JPH061701U - Joining structure of metal rotating shaft and ceramic rotating body - Google Patents
Joining structure of metal rotating shaft and ceramic rotating bodyInfo
- Publication number
- JPH061701U JPH061701U JP4725492U JP4725492U JPH061701U JP H061701 U JPH061701 U JP H061701U JP 4725492 U JP4725492 U JP 4725492U JP 4725492 U JP4725492 U JP 4725492U JP H061701 U JPH061701 U JP H061701U
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- rotating shaft
- metal
- rotating body
- rotary shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Supercharger (AREA)
- Ceramic Products (AREA)
Abstract
(57)【要約】
【目的】 金属製回転軸とセラミック製回転体との接合
強度を十分に確保しつつ熱応力差によるセラミック製回
転体側に発生する残留引張り応力を大幅に軽減して、耐
久性の向上を図れるようにする。
【構成】 金属製回転軸3の端面とセラミック製タービ
ンロータ1の突部2の端面との間に、回転軸3側に至る
ほど漸次小径となるような円錐状の緩衝材4を介在させ
て、回転軸3とタービンロータ1の突部2とをろう材5
を介して接合している。
(57) [Summary] [Purpose] Residual tensile stress generated on the ceramic rotor side due to thermal stress difference is significantly reduced while ensuring sufficient joint strength between the metal rotary shaft and the ceramic rotor, resulting in durability. Improve the sex. [Structure] A conical cushioning member 4 having a diameter that gradually decreases toward the rotary shaft 3 is interposed between the end face of the metal rotary shaft 3 and the end face of the protrusion 2 of the ceramic turbine rotor 1. , Brazing filler metal 5 for the rotating shaft 3 and the projection 2 of the turbine rotor 1.
Are joined through.
Description
【0001】[0001]
この考案は、例えばセラミック材料から構成されているタービンロータを有す るガスタービンやジェットエンジンなどに適用されるもので、金属製回転軸とタ ービンロータ等のセラミック製回転体との接合構造に関するものである。 The present invention is applied to, for example, a gas turbine or a jet engine having a turbine rotor made of a ceramic material, and relates to a joint structure of a metal rotating shaft and a ceramic rotating body such as a turbine rotor. Is.
【0002】[0002]
例えば、近年のガスタービンにおいては、タービンロータを窒化けい素や炭化 けい素などの耐熱性に優れたセラミック材料から構成することで、燃焼ガスのタ ービン入口温度を高めて熱効率および出力の向上を実現したものが多い。このよ うなガスタービンにおいて、金属製回転軸とセラミック製タービンロータとを直 接に接合する場合は、両者の熱膨張係数が相違することから、運転中の昇温およ び運転停止後の冷却にともなう熱応力差により、セラミック製タービン側に大き な残留引張り応力が発生して、割れなどのセラミック破壊を招くことになる。 For example, in gas turbines of recent years, the turbine rotor is made of a ceramic material having excellent heat resistance, such as silicon nitride or silicon carbide, to increase the turbine inlet temperature of combustion gas and improve thermal efficiency and output. Many have been realized. In such a gas turbine, when the metal rotary shaft and the ceramic turbine rotor are directly joined, the thermal expansion coefficients of the two are different, so the temperature rise during operation and cooling after operation stop Due to the difference in thermal stress caused by this, a large residual tensile stress is generated on the side of the ceramic turbine, which causes ceramic fracture such as cracking.
【0003】 そこで、従来からも、セラミック破壊の主原因となる残留引張り応力を軽減す る方法として、図5に示すように、金属製回転軸10の一端面と、セラミック製 タービンロータ等の回転体11の突部12の一端面との間に、例えばニッケル・ クロム・アルミニウム・イットリウム合金などの焼結合金からなり、上記回転軸 10および突部12と全長が同径の緩衝材13を介在させてろう付けしてなる接 合構造が採用されていた。Therefore, as a conventional method for reducing the residual tensile stress that is the main cause of ceramic destruction, as shown in FIG. 5, one end surface of the metal rotary shaft 10 and the rotation of the ceramic turbine rotor or the like are rotated. A cushioning material 13 made of a sintered alloy such as nickel-chromium-aluminum-yttrium alloy and having the same diameter as the rotating shaft 10 and the protrusion 12 is interposed between the protrusion 12 of the body 11 and one end surface thereof. A joint structure was used that was then brazed.
