JPH06162972A - X-ray tube provided with transmission-type anode - Google Patents
X-ray tube provided with transmission-type anodeInfo
- Publication number
- JPH06162972A JPH06162972A JP5209682A JP20968293A JPH06162972A JP H06162972 A JPH06162972 A JP H06162972A JP 5209682 A JP5209682 A JP 5209682A JP 20968293 A JP20968293 A JP 20968293A JP H06162972 A JPH06162972 A JP H06162972A
- Authority
- JP
- Japan
- Prior art keywords
- ray tube
- target layer
- angle
- ray
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/10—Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/10—Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
- H01J35/101—Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/112—Non-rotating anodes
- H01J35/116—Transmissive anodes
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、動作状態において電子
により衝突され、大きな原子番号の1又は2以上の金属
から成る、ターゲット層と、該ターゲット層に結合さ
れ、小さい原子番号の1又は2以上の物質から成るキャ
リア層とから構成される透過型陽極を有するX線管に係
る。BACKGROUND OF THE INVENTION The present invention relates to a target layer composed of a metal having a large atomic number of 1 or 2 or more, which is bombarded by electrons in an operating state, and a target layer bonded to the target layer and having a small atomic number of 1 or 2. The present invention relates to an X-ray tube having a transmission type anode composed of a carrier layer made of the above substances.
【0002】[0002]
【従来の技術】この種のX線管は、例えばドイツ公開明
細書第2,729,833号、米国特許明細書第2,0
90,636号、米国特許明細書第3,894,239
号によって知られている。上記二つの層の厚さに関して
は互いに矛盾する条件が課せられている。一方では、タ
ーゲット層は、入射電子をできるだけ高い割合のX線量
子に変換できるようにできるだけ厚い方が好ましい。他
方、この層は、そこで発生するX線量子が減衰するのを
最小に抑えるためにできるだけ薄くなければならない。
キャリア層は、一方では、出射されるX線の減衰を最小
化するために充分薄くなければならなく、他方、機械的
な安定性とターゲット層で発生する熱エネルギーの消散
を確保するために充分な厚さでなくてはならない。2. Description of the Related Art X-ray tubes of this type are disclosed, for example, in German Published Specification No. 2,729,833 and US Pat. No. 2,0.
90,636, U.S. Pat. No. 3,894,239.
Known by the issue. Contradictory conditions are imposed on the thicknesses of the two layers. On the one hand, the target layer is preferably as thick as possible so that the incident electrons can be converted into a high proportion of X-ray quanta. On the other hand, this layer should be as thin as possible in order to minimize the attenuation of the X-ray quanta generated there.
The carrier layer must, on the one hand, be thin enough to minimize the attenuation of the emitted X-rays, and on the other hand sufficient to ensure mechanical stability and dissipation of the thermal energy generated in the target layer. Must be thick.
【0003】これらの矛盾する条件のため、この種のX
線管は、実際に使用するのがむずかしく、特に医療用や
工業用の検査において重要となる50〜500kVの電
圧範囲で使用するのが困難である。これらの目的のため
に、X線が電子が入射する側の陽極から出るような陽極
を有するX線管の利用がなされる。従って、これらの陽
極を、以後「反射陽極」と言う。Because of these conflicting conditions, this type of X
The wire tube is difficult to use in practice, and particularly difficult to use in the voltage range of 50 to 500 kV, which is important in medical and industrial inspection. For these purposes, the use of an X-ray tube with an anode in which the X-rays emerge from the anode on the side where the electrons are incident. Therefore, these anodes are hereinafter referred to as "reflective anodes".
【0004】X線管において、ほんのわずかの印加され
た電子エネルギーだけが500kVまでの電圧範囲でX
線の放射線に変換される。他のエネルギーは陽極の温度
を上げさせる。X線管の外部では発生したX線の一部だ
けが有効な放射ビームとして利用されるだけである。In an X-ray tube, only a small amount of applied electron energy is X in the voltage range up to 500 kV.
Converted to ray radiation. Other energies raise the temperature of the anode. Outside the X-ray tube, only part of the X-rays generated are used as an effective radiation beam.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、50
kVから500kVの範囲の動作電圧を有し、X線管の
動作に適用される電子エネルギーが、反射陽極を有する
X線管のものと比較してより有効なX線を発生するX線
管を構成することにある。DISCLOSURE OF THE INVENTION The object of the present invention is 50
An X-ray tube having an operating voltage in the range of kV to 500 kV and electron energy applied to the operation of the X-ray tube producing more effective X-rays as compared to that of an X-ray tube having a reflective anode. To configure.
