JPH06161569A - Temperature control method for cooling/heating enable element - Google Patents
Temperature control method for cooling/heating enable elementInfo
- Publication number
- JPH06161569A JPH06161569A JP4310413A JP31041392A JPH06161569A JP H06161569 A JPH06161569 A JP H06161569A JP 4310413 A JP4310413 A JP 4310413A JP 31041392 A JP31041392 A JP 31041392A JP H06161569 A JPH06161569 A JP H06161569A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- heating
- controller
- sensitivity
- temperature control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/24—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
- B21B1/26—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B15/00—Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Temperature (AREA)
- Control Of Resistance Heating (AREA)
- Feedback Control In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、温度調整器の温度制
御に関し、特に加熱能力と冷却能力との間に差がある冷
熱可能素子に対する温度制御性能の向上の為の技術に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to temperature control of a temperature controller, and more particularly to a technique for improving temperature control performance for a heatable element having a difference in heating capacity and cooling capacity.
【0002】[0002]
【従来の技術】従来から、温度制御に対する手法として
はPID制御が用いられることが多く、このPID制御
においては各定数(P,TI,TD)を求める際、ステッ
プ応答法、リミットサイクル法、限界感度法等によって
できるだけ安定な制御をなし得る上記各定数を求めるよ
うにしている。2. Description of the Related Art Conventionally, PID control has often been used as a method for temperature control. In this PID control, a step response method, a limit cycle method, a limit cycle method, etc. are used when obtaining each constant (P, TI, TD). The above-mentioned constants that enable stable control as much as possible are obtained by the sensitivity method or the like.
【0003】[0003]
【発明が解決しようとする課題】ところが、温度制御に
用いる冷熱可能素子、例えばサーモモジュール等では、
ジュール熱の影響によって加熱能力のほうが冷却能力よ
り大きくなる。この為、上記従来手法によって求めた各
定数P,TI,TDでは最適な温度制御性が得られず、 ・温度制御が不安定になる ・加熱側へのオーバーシュート量が増加する ・オーバーシュート量の増加に伴い整定時間が増加する などの不具合いが生じる。However, in the heatable element used for temperature control, such as a thermomodule,
Due to the effect of Joule heat, the heating capacity becomes larger than the cooling capacity. Therefore, the optimum temperature controllability cannot be obtained with the constants P, TI, TD obtained by the above-mentioned conventional method, and the temperature control becomes unstable. The overshoot amount to the heating side increases. However, problems such as an increase in settling time will occur as
【0004】この発明はこのような実情に鑑みてなされ
たもので、加熱能力と冷却能力を等しくする制御を行う
事によって安定な温度制御、オーバーシュート量の低
減、整定時間の短縮、温度制御の高精度化を実現する冷
熱可能素子の温度制御方法を提供することを目的とす
る。The present invention has been made in view of the above circumstances, and by performing control to equalize the heating capacity and the cooling capacity, stable temperature control, reduction of overshoot amount, reduction of settling time, and temperature control are achieved. It is an object of the present invention to provide a temperature control method for a coolable element that achieves high accuracy.
【0005】[0005]
【課題を解決するための手段】この発明では、加熱能力
と冷却能力に差がある冷熱可能素子を加熱冷却制御する
冷熱可能素子の温度制御方法において、リミットサイク
ルに達した後、1サイクルにおける測定値の最大値と最
小値が等しくかつ加熱時間と冷却時間が等しくなるまで
加熱用感度および冷却用感度の調整制御を行い、この後
前記調整した加熱用感度および冷却用感度を用いて前記
冷熱可能素子を加熱冷却制御するようにしたことを特徴
とする。According to the present invention, in a temperature control method for a heatable element having a difference in heating capacity and a cooling ability, a temperature control method for a heatable element which cools and cools is performed in one cycle after a limit cycle is reached. The heating sensitivity and the cooling sensitivity are adjusted and controlled until the maximum value and the minimum value are equal and the heating time and the cooling time are equal, and then the cooling can be performed using the adjusted heating sensitivity and cooling sensitivity. It is characterized in that the element is controlled to be heated and cooled.
【0006】[0006]
【作用】かかる本発明によれば、通常のPIDなどの温
度制御に先立って、加熱用感度および冷却用感度を調整
することにより加熱能力と冷却能力を等しくし、この後
該調整された加熱用感度および冷却用感度による温度制
御を実行する。According to the present invention, the heating capacity and the cooling capacity are made equal by adjusting the heating sensitivity and the cooling sensitivity prior to the ordinary temperature control of the PID or the like, and then the adjusted heating capacity is adjusted. Executes temperature control with sensitivity and cooling sensitivity.