【0004】[0004]
しかし、上記のような従来の金属製回転軸とセラミック製回転体との接合構造 による場合では、緩衝材が全長にわたり同径であるために、熱膨張係数の高い金 属製回転軸と熱膨張係数の非常に低いセラミック製回転体との間には大きな熱応 力差があり、そのために、セラミック製回転体側に未だ大きな残留引張り応力が 発生して、実運転時にセラミック破壊を招きやすいものであった。 However, in the case of the conventional joint structure of the metal rotating shaft and the ceramic rotating body as described above, since the cushioning material has the same diameter over the entire length, the rotating shaft made of metal and the thermal expansion having a high coefficient of thermal expansion are used. Since there is a large thermal response difference with the ceramic rotor with a very low coefficient, a large residual tensile stress still occurs on the ceramic rotor side, and it is easy to cause ceramic destruction during actual operation. there were.
【0005】 この考案は上記実情に鑑みてなされたもので、回転軸と回転体との接合強度を 十分に高く保持しながら、簡単な構成で、セラミック製回転体側に発生する残留 引張り応力を大幅に軽減することができる金属製回転軸とセラミック製回転体と の接合構造を提供することを目的とする。The present invention has been made in view of the above circumstances, and while maintaining a sufficiently high joint strength between the rotating shaft and the rotating body, the residual tensile stress generated on the side of the ceramic rotating body can be greatly reduced with a simple structure. It is an object of the present invention to provide a joint structure between a metal rotating shaft and a ceramic rotating body, which can be significantly reduced.
【0006】[0006]
上記目的を達成するため、この考案の請求項1に係る金属製回転軸とセラミッ ク製回転体との接合構造は、金属製回転軸とセラミック製回転体とを、両者の端 面間に緩衝材を介在させてろう付けしてなる接合構造であって、上記緩衝材を上 記セラミック製回転体との接合側から上記金属製回転軸との接合側に向けて漸次 小径となる錐状に形成したものである。 In order to achieve the above object, a joint structure of a metal rotary shaft and a ceramic rotary body according to claim 1 of the present invention is such that a metal rotary shaft and a ceramic rotary body are buffered between their end faces. A brazing structure in which a material is interposed and brazing is performed, and the cushioning material is formed into a pyramid shape having a gradually decreasing diameter from the side of joining with the ceramic rotating body toward the side of joining with the metallic rotating shaft. It was formed.
【0007】 また、請求項2に係る金属製回転軸とセラミック製回転体との接合構造は、金 属製回転軸の一端に嵌合孔が形成されているとともに、セラミック製回転体に上 記嵌合孔に嵌合する突部が形成されており、上記嵌合孔の底部にセラミック製回 転体側ほど大径の錐状の緩衝材を介装し、上記嵌合孔と突部との間にろう材を流 し込んで、回転軸と回転体とを接合してなるものである。Further, in the joint structure of the metal rotary shaft and the ceramic rotary body according to claim 2, a fitting hole is formed at one end of the metal rotary shaft, and the ceramic rotary body has the above-mentioned structure. A protrusion that fits into the fitting hole is formed, and a cone-shaped cushioning material having a larger diameter is provided on the bottom of the fitting hole on the ceramic rotating body side, and A brazing material is poured in between to join the rotating shaft and the rotating body.