【0006】[0006]
【課題を解決するための手段】この目的は、電子の入射
方向とキャリア層を通して出射する有効な放射ビームの
X線の方向との角度θを10°から40°の範囲にする
ことにより達成される。本発明は、X線の強度は、電子
の方向に対して放射されるX線によって囲まれる角度に
大きく依存するという認識に基づいている。もし、ター
ゲットによる減衰を考慮しなければ、明白な強度の最大
値は、中心軸がX線を発生する電子ビームの方向により
形成される円錐の外部表面に現われる。この円錐の開口
角度は動作電圧に依存し、動作電圧が高くなればなるほ
ど小さくなる。60kVの動作電圧に対し、最大強度の
円錐の開口角の半分の値は約40°となり、500kV
の動作電圧に対し、約10°となる。This object is achieved by setting the angle θ between the incident direction of electrons and the direction of X-rays of an effective radiation beam emitted through the carrier layer in the range of 10 ° to 40 °. It The invention is based on the recognition that the intensity of X-rays depends largely on the angle enclosed by the X-rays emitted with respect to the direction of the electrons. If the attenuation by the target is not taken into account, the apparent maximum intensity appears at the outer surface of the cone whose central axis is formed by the direction of the electron beam producing the X-rays. The opening angle of this cone depends on the operating voltage and becomes smaller as the operating voltage increases. For an operating voltage of 60 kV, half the value of the opening angle of the cone of maximum intensity is about 40 °, which is 500 kV.
The operating voltage is about 10 °.
【0007】本発明は、有効放射ビーム、即ちX線管の
外部でのX放射の部分と、X線を発生する電子の発生の
方向との間の角度を適切に選定するという事実を利用す
るものである。一般に、有効放射線ビームは、少なくと
も1方向に0以外の開口角度を持っている。有効放射線
ビームの中心にあるX線と電子の入射方向との間の角度
は、特許請求の範囲に記載されているように選定され
る。The invention takes advantage of the fact that the angle between the effective radiation beam, ie the part of the X-radiation outside the X-ray tube, and the direction of the generation of the electrons which generate the X-rays is properly chosen. It is a thing. Generally, the effective radiation beam has a nonzero aperture angle in at least one direction. The angle between the X-rays at the center of the effective radiation beam and the direction of incidence of the electrons is chosen as described in the claims.
【0008】これまでに知られている透過陽極型X線管
においては、有効な放射ビームは、普通は、電子の通路
の延長線に沿い、即ち角度0してある。しかしながら、
角度θが0よりずれている透過陽極型X線管もある。例
えば、米国特許明細書第3,894,239号によっ
て、放射線出射窓に関して約80°傾斜しているターゲ
ット層にほぼ垂直に電子ビームが入射されるような透過
型陽極を有する回転陽極型X線管が知られている。ター
ゲット層で発生される制御放射線の連続スペクトルは、
ターゲット層で発生する蛍光放射線よりも実質的に大き
い割合で減衰される。In the transmission anode X-ray tubes known to date, the effective radiation beam is usually along the extension of the electron path, ie at an angle of zero. However,
There is also a transmission anode type X-ray tube in which the angle θ is deviated from 0. For example, according to U.S. Pat. No. 3,894,239, a rotating anode X-ray having a transmissive anode in which an electron beam is incident substantially perpendicular to a target layer tilted about 80 ° with respect to a radiation exit window. The tube is known. The continuous spectrum of control radiation generated in the target layer is
It is attenuated at a substantially greater rate than the fluorescent radiation generated in the target layer.
【0009】さらに、ドイツ公開明細書第2,729,
833号の図7に示されるように、陽極の周辺に分散配
置される2つのグループの陰極によりX線が発生される
環状陽極を有し、その陰極が線源の中を延びる中心面の
両側に位置しているX線管が知られている。この結果、
毎回45°の角θが得られる。しかしながら、引用した
文献のいずれも、X放射は、15°(高電圧時)から4
0°(低電圧時)の間の角度範囲で特に強くなる、とい
う事実を利用するものでない。Further, German Published Specification No. 2,729,
As shown in FIG. 7 of No. 833, it has an annular anode in which X-rays are generated by two groups of cathodes distributed around the anode, the cathodes extending in the source on both sides of a central plane. An X-ray tube located at is known. As a result,
An angle θ of 45 ° is obtained each time. However, in all of the cited documents, the X-radiation ranges from 15 ° (at high voltage) to 4 °
It does not take advantage of the fact that it becomes particularly strong in the angular range between 0 ° (at low voltage).
