 2. In the figure, a large negative charge is found in the vicinity of the inner semiconductive layer 2, and after measuring the induced current, the laser pulse irradiation position was cut and disassembled and investigated. Was confirmed to exist.
【0012】図4はボイドを有するケーブルの誘起電流
波形を示したものである。 同図によれば、絶縁体3の
中央部に、正.負両電荷の存在が見られる。 上記と同
様にしてケーブルを解体して調査したところ、絶縁体3
の中央部にボイドが存在していることか確認された。FIG. 4 shows the induced current waveform of a cable having voids. According to the figure, the positive. Presence of both negative charges is seen. When the cable was disassembled and investigated in the same manner as above, insulator 3
It was confirmed that there was a void in the center of the.
【0013】以上のように、絶縁体3中に突起やボイド
が存在した場合、レーザーパルス照射に基づき発生する
誘起電流には、正常ケーブルには見られない特異な電流
波形が観測される。 従って、この誘起電流を観測する
ことに依り、ケーブルの絶縁体中に存在する欠陥が検出
されることと成る。As described above, when there are protrusions or voids in the insulator 3, a peculiar current waveform which is not found in a normal cable is observed in the induced current generated by the laser pulse irradiation. Therefore, by observing this induced current, defects existing in the insulator of the cable will be detected.
【0014】尚、ケーブルの絶縁厚の増大に伴い、圧力
パルスの減衰が生じ、感度が悪くなるが、絶縁厚4mmの
グループであれば、5μm程度の欠陥の検出が可能であ
る。そして、事前に印加する直流電圧は、12〜15KV
/mm 程度で十分であり、直流耐圧試験後にレーザーパル
スを照射することにより、2つの試験の実施が同時的に
行われることと成る。As the insulation thickness of the cable increases, the pressure pulse is attenuated and the sensitivity deteriorates. However, a defect of about 5 μm can be detected in a group having an insulation thickness of 4 mm. And the DC voltage applied in advance is 12 ~ 15KV
/ mm is sufficient, and by irradiating the laser pulse after the DC withstand voltage test, two tests will be performed simultaneously.
【0015】また、ケーブル全長にわたる欠陥検出にお
いては、ケーブルにあらかじめ10〜15KV/mm の直流
電圧を印加しておき、ケーブルを走引し、レーザーパル
スを回転させながら順次照射することに依って、ケーブ
ルの全周及び全長にわたっての検査実行が可能化され
る。Further, in detecting defects over the entire length of the cable, a direct current voltage of 10 to 15 KV / mm is applied to the cable in advance, the cable is swept, and laser pulses are sequentially irradiated while rotating the laser pulse. Inspection runs over the entire circumference and length of the cable are enabled.
【0016】[0016]
【発明の効果】本発明は、あらかじめ直流電圧を印加し
たケーブルの外面に、レーザーパルスをあてることによ
り生ずる誘起電流を解析して、当該ケーブルに対する欠
陥検出を成すようにしたから、ケーブル全長ににわたる
欠陥検出を、当該ケーブルを破壊することなく達成され
るばかりでなく、電荷蓄積領域は、欠陥の実際の大きさ
の2倍以上の大きさに表示されることとなるため、その
欠陥検出能力は著しく高感度化されることとなる。According to the present invention, since the induced current generated by applying a laser pulse to the outer surface of a cable to which a direct current voltage is applied in advance is analyzed to detect defects in the cable, the entire length of the cable is detected. Not only is defect detection achieved without destroying the cable, the charge storage area will be displayed at more than twice the actual size of the defect, so its defect detection capability is The sensitivity is remarkably increased.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明に係る欠陥検出法を表した測定回路図で
ある。FIG. 1 is a measurement circuit diagram showing a defect detection method according to the present invention.
【図2】正常なケーブルに対するレーザーパルス照射に
基づく誘起電流の測定例を示す波形グラフである。FIG. 2 is a waveform graph showing an example of measurement of induced current based on laser pulse irradiation on a normal cable.
【図3】突起を有するケーブルに対するレーザーパルス
照射に基づく誘起電流の測定例を示す波形グラフであ
る。FIG. 3 is a waveform graph showing an example of measurement of an induced current based on laser pulse irradiation for a cable having protrusions.