【0008】[0008]
この考案の請求項1によれば、金属製回転軸とセラミック製回転体の対向する 端面間に介在される緩衝材を回転軸側ほど小径となる錐状に形成することにより 、熱膨張係数の高い金属製回転軸側の熱応力と、金属製回転軸に比べて熱膨張係 数の非常に低いセラミック製回転体側の熱応力の差を小さくすることが可能であ り、したがって、セラミック製回転体側に発生する残留引張り応力を大幅に軽減 することができる。 According to claim 1 of the present invention, the cushioning material interposed between the opposing end surfaces of the metal rotary shaft and the ceramic rotary body is formed in a cone shape having a smaller diameter on the rotary shaft side, so that the thermal expansion coefficient It is possible to reduce the difference between the thermal stress on the high metal rotating shaft side and the thermal stress on the ceramic rotating body side, which has a very low coefficient of thermal expansion compared to the metal rotating shaft. The residual tensile stress generated on the body side can be significantly reduced.
【0009】 また、この考案の請求項2によれば、上記緩衝材の形状効果に加えて、回転軸 側の嵌合孔とセラミック製回転体側の突部との間にろう材を流し込むことにより 、機械的(カシメ)接合を行なって、回転軸と回転体との接合強度を十分に高く 保持することが可能である。According to the second aspect of the present invention, in addition to the shape effect of the cushioning material, a brazing material is poured between the fitting hole on the rotating shaft side and the protrusion on the ceramic rotating body side. , It is possible to perform mechanical (caulking) joining to keep the joining strength between the rotating shaft and the rotating body sufficiently high.
【0010】[0010]
以下、この考案の一実施例を図面にもとづいて説明する。 図1は、この考案の一実施例によるセラミックガスタービンの要部の断面図で あり、同図において、1はタービンロータ(回転体の一例)で、例えば窒化けい 素や炭化けい素などの耐熱セラミック材料から構成されているとともに、その回 転中心部に突部2が突出形成されている。また、外周部には多数のブレード1A が一体形成または植込み固定されている。 An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a main part of a ceramic gas turbine according to an embodiment of the present invention. In FIG. 1, reference numeral 1 is a turbine rotor (an example of a rotating body), which is a heat-resistant material such as silicon nitride or silicon carbide. It is made of a ceramic material, and the protrusion 2 is formed at the center of its rotation. Further, a large number of blades 1A are integrally formed or fixed by being implanted in the outer peripheral portion.
【0011】 3はガスタービンの回転軸で、この回転軸3は低合金鋼などの金属材料で構成 されている。4は緩衝体で、例えばニッケル・クロム・アルミニウム・イットリ ウム合金などの焼結金属から構成されており、上記セラミック製タービンロータ 1との接合端部は上記突部2と同形もしくはほぼ同径で、上記回転軸3との接合 側に向けて漸次小径となるような円錐状に形成されている。Reference numeral 3 is a rotary shaft of the gas turbine, and the rotary shaft 3 is made of a metal material such as low alloy steel. Reference numeral 4 denotes a buffer, which is made of a sintered metal such as nickel-chromium-aluminum-yttrium alloy, and has a joint end portion with the ceramic turbine rotor 1 having the same shape or substantially the same diameter as the protrusion portion 2. The conical shape is such that the diameter gradually decreases toward the joint side with the rotating shaft 3.
【0012】 そして、上記回転軸3の端面と緩衝材4の小径側端面との間および上記セラミ ック製タービンロータ1の端面と緩衝材4の大径側端面との間をそれぞれ、例え ばニッケルろうなどの耐熱性ろう材5により拡散ろう接して、上記金属製回転軸 3とセラミック製タービンロータ1とを一体回転可能に接合したものである。Then, for example, between the end surface of the rotating shaft 3 and the small diameter side end surface of the cushioning material 4, and between the end surface of the ceramic turbine rotor 1 and the large diameter side end surface of the cushioning material 4, for example, respectively. The metal rotary shaft 3 and the ceramic turbine rotor 1 are integrally rotatably joined by diffusion brazing with a heat resistant brazing material 5 such as nickel brazing.