【0010】最後に、国際公開第092/03837号
によって、電子が陽極に10°の角度で入射し(通常の
70°−90°でなく)、有効放射線ビームが陽極に対
して5°乃至15°の角度で広がる反射型陽極を有する
X線管が知られている。しかしながら、その放射線出射
窓は、散乱電子によって強く加熱される傾向にある。本
発明の実施例においては、X線の出力に非常に重要な、
ターゲット層の単位表面積当りの重量wをg/cm2 で
表わした場合、少なくとも次式を満足するものである: w=1.08・10-6・(A/Z)2.5 ・U1.6 ・cos
β ここで、Aはターゲット層の金属の原子量、Zはその原
子番号、UはX線管の定格動作電圧のkV値、βは電子
の入射方向とターゲット層に対する垂直線との間の角度
を表わす。タングステンのターゲット層を有するX線管
を例にとると、単位表面積当たりの重量0.017g/
cm2 、即ち厚さ8.6μm(動作電圧U=100kV
でβ=0の場合)となる。Finally, according to WO092 / 03837, electrons are incident on the anode at an angle of 10 ° (rather than the usual 70 ° -90 °) and the effective radiation beam is 5 ° to 15 ° to the anode. X-ray tubes are known which have a reflective anode which spreads at an angle of °. However, the radiation exit window tends to be strongly heated by scattered electrons. In the embodiment of the present invention, which is very important for X-ray output,
When the weight w per unit surface area of the target layer is expressed in g / cm 2 , at least the following formula is satisfied: w = 1.08 · 10 −6 · (A / Z) 2.5 · U 1.6 · cos
β Here, A is the atomic weight of the metal of the target layer, Z is its atomic number, U is the kV value of the rated operating voltage of the X-ray tube, and β is the angle between the electron incident direction and the vertical line to the target layer. Represent. Taking an X-ray tube having a tungsten target layer as an example, the weight per unit surface area is 0.017 g /
cm 2 , thickness 8.6 μm (operating voltage U = 100 kV
And β = 0).
【0011】本発明は異なる用途の異なるX線管に使用
できる。本発明の好ましい実施例においては、X線管
は、回転陽極型X線管として構成され、ターゲット層は
(例えばタングステン及び/又はレニウムから成る)、
X線管の外部で使用されるX線の方向に対する角度を囲
む裁頭円錐の表面に位置し、その角度は前記方向と入射
電子の方向との間の角度よりも小さい。陽極は次に、回
転軸を中心として対称形となる皿のような形に形作ら
れ、ターゲット層が設けられるその内側の面は、電子を
放出する電子源に対向しており、その有効放射ビーム
は、回転軸に対して好ましくは90°の角度でその外部
表面より放射する。The present invention can be used with different x-ray tubes for different applications. In a preferred embodiment of the invention, the X-ray tube is constructed as a rotating anode X-ray tube and the target layer (for example made of tungsten and / or rhenium),
It is located on the surface of a frusto-cone enclosing an angle to the direction of the X-rays used outside the X-ray tube, the angle being smaller than the angle between said direction and the direction of the incident electrons. The anode is then shaped in a dish-like shape symmetrical about the axis of rotation, the inner surface of which is provided with the target layer facing the electron-emitting electron source and its effective radiation beam. Radiate from its outer surface, preferably at an angle of 90 ° to the axis of rotation.
【0012】本発明を以下図面を参照して詳細に説明す
る。The present invention will be described in detail below with reference to the drawings.
【0013】[0013]
【実施例】図1に示される透過型陽極は、小さい原子番
号を持つ物質から成るキャリア層2上に設けられた大き
い原子番号を持つ金属から成るターゲット層1を有す
る。ターゲット層1は、例えば、タングステン又はレニ
ウム、或いはそれらの合金によって構成することができ
る。ターゲット層に適する他の金属としては、プラチナ
又はトリウムがある。キャリア層2は、グラファイト又
はベリリウムからなり、その厚さは、一方において適切
な機械的強度を有し、他方においては、X放射の減衰を
可能な限り低くするようなものとされる。DESCRIPTION OF THE PREFERRED EMBODIMENT The transmission anode shown in FIG. 1 has a target layer 1 made of a metal having a high atomic number, which is provided on a carrier layer 2 made of a substance having a low atomic number. The target layer 1 can be made of, for example, tungsten or rhenium, or an alloy thereof. Other suitable metals for the target layer are platinum or thorium. The carrier layer 2 consists of graphite or beryllium, the thickness of which on the one hand has a suitable mechanical strength and, on the other hand, the attenuation of the X-radiation to be as low as possible.