【図4】ボイドを有するケーブルに対するレーザーパル
ス照射に基づく誘起電流の測定例を示す波形グラフであ
る。FIG. 4 is a waveform graph showing an example of measurement of an induced current based on laser pulse irradiation for a cable having a void.
A 高分子絶縁電力ケーブル 1 ケーブル導体 2 内部半導電層 3 ケーブル絶縁体 4 外部半導電層 B レーザーパルス発生器 C アンプ D オシロスコープ A Polymer-insulated power cable 1 Cable conductor 2 Inner semiconductive layer 3 Cable insulator 4 External semiconductive layer B Laser pulse generator C Amplifier D Oscilloscope
Claims (1)
の外面に、レーザーパルスをあてることにより生ずる誘
起電流を解析して、当該ケーブルに対する欠陥検出を成
すことを特徴とする高分子絶縁電力ケーブルの欠陥検出
法。1. A defect detection of a polymer-insulated power cable, characterized in that an induced current generated by applying a laser pulse to an outer surface of a cable to which a direct current voltage is applied in advance is analyzed to detect a defect in the cable. Law.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19756092A JPH0618605A (en) | 1992-07-01 | 1992-07-01 | Defect detecting method for macromolecule insulated power cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19756092A JPH0618605A (en) | 1992-07-01 | 1992-07-01 | Defect detecting method for macromolecule insulated power cable |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0618605A true JPH0618605A (en) | 1994-01-28 |
Family
ID=16376533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19756092A Pending JPH0618605A (en) | 1992-07-01 | 1992-07-01 | Defect detecting method for macromolecule insulated power cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0618605A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6601555B2 (en) | 1998-03-12 | 2003-08-05 | Nsk Ltd. | Sheet metal rocker arm, manufacturing method thereof, cam follower with said rocker arm, and assembling method thereof |
-
1992
- 1992-07-01 JP JP19756092A patent/JPH0618605A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6601555B2 (en) | 1998-03-12 | 2003-08-05 | Nsk Ltd. | Sheet metal rocker arm, manufacturing method thereof, cam follower with said rocker arm, and assembling method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6853196B1 (en) | Method and apparatus for electrical cable testing by pulse-arrested spark discharge | |
Baumgartner et al. | Partial discharge. X. PD in gas-insulated substations-measurement and practical considerations | |
Braun et al. | Modulation of partial discharge activity in GIS insulators by X-ray irradiation | |
JP3261935B2 (en) | Non-destructive insulation test method and apparatus for small electric machine | |
US2750562A (en) | Insulation fault detector | |
JP4740421B2 (en) | Partial discharge site location method for three-phase gas insulation equipment | |
JPH0618605A (en) | Defect detecting method for macromolecule insulated power cable | |
CA2483567A1 (en) | Coil deterioration diagnostic method and coil deterioration diagnostic apparatus | |
JPH0580112A (en) | Failure diagnostic device for power cable | |
JPH09127182A (en) | Insulation test method for high voltage electric apparatus and insulation tester | |
JP2000002743A (en) | Insulation deterioration diagnostic method for high- voltage equipment such as high-voltage overhead cable branch connecting body for power distribution | |
RU2365928C1 (en) | Method of remote acoustoelectromagnetic diagnosis of state of line insulation of alternating current overhead system for railway transport | |
Phillips et al. | Ultrasonic emissions from nonceramic insulators with defects | |
JP3246679B2 (en) | Insulation characteristics measurement device | |
Hauschild et al. | Partial discharge measurement | |
JPH0382316A (en) | Partial discharge detector of gas-insulated apparatus | |
JP2932724B2 (en) | Insulation degradation diagnosis method | |
JPS61284654A (en) | Evaluating method for thin insulator film | |
Maki et al. | Propagation characteristics of acoustic wave induced by partial discharge in IGBT module | |
JPH06331688A (en) | Method for detecting water-tree | |
JPH07218480A (en) | Measurement of insulating characteristics of electric insulating coil | |
JPH09152424A (en) | Method for detecting generating position of maximum discharged amount of charges of high voltage insulation exciting coil | |
JP4802302B2 (en) | Diagnosis method for water tree deterioration of power cables | |
Morozova et al. | Concerning partial discharge detection in cable lines using high-frequency sensors | |
Ferreira et al. | Validation of Thermoformed Piezoelectret Transducer for Partial Discharge Detection in Energized Power Transformers |