【0013】 上記構成の接合構造によれば、熱膨張係数の高い金属製回転軸3と緩衝材4の 小径側端部との接合部における熱応力と、熱膨張係数の非常に低いセラミック製 タービンロータ1と緩衝材4の小径側端部との接合部における熱応力との差が小 さくなるために、その熱応力差によりセラミック製タービンロータ1側に発生す る残留引張り応力が軽減される。したがって、緩衝材4が介在されることと、そ の緩衝材4が円錐形状であって、回転軸3側とタービンロータ1側との熱応力差 を縮小することとの相乗により、セラミック製タービンロータ1に発生する残留 引張り応力を大幅に軽減して、ガスタービンの運転時におけるセラミック製ター ビンロータ1の割れなどの破壊の防止効果を高めることができる。According to the joint structure having the above-mentioned configuration, the thermal stress at the joint between the metal rotary shaft 3 having a high thermal expansion coefficient and the small-diameter side end of the cushioning material 4, and the ceramic turbine having a very low thermal expansion coefficient. Since the difference between the thermal stress at the joint between the rotor 1 and the end of the buffer material 4 on the small diameter side becomes small, the residual tensile stress generated on the ceramic turbine rotor 1 side due to the thermal stress difference is reduced. . Therefore, by interposing the cushioning material 4 and the cushioning material 4 having a conical shape and reducing the thermal stress difference between the rotating shaft 3 side and the turbine rotor 1 side, the ceramic turbine is made synergistic. The residual tensile stress generated in the rotor 1 can be significantly reduced, and the effect of preventing damage such as cracking of the ceramic turbine rotor 1 during operation of the gas turbine can be enhanced.
【0014】 図2は、この考案の他の実施例によるセラミックガスタービンの要部の断面図 であり、同図において、上記図1で示す実施例と相違する点は、円錐状に形成さ れた緩衝材4に、回転軸線方向に沿った多数の貫通孔4aをドリル加工によって 形成した点であり、その他は図1と同一であるため、該当部分に同一の符号を付 して、それらの説明を省略している。FIG. 2 is a sectional view of a main part of a ceramic gas turbine according to another embodiment of the present invention. In FIG. 2, the point different from the embodiment shown in FIG. 1 is that it is formed into a conical shape. This is the point that a large number of through holes 4a along the rotation axis direction are formed in the cushioning material 4 by drilling. Since the other parts are the same as those in FIG. 1, the corresponding parts are designated by the same reference numerals, and The description is omitted.
【0014】 上記図2の構成の接合構造によれば、緩衝材4に多数の貫通孔4aを形成する ことにより、見掛け上のヤング率を低下させて、ヤング率の大きさと比例関係に あるセラミック製タービンロータ1側の残留引張り応力を、より軽減してガスタ ービンの運転時におけるセラミック製タービンロータ1の割れなどの破壊の防止 効果を一層向上することができるものである。According to the joint structure having the configuration shown in FIG. 2 above, by forming a large number of through holes 4a in the cushioning material 4, the apparent Young's modulus is lowered, and the ceramic having a proportional relationship with the magnitude of the Young's modulus is formed. The residual tensile stress on the turbine rotor 1 side can be further reduced to further improve the effect of preventing damage such as cracking of the ceramic turbine rotor 1 during operation of the gas turbine.
【0015】 図3は、この考案の別の実施例によるセラミックガスタービンの要部の断面図 であり、同図において、図1に示す実施例と同一部分には同一の符号を付して、 それらの説明を省略する。同図において、金属製回転軸3の一端部には、嵌合孔 6Aを有する円筒形の嵌合部6が一体に連設されており、この円筒形の嵌合部6 の周壁の厚味は、ガスタービンの運転中にタービンロータ1に過大な熱応力がか からないように、必要最小限に薄く設定している。上記セラミック製タービンロ ータ1の回転中心部に一体に突出形成された突部2は、上記円筒形の嵌合部6の 嵌合孔6A内に嵌合する径に設定されているとともに、この突部2の軸線方向の 中間部の周面には、円弧状に凹入した周溝1Aが形成されている。FIG. 3 is a sectional view of a main part of a ceramic gas turbine according to another embodiment of the present invention, in which the same parts as those of the embodiment shown in FIG. The description thereof will be omitted. In the figure, a cylindrical fitting portion 6 having a fitting hole 6A is integrally connected to one end of the metal rotary shaft 3, and the thickness of the peripheral wall of the cylindrical fitting portion 6 is reduced. Is set to the minimum necessary thickness so that excessive thermal stress is not applied to the turbine rotor 1 during operation of the gas turbine. The protrusion 2 formed integrally with the rotation center of the ceramic turbine rotor 1 is set to have a diameter that fits within the fitting hole 6A of the cylindrical fitting portion 6, and A circumferential groove 1A, which is recessed in an arc shape, is formed on the circumferential surface of the intermediate portion of the protrusion 2 in the axial direction.