【0014】矢印3は、ターゲット層1に垂直線に対し
て角度βで入射する電子ビームを示す。入射点を中心と
して円錐状に伝搬するX放射が発生される。しかし、理
論的及び実験的な調査によると、ターゲット層による減
衰を考慮に入れなければ、所定の開口角度θを持つ円錐
(その頂点は電子の入射する点にあり、その対称軸は電
子ビーム方向である)の表面を伝搬するX線が最も強い
強度を持っている。その円錐の上部の境界線4aと下部
の境界線4bが図1に示されている。円錐の開口角θの
半分の角は、動作電圧に依存し、略次の表に従う。The arrow 3 indicates an electron beam which is incident on the target layer 1 at an angle β with respect to the vertical line. X-radiation is generated that propagates conically around the point of incidence. However, according to theoretical and experimental investigations, if the attenuation due to the target layer is not taken into consideration, a cone with a predetermined opening angle θ (its apex is at the point of incidence of electrons and its axis of symmetry is the electron beam direction) X-rays propagating on the surface of) have the strongest intensity. The upper boundary 4a and the lower boundary 4b of the cone are shown in FIG. The half angle of the cone opening angle θ depends on the operating voltage and follows approximately the following table.
【0015】[0015]
【表2】 [Table 2]
【0016】従って、X線管は有効放射ビームの方向が
円錐面にある1つのX線と一致するように構成されねば
ならない。ターゲット層で生成されるX線は、その層の
面に対して、異なる角度で進行し、図は、最も小さい角
度α1 と、最も大きい角度α2を示している。これらの
角度は次の式によっ表わされる。Therefore, the X-ray tube must be constructed such that the direction of the effective radiation beam coincides with one X-ray lying on the conical surface. The X-rays produced in the target layer travel at different angles with respect to the plane of that layer, the figure showing the smallest angle α 1 and the largest angle α 2 . These angles are represented by the following equations.
【0017】 α1 =90°−β−θ (1) α2 =90°−β+θ (2) 放射線の出力のための最適なターゲット層の単位表面積
当りの重量は、およそ次の関係式によって与えられる。 w=1.08・10-6・(A/Z)2.5 ・U1.6 ・cos β (3) ここで、Aはターゲット層の金属の原子量、Zはその原
子番号である。βは、電子の入射角度、即ち、入射電子
ビーム3の方向とターゲット層に対する垂直線との間の
角度を表す。ターゲット層が2以上の金属の合金ででき
ているときは、ターゲット層の単位表面積当たりの重量
は、合金の各金属についてwを式(3)に従って計算さ
れ、その計算値をそれぞれの金属の割合に従って重みつ
けして合計される。Α 1 = 90 ° −β−θ (1) α 2 = 90 ° −β + θ (2) The optimum weight per unit surface area of the target layer for the radiation output is given by the following relational expression. To be w = 1.08 · 10 −6 · (A / Z) 2.5 · U 1.6 · cos β (3) Here, A is the atomic weight of the metal of the target layer, and Z is the atomic number thereof. β represents the incident angle of electrons, that is, the angle between the direction of the incident electron beam 3 and the vertical line to the target layer. When the target layer is made of an alloy of two or more metals, the weight per unit surface area of the target layer is calculated according to formula (3) w for each metal of the alloy, and the calculated value is the ratio of each metal. Weighted according to.
【0018】放射線の出射方向を表に従って選択し、そ
して、ターゲット層の厚さを式(3)によって算出した
ものを用いた場合、有効X線ビームのX放射の強度は、
同じ管電圧値、同じ管電流値で、電子ビームの入射方向
と放射線の出射方向との間の角度を約90°とする反射
陽極を有するX線管におけるより、非常に高くなる。強
度の増加は、電圧が高くなる程高くなる。しかしなが
ら、X線管を定格電圧以外の電圧で動作させる場合はこ
れらの強度に関する利点は減じられる。If the emission direction of the radiation is selected according to the table and the thickness of the target layer calculated according to equation (3) is used, the intensity of the X-radiation of the effective X-ray beam is
This is much higher than that in an X-ray tube having the same tube voltage value and the same tube current value and having a reflecting anode that makes the angle between the incident direction of the electron beam and the emitting direction of the radiation about 90 °. The increase in intensity increases with increasing voltage. However, these strength advantages are diminished if the X-ray tube is operated at voltages other than the rated voltage.
【0019】図2は、本発明による透過陽極を有する回
転陽極型X線管の一実施例を示す。X線管はガラスから
成る管外被5を有し、その中には、陰極装置6と陽極装
置7が配置されている。陽極装置は、ロータ8に既知の
方法で結合され、X線管の内部で回転可能に軸支される
透過陽極2により構成されている。ロータは、ガラスの
エンベロープの外部に設けられ図2には示されていない
ステータによって回転される。FIG. 2 shows an embodiment of a rotary anode type X-ray tube having a transparent anode according to the present invention. The X-ray tube has a glass envelope 5 in which a cathode device 6 and an anode device 7 are arranged. The anode device is constituted by a transparent anode 2 which is connected to the rotor 8 in a known manner and is rotatably journalled inside the X-ray tube. The rotor is rotated by a stator provided outside the glass envelope and not shown in FIG.
【0020】透過陽極は、グラファイトから成り陰極装
置6の方に開いている皿の形状をしたキャリア部材2を
有している。陰極装置6に設けられた電子出射器からの
電子ビーム3が衝突する透過型陽極の領域に、レニウム
からなるターゲット層1がキャリア部材2上に設けられ
ている。もし、このX線管がコンピュータトモグラフィ
に用いられ、150kVの動作電圧用として作られ、そ
して電子ビーム3が垂直方向に対して40°の角度で層
に入射すると、この層の単位表面積当りの重量は式
(3)に従うと、0.024g/cm2 となる。これ
は、厚さ11.5μmのレニウム層によって達成され
る。The transparent anode comprises a carrier member 2 made of graphite and open towards the cathode device 6 in the form of a dish. A target layer 1 made of rhenium is provided on the carrier member 2 in the region of the transmission type anode where the electron beam 3 from the electron emitter provided in the cathode device 6 collides. If this X-ray tube is used for computer tomography and is made for an operating voltage of 150 kV and the electron beam 3 is incident on the layer at an angle of 40 ° with respect to the vertical direction, the unit surface area of this layer is According to the formula (3), the weight is 0.024 g / cm 2 . This is achieved with a 11.5 μm thick rhenium layer.
【0021】X線管は、ハウジングの内部に取付けら
れ、図2では、その右側にハウジングの一部の壁10だ
けが示されている。ハウジングの壁は、充分の厚さの例
えば鉛のようなX線吸収材料により裏打ちされている。
例えば、アルミニウムのようなX線透過材料から成る放
射線出射窓11がターゲット層のレベルの個所のみに設
けられていて、これによりその区域でのみ有効放射が出
射される。有効放射線は、回転軸に垂直にそして電子ビ
ームの方向に対して30°の角度で伝搬する。CT検査
の場合、実質的には平らで扇形をした放射線ビームが図
2の面に対して垂直の方向に放射窓によって形式され
る。X線出射窓の最大寸法の方向もまた図の面に対して
垂直に延在している。The X-ray tube is mounted inside the housing and in FIG. 2 only the wall 10 of a part of the housing is shown on the right side thereof. The walls of the housing are lined with an X-ray absorbing material of sufficient thickness, such as lead.
For example, a radiation exit window 11 made of an X-ray transparent material such as aluminum is provided only at the level of the target layer, so that the effective radiation is emitted only in that area. Effective radiation propagates perpendicular to the axis of rotation and at an angle of 30 ° to the direction of the electron beam. In the case of CT examination, a substantially flat, fan-shaped radiation beam is shaped by the radiation window in a direction perpendicular to the plane of FIG. The direction of maximum dimension of the X-ray exit window also extends perpendicular to the plane of the drawing.
【0022】本発明は、ガラスの外被を有する回転陽極
型のX線管で医療用の目的に使われるものとして説明さ
れたが、本発明は他の実施例にもまた使用できる。例え
ば、回転型陽極の代りに静止陽極も使用できる。ガラス
の外被から成るX線管の代りに、陰極及び/又は陽極が
絶縁材を介して接続される金属の外被を有するX線管も
使用できる。X線管は、また工業分野における非破壊検
査にも使用できる。これらの目的のためには、管電圧2
00〜500kVの範囲で特に高い効率が得られる。While the present invention has been described as being used for medical purposes in a rotating anode X-ray tube having a glass jacket, the present invention can also be used in other embodiments. For example, a stationary anode can be used instead of a rotating anode. Instead of an X-ray tube consisting of a glass jacket, it is also possible to use an X-ray tube with a metal jacket whose cathode and / or anode are connected via an insulating material. The X-ray tube can also be used for non-destructive inspection in the industrial field. For these purposes, tube voltage 2
Particularly high efficiency is obtained in the range of 00 to 500 kV.
【図1】透過型陽極の一部分の原理図である。FIG. 1 is a principle view of a part of a transmissive anode.
【図2】本発明による透過型陽極を有する回転陽極型X
線管を示す図である。FIG. 2 is a rotary anode type X having a transmission type anode according to the present invention.