【0016】 そして、上記回転軸3における円筒形の嵌合部6の嵌合孔6Aの底部に、上述 した円錐形状の緩衝材4が介装され、かつろう材5を介して接合されているとと もに、上記セラミック製タービンロータ1における突部2の周溝1Aと回転軸3 側の嵌合部6の内周面との間に、ろう材7を流し込むことにより、回転軸3とタ ービンロータ1とを機械的(カシメ)に接合したものである。Then, the above-mentioned conical cushioning material 4 is interposed at the bottom of the fitting hole 6 A of the cylindrical fitting portion 6 of the rotating shaft 3 and is joined via the brazing material 5. At the same time, by pouring the brazing filler metal 7 between the circumferential groove 1A of the projection 2 and the inner circumferential surface of the fitting portion 6 on the rotating shaft 3 side in the ceramic turbine rotor 1, The turbine rotor 1 and the turbine rotor 1 are mechanically joined to each other.
【0017】 上記図3の構成によれば、円錐状緩衝材4の存在による残留引張り応力の軽減 はもとより、回転軸3とタービンロータ1との接合強度を高めて、両者の一体回 転を確実なものにできる。According to the configuration of FIG. 3 described above, not only the residual tensile stress due to the presence of the conical cushioning material 4 is reduced, but also the joint strength between the rotating shaft 3 and the turbine rotor 1 is increased to ensure the integral rotation of both. It can be anything.
【0018】 また、図4は、図3の変形例であり、上記セラミック製タービンロータ1側の 突部2のうち、回転軸3側の円筒形の嵌合部6の嵌合孔6A内に嵌合される先端 部1aのみを大径とし、他の部分1bは小径にして、その大小径部に形成される テーパ周面部1cとこれの外周に位置する嵌合部6の内周面との間に、ろう材7 を流し込んで、回転軸3とタービンロータ1とを機械的に接合したものであり、 この場合も、上記図3の実施例と同様に、接合強度の向上と同時にタービンロー タ1側に発生する残留引張り応力の軽減が図れる。Further, FIG. 4 is a modification of FIG. 3, and in the protrusion 2 on the side of the ceramic turbine rotor 1 inside the fitting hole 6 A of the cylindrical fitting part 6 on the side of the rotary shaft 3. Only the tip end portion 1a to be fitted has a large diameter and the other portion 1b has a small diameter, and the tapered peripheral surface portion 1c formed on the large and small diameter portion and the inner peripheral surface of the fitting portion 6 located on the outer periphery thereof. The brazing filler metal 7 is poured between the two to mechanically join the rotating shaft 3 and the turbine rotor 1. In this case as well, in the same manner as the embodiment of FIG. The residual tensile stress generated on the rotor 1 side can be reduced.
【0019】 なお、この考案は、ジェットエンジンやターボチャージャーなどのように、耐 熱性の向上のために、回転体がセラミック材料から構成されているものに適用す ることができるのはいうまでもない。It is needless to say that the present invention can be applied to a rotating body made of a ceramic material for improving heat resistance, such as a jet engine or a turbocharger. Absent.
【0020】[0020]
以上のように、この考案の請求項1によれば、熱膨張係数に大きな差異を有す る金属製回転軸とセラミック製回転体との接合部に、回転軸側ほど小径となる錐 状の緩衝材を介在させることにより、熱膨張係数の高い金属製回転軸側の熱応力 と金属製回転軸に比べて熱膨張係数の非常に低いセラミック製回転体側の熱応力 の差を、緩衝材の形状工夫という簡単な構成で小さくすることができ、したがっ て、セラミック製回転体側に発生する残留引張り応力を大幅に軽減して、セラミ ック製回転体の耐久性を著しく向上することができる。 As described above, according to claim 1 of the present invention, a conical portion having a large difference in thermal expansion coefficient between a metal rotary shaft and a ceramic rotary body has a conical shape having a smaller diameter on the rotary shaft side. By interposing a cushioning material, the difference between the thermal stress on the metal rotating shaft side, which has a high thermal expansion coefficient, and the thermal stress on the ceramic rotating body side, which has a very low thermal expansion coefficient compared to the metal rotating shaft, It is possible to reduce the size with a simple configuration that is devised in shape. Therefore, it is possible to significantly reduce the residual tensile stress generated on the ceramic rotor side, and to significantly improve the durability of the ceramic rotor.
【0021】 また、この考案の請求項2によれば、上記緩衝材の形状効果に加えて、回転軸 側の嵌合孔とセラミック製回転体側の突部との間にろう材を流し込むことにより 、機械的(カシメ)接合を行なって、回転軸と回転体との接合強度を十分に高く 保持することができ、特に、セラミックガスタービンにおける耐久性の増進とト ルク伝達機能の向上とを実現することができる。According to the second aspect of the present invention, in addition to the shape effect of the cushioning material, a brazing material is poured between the fitting hole on the rotating shaft side and the protrusion on the ceramic rotating body side. , Mechanical (caulking) joining can be performed to maintain the joining strength between the rotating shaft and the rotating body sufficiently high, and in particular, the durability and the torque transfer function of the ceramic gas turbine are improved. can do.
【図1】この考案の一実施例によるセラミックガスター
ビンの要部の断面図である。FIG. 1 is a sectional view of a main part of a ceramic gas turbine according to an embodiment of the present invention.
【図2】この考案の他の実施例を示す要部の断面図であ
る。FIG. 2 is a sectional view of an essential part showing another embodiment of the present invention.
【図3】この考案の別の実施例を示す要部の断面図であ
る。FIG. 3 is a sectional view of an essential part showing another embodiment of the present invention.
【図4】図3の変形例を示す要部の断面図である。FIG. 4 is a cross-sectional view of a main part showing a modified example of FIG.
【図5】従来のセラミックガスタービンの要部の断面図
である。FIG. 5 is a sectional view of a main part of a conventional ceramic gas turbine.
1 セラミック製タービンロータ(回転体の一例) 2 突部 3 金属製回転軸 4 緩衝材 5,7 ろう材 6 嵌合部 6A 嵌合孔 1 Ceramic Turbine Rotor (Example of Rotating Body) 2 Projection 3 Metal Rotating Shaft 4 Buffer Material 5,7 Brazing Material 6 Fitting Part 6A Fitting Hole
【手続補正書】[Procedure amendment]
【提出日】平成5年3月9日[Submission date] March 9, 1993
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】実用新案登録請求の範囲[Name of item to be amended] Scope of utility model registration request
【補正方法】誓誓[Correction method] Oath
【補正内容】[Correction content]
【実用新案登録請求の範囲】[Scope of utility model registration request]
Claims (2)
を、両者の端面間に緩衝材を介在させてろう付けしてな
る接合構造であって、上記緩衝材を上記セラミック製回
転体との接合側から上記金属製回転軸との接合側に向け
て漸次小径となる錐状に形成したことを特徴とする金属
製回転軸とセラミック製回転体との接合構造。1. A joint structure in which a metal rotating shaft and a ceramic rotating body are brazed by interposing a cushioning material between the end faces of the two, the cushioning material being joined to the ceramic rotating body. A joining structure of a metal rotating shaft and a ceramic rotating body, which is formed in a conical shape having a gradually smaller diameter from the joining side toward the joining side with the metal rotating shaft.