It is a figure which shows a line tube.
1 ターゲット層 2 キャリア層 3 電子ビーム 4 X線 5 外被 6 陰極装置 7 陽極装置 8 ロータ 10 ハウジング壁 11 放射線出射窓 1 Target Layer 2 Carrier Layer 3 Electron Beam 4 X-ray 5 Enclosure 6 Cathode Device 7 Anode Device 8 Rotor 10 Housing Wall 11 Radiation Exit Window
Claims (4)
大きな原子番号の1又は2以上の金属から成るターゲッ
ト層と、ターゲット層に結合され小さな原子番号の1又
は2以上の物質から成るキャリア層とを含む透過型陽極
を有するX線管であって、電子の入射方向とキャリア層
を透過して放出される有効放射ビームにおけるX線の方
向との間の角θが10°から40°の範囲にあることを
特徴とするX線管。1. Colliding with electrons in an operating state,
What is claimed is: 1. An X-ray tube having a transmission type anode comprising a target layer made of a metal having a large atomic number of 1 or 2 or more, and a carrier layer bonded to the target layer made of a substance having a small atomic number of 1 or 2 or more, An X-ray tube characterized in that an angle θ between an incident direction of electrons and a direction of X-rays in an effective radiation beam emitted through a carrier layer is in a range of 10 ° to 40 °.
少くともほぼ次の関係: 【表1】 を満足することを特徴とする請求項1のX線管。2. The angle θ and the rated operating voltage of the X-ray tube have at least approximately the following relationships: The X-ray tube according to claim 1, wherein
g/cm2 で表わすとき、少くともほぼ次の関係: w=1.08・10-6・(A/Z)2.5 ・U1.6 ・cos
β ここで、Aはターゲット層の金属の原子量、Zはその原
子番号、UはX線管のkV単位の定格動作電圧、βは電
子の入射方向とターゲット層に対する垂直方向とによっ
て形成される角度を表わす、を満足することを特徴とす
る前記請求項1又は2記載のX線管。3. When the weight per unit surface area of the target layer is expressed in g / cm 2 , at least about the following relationship: w = 1.08 · 10 −6 ((A / Z) 2.5 · U 1.6 · cos)
β Here, A is the atomic weight of the metal of the target layer, Z is the atomic number thereof, U is the rated operating voltage of the X-ray tube in kV, and β is the angle formed by the electron incident direction and the direction perpendicular to the target layer. The X-ray tube according to claim 1 or 2, characterized in that
ゲット層(1)は、X線管の外部で使用されるX線の方
向に対する角(α1 )を囲む裁頭円錐形の表面に配置さ
れ、前記角(α1 )は前記X線の方向と電子の入射方向
との間の角(θ)よりも小さいことを特徴とする前記請
求項1乃至3のうちいずれか一項に記載のX線管。4. A rotary anode type X-ray tube, wherein the target layer (1) is on a frustoconical surface surrounding an angle (α 1 ) with respect to the direction of the X-ray used outside the X-ray tube. 4. The arrangement according to claim 1 , wherein the angle (α 1 ) is smaller than the angle (θ) between the X-ray direction and the electron incident direction. X-ray tube.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4228559A DE4228559A1 (en) | 1992-08-27 | 1992-08-27 | X-ray tube with a transmission anode |
DE4228559:3 | 1992-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06162972A true JPH06162972A (en) | 1994-06-10 |
Family
ID=6466593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5209682A Pending JPH06162972A (en) | 1992-08-27 | 1993-08-24 | X-ray tube provided with transmission-type anode |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0584871B1 (en) |
JP (1) | JPH06162972A (en) |
DE (2) | DE4228559A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012124098A (en) * | 2010-12-10 | 2012-06-28 | Canon Inc | Radiation generating apparatus and radiation imaging apparatus |
JP2012138203A (en) * | 2010-12-24 | 2012-07-19 | Aet Inc | X-ray generation device and x-ray irradiation device using group of x-ray generation device |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19860115C2 (en) * | 1998-12-23 | 2000-11-30 | Siemens Ag | Rotary tube |
US6421422B1 (en) | 1999-08-25 | 2002-07-16 | General Electric Company | Apparatus and method for increasing X-ray tube power per target thermal load |
EP1146542A1 (en) * | 2000-04-11 | 2001-10-17 | General Electric Company | Apparatus and method for increasing X-ray tube power per target thermal load |
DE10130070A1 (en) | 2001-06-21 | 2003-01-02 | Philips Corp Intellectual Pty | X-ray tube with liquid metal target |
US7333588B2 (en) * | 2001-12-14 | 2008-02-19 | Wisconsin Alumni Research Foundation | Virtual spherical anode computed tomography |
US8275091B2 (en) | 2002-07-23 | 2012-09-25 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US7963695B2 (en) | 2002-07-23 | 2011-06-21 | Rapiscan Systems, Inc. | Rotatable boom cargo scanning system |
WO2004053919A2 (en) * | 2002-12-11 | 2004-06-24 | Koninklijke Philips Electronics N.V. | X-ray source for generating monochromatic x-rays |
US8837669B2 (en) | 2003-04-25 | 2014-09-16 | Rapiscan Systems, Inc. | X-ray scanning system |
US9208988B2 (en) | 2005-10-25 | 2015-12-08 | Rapiscan Systems, Inc. | Graphite backscattered electron shield for use in an X-ray tube |
US10483077B2 (en) | 2003-04-25 | 2019-11-19 | Rapiscan Systems, Inc. | X-ray sources having reduced electron scattering |
GB0812864D0 (en) | 2008-07-15 | 2008-08-20 | Cxr Ltd | Coolign anode |
US8804899B2 (en) | 2003-04-25 | 2014-08-12 | Rapiscan Systems, Inc. | Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners |
GB0525593D0 (en) | 2005-12-16 | 2006-01-25 | Cxr Ltd | X-ray tomography inspection systems |
GB0309374D0 (en) | 2003-04-25 | 2003-06-04 | Cxr Ltd | X-ray sources |
GB0309383D0 (en) | 2003-04-25 | 2003-06-04 | Cxr Ltd | X-ray tube electron sources |
GB0309379D0 (en) | 2003-04-25 | 2003-06-04 | Cxr Ltd | X-ray scanning |
US8451974B2 (en) | 2003-04-25 | 2013-05-28 | Rapiscan Systems, Inc. | X-ray tomographic inspection system for the identification of specific target items |
US9113839B2 (en) | 2003-04-25 | 2015-08-25 | Rapiscon Systems, Inc. | X-ray inspection system and method |
GB0309385D0 (en) | 2003-04-25 | 2003-06-04 | Cxr Ltd | X-ray monitoring |
GB0309387D0 (en) | 2003-04-25 | 2003-06-04 | Cxr Ltd | X-Ray scanning |
US7949101B2 (en) | 2005-12-16 | 2011-05-24 | Rapiscan Systems, Inc. | X-ray scanners and X-ray sources therefor |
US8094784B2 (en) | 2003-04-25 | 2012-01-10 | Rapiscan Systems, Inc. | X-ray sources |
US8243876B2 (en) | 2003-04-25 | 2012-08-14 | Rapiscan Systems, Inc. | X-ray scanners |
US8223919B2 (en) | 2003-04-25 | 2012-07-17 | Rapiscan Systems, Inc. | X-ray tomographic inspection systems for the identification of specific target items |
GB0309371D0 (en) | 2003-04-25 | 2003-06-04 | Cxr Ltd | X-Ray tubes |
US6928141B2 (en) | 2003-06-20 | 2005-08-09 | Rapiscan, Inc. | Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers |
DE102004013620B4 (en) | 2004-03-19 | 2008-12-04 | GE Homeland Protection, Inc., Newark | Electron window for a liquid metal anode, liquid metal anode, X-ray source and method of operating such an X-ray source |
DE102004015590B4 (en) * | 2004-03-30 | 2008-10-09 | GE Homeland Protection, Inc., Newark | Anode module for a liquid metal anode X-ray source and X-ray source with an anode module |
US7471764B2 (en) | 2005-04-15 | 2008-12-30 | Rapiscan Security Products, Inc. | X-ray imaging system having improved weather resistance |
DE102005018342B4 (en) * | 2005-04-20 | 2012-05-24 | Siemens Ag | Apparatus and method for generating X-radiation |
US9046465B2 (en) | 2011-02-24 | 2015-06-02 | Rapiscan Systems, Inc. | Optimization of the source firing pattern for X-ray scanning systems |
WO2008060671A2 (en) * | 2006-04-20 | 2008-05-22 | Multi-Dimensional Imaging, Inc. | X-ray tube having transmission anode |
SE532723C2 (en) * | 2007-05-03 | 2010-03-23 | Lars Lantto | Device for generating X-rays with great real focus and needs-adapted virtual focus |
DE102008007413A1 (en) | 2008-02-04 | 2009-08-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | X-ray target |
GB0803644D0 (en) | 2008-02-28 | 2008-04-02 | Rapiscan Security Products Inc | Scanning systems |
GB0803641D0 (en) | 2008-02-28 | 2008-04-02 | Rapiscan Security Products Inc | Scanning systems |