ているとともに、セラミック製回転体に上記嵌合孔に嵌
合する突部が形成されており、上記嵌合孔の底部にセラ
ミック製回転体側ほど大径の錐状の緩衝材を介装し、上
記嵌合孔と突部との間にろう材を流し込んで、回転軸と
回転体とを接合してなる金属製回転軸とセラミック製回
転体との接合構造。2. A fitting hole is formed at one end of a metal rotating shaft, and a protrusion is formed in the ceramic rotating body so as to fit into the fitting hole, and a protrusion is formed at the bottom of the fitting hole. A metal rotating shaft formed by inserting a conical cushioning material having a larger diameter toward the ceramic rotating body side, pouring a brazing filler metal between the fitting hole and the protrusion, and joining the rotating shaft and the rotating body. And a ceramic rotating body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4725492U JPH061701U (en) | 1992-06-11 | 1992-06-11 | Joining structure of metal rotating shaft and ceramic rotating body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4725492U JPH061701U (en) | 1992-06-11 | 1992-06-11 | Joining structure of metal rotating shaft and ceramic rotating body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH061701U true JPH061701U (en) | 1994-01-14 |
Family
ID=12770141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4725492U Pending JPH061701U (en) | 1992-06-11 | 1992-06-11 | Joining structure of metal rotating shaft and ceramic rotating body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH061701U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08319802A (en) * | 1995-05-24 | 1996-12-03 | Kawasaki Heavy Ind Ltd | Joining method for metal and ceramic, their joining structure, and gas turbine provided therewith |
JP2002089201A (en) * | 2000-09-14 | 2002-03-27 | Mitsubishi Heavy Ind Ltd | Joining structure of ceramic turbine wheel and metallic parts |
JP2010177503A (en) * | 2009-01-30 | 2010-08-12 | Nihon Ceratec Co Ltd | Metal bushing and ceramic product including the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63251127A (en) * | 1987-04-06 | 1988-10-18 | Ngk Insulators Ltd | Combined construction of members with different thermal expansion and combining method thereof |
-
1992
- 1992-06-11 JP JP4725492U patent/JPH061701U/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63251127A (en) * | 1987-04-06 | 1988-10-18 | Ngk Insulators Ltd | Combined construction of members with different thermal expansion and combining method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08319802A (en) * | 1995-05-24 | 1996-12-03 | Kawasaki Heavy Ind Ltd | Joining method for metal and ceramic, their joining structure, and gas turbine provided therewith |
JP2002089201A (en) * | 2000-09-14 | 2002-03-27 | Mitsubishi Heavy Ind Ltd | Joining structure of ceramic turbine wheel and metallic parts |
JP2010177503A (en) * | 2009-01-30 | 2010-08-12 | Nihon Ceratec Co Ltd | Metal bushing and ceramic product including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0477129B2 (en) | ||
JPS6278172A (en) | Bonded structure of ceramic to metal | |
JPH0415361B2 (en) | ||
JPS61219767A (en) | Metal ceramic bonded body | |
JP2007204361A (en) | Shaft assembly | |
JP2531708Y2 (en) | Ceramic / metal composite | |
JPH0444631B2 (en) | ||
JPH03279277A (en) | Joint structure of turbine rotor | |
US4959258A (en) | Joined metal-ceramic assembly method of preparing the same | |
JPH061701U (en) | Joining structure of metal rotating shaft and ceramic rotating body | |
JPS6083731A (en) | Combined body of hollow annular body parts and tubular member | |
JPH0352962Y2 (en) | ||
JPH0322489Y2 (en) | ||
JPH0744722Y2 (en) | Coupling shaft structure of ceramic turbine rotor and metal shaft | |
JPH0240031B2 (en) | ||
JPH0410198Y2 (en) | ||
JPS6278402A (en) | Ceramic turbo rotor | |
JPH0454196Y2 (en) | ||
JP2650372B2 (en) | Method of joining ceramic member and metal member | |
JPH0351321Y2 (en) | ||
JPS6325281Y2 (en) | ||
JPH0692722B2 (en) | Ceramic rotor | |
JPS61123701A (en) | Ceramic turbine rotor | |
JPH0218243Y2 (en) | ||
JPH018642Y2 (en) |