GB0809110D0 (en) | 2008-05-20 | 2008-06-25 | Rapiscan Security Products Inc | Gantry scanner systems |
GB0816823D0 (en) | 2008-09-13 | 2008-10-22 | Cxr Ltd | X-ray tubes |
GB0901338D0 (en) | 2009-01-28 | 2009-03-11 | Cxr Ltd | X-Ray tube electron sources |
US9218933B2 (en) | 2011-06-09 | 2015-12-22 | Rapidscan Systems, Inc. | Low-dose radiographic imaging system |
US9791590B2 (en) | 2013-01-31 | 2017-10-17 | Rapiscan Systems, Inc. | Portable security inspection system |
US10585206B2 (en) | 2017-09-06 | 2020-03-10 | Rapiscan Systems, Inc. | Method and system for a multi-view scanner |
US11212902B2 (en) | 2020-02-25 | 2021-12-28 | Rapiscan Systems, Inc. | Multiplexed drive systems and methods for a multi-emitter X-ray source |
US11551903B2 (en) | 2020-06-25 | 2023-01-10 | American Science And Engineering, Inc. | Devices and methods for dissipating heat from an anode of an x-ray tube assembly |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH494520A (en) * | 1968-12-16 | 1970-07-31 | Siemens Ag | X-ray machine |
US3894239A (en) * | 1973-09-04 | 1975-07-08 | Raytheon Co | Monochromatic x-ray generator |
CA1003892A (en) * | 1974-12-18 | 1977-01-18 | Stanley O. Schriber | Layered, multi-element electron-bremsstrahlung photon converter target |
EP0432568A3 (en) * | 1989-12-11 | 1991-08-28 | General Electric Company | X ray tube anode and tube having same |
-
1992
- 1992-08-27 DE DE4228559A patent/DE4228559A1/en not_active Withdrawn
-
1993
- 1993-08-18 EP EP93202435A patent/EP0584871B1/en not_active Expired - Lifetime
- 1993-08-18 DE DE59304524T patent/DE59304524D1/en not_active Expired - Fee Related
- 1993-08-24 JP JP5209682A patent/JPH06162972A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012124098A (en) * | 2010-12-10 | 2012-06-28 | Canon Inc | Radiation generating apparatus and radiation imaging apparatus |
JP2012138203A (en) * | 2010-12-24 | 2012-07-19 | Aet Inc | X-ray generation device and x-ray irradiation device using group of x-ray generation device |
Also Published As
Publication number | Publication date |
---|---|
DE4228559A1 (en) | 1994-03-03 |
EP0584871A1 (en) | 1994-03-02 |
EP0584871B1 (en) | 1996-11-20 |
DE59304524D1 (en) | 1997-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06162972A (en) | X-ray tube provided with transmission-type anode | |
US6005918A (en) | X-ray tube window heat shield | |
JP5854707B2 (en) | Transmission X-ray generator tube and transmission X-ray generator | |
US7664230B2 (en) | X-ray tubes | |
US4903287A (en) | Radiation source for generating essentially monochromatic x-rays | |
US20170133192A1 (en) | X-ray generator and x-ray imaging apparatus | |
US20130230143A1 (en) | Radiation generating apparatus and radiation imaging apparatus | |
JP2009545840A (en) | X-ray tube with transmissive anode | |
JP3105292B2 (en) | Radiation source for monochromatic X-ray emission | |
US2665391A (en) | X-ray tube having a mica window | |
US3646380A (en) | Rotating-anode x-ray tube with a metal envelope and a frustoconical anode | |
US3894239A (en) | Monochromatic x-ray generator | |
SE424243B (en) | RONTGENROR FOR RONTGENDIAGNOSTIC EQUIPMENT | |
WO2013032020A2 (en) | X-ray generator and x-ray imaging apparatus | |
US7260181B2 (en) | Enhanced electron backscattering in x-ray tubes | |
JP2002352754A (en) | Transmission type x-ray target | |
US4217517A (en) | Small divergence x-ray tube | |
JP2000340149A (en) | X-ray tube device | |
US4072875A (en) | X-ray tube | |
JPH11135044A (en) | Rotation anode x-ray tube | |
SU473237A1 (en) | X-ray tube | |
EP0768699A1 (en) | X-ray tube and barrier means therefor | |
GB1602253A (en) | X-ray tube for examining body cavities | |
JP3147927B2 (en) | X-ray generator | |
JPH10334840A (en) | High-cooling rotary positive electrode x-ray tube |