【0007】[0007]
【実施例】以下この発明を添付図面に示す実施例に従っ
て詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the accompanying drawings.
【0008】図1にこの発明の実施例を示す。FIG. 1 shows an embodiment of the present invention.
【0009】この実施例の温度制御系は、加熱及び冷却
が可能な熱源素子(冷熱可能素子)1によって制御対象
2を加熱冷却制御するもので、冷熱可能素子1は前述し
たように加熱能力と冷却能力に差があるものである。The temperature control system of this embodiment controls heating and cooling of a controlled object 2 by a heat source element (coolable element) 1 capable of heating and cooling, and the coolable element 1 has a heating capacity as described above. There is a difference in cooling capacity.
【0010】測定器3は制御対象の温度PVを測定し、
該測定値PVを減算点4およびコントローラ5に入力す
る。The measuring device 3 measures the temperature PV of the controlled object,
The measured value PV is input to the subtraction point 4 and the controller 5.
【0011】減算点4は、設定温度SVと測定温度PV
との差eを求め、これをコントローラ5に入力する。コ
ントローラ5は、前記設定温度SVと測定温度PVとの
差eによって冷熱可能素子2の操作量Ceを決定し、該
操作量Ceを加熱/冷却切替スイッチ6に出力する。ま
た、コントローラ5は、加熱/冷却切替信号SLを加熱
/冷却切替スイッチ6に出力する。加熱/冷却切替信号
SLは前記差信号eの正負の極性に応じて決定される加
熱/冷却切替スイッチ6のスイッチ切替信号であり、こ
の加熱/冷却切替信号SLによってコントローラ5から
出力された操作量CeがHG調整部7及びCG調整部8
の何れに出力されるかが決定される。The subtraction point 4 is the set temperature SV and the measured temperature PV.
And the difference e is calculated and input to the controller 5. The controller 5 determines the operation amount Ce of the coolable element 2 based on the difference e between the set temperature SV and the measured temperature PV, and outputs the operation amount Ce to the heating / cooling changeover switch 6. The controller 5 also outputs a heating / cooling switching signal SL to the heating / cooling switching switch 6. The heating / cooling switching signal SL is a switch switching signal of the heating / cooling switching switch 6 which is determined according to the positive / negative polarity of the difference signal e, and the operation amount output from the controller 5 by the heating / cooling switching signal SL. Ce is the HG adjustment unit 7 and the CG adjustment unit 8
To which of the following is output.
【0012】HG(加熱感度)調整部7は、加熱制御を
行うときに駆動されるもので、入力された操作量Ceに
ヒートゲインGhを掛けたCe・Ghを熱源素子1に出力
する。ただし、このヒートゲインGhは、演算部9によ
るPID制御によって得られたゲインGe(s)に加熱感度
HG(0〜100%)を掛けたものである。この加熱感
度HGは後述する処理によって最適な値に調整制御され
る。The HG (heating sensitivity) adjusting section 7 is driven when performing heating control, and outputs Ce · Gh obtained by multiplying the input operation amount Ce by the heat gain Gh to the heat source element 1. However, this heat gain Gh is obtained by multiplying the gain Ge (s) obtained by the PID control by the calculation unit 9 by the heating sensitivity HG (0 to 100%). The heating sensitivity HG is adjusted and controlled to an optimum value by the processing described later.
【0013】CG(冷却感度)調整部8は、冷却制御を
行うときに駆動されるもので、入力された操作量Ceに
クールゲインGcを掛けたCe・Gcを熱源素子1に出力
する。ただし、このクールゲインGcは、演算部9によ
るPID制御によって得られたゲインGe(s)に冷却感度
CG(0〜100%)を掛けたものである。この冷却感
度CGは後述する処理によって最適な値に調整制御され
る。The CG (cooling sensitivity) adjusting section 8 is driven when performing cooling control, and outputs Ce · Gc obtained by multiplying the input operation amount Ce by the cool gain Gc to the heat source element 1. However, this cool gain Gc is obtained by multiplying the gain Ge (s) obtained by the PID control by the calculation unit 9 by the cooling sensitivity CG (0 to 100%). This cooling sensitivity CG is adjusted and controlled to an optimum value by the processing described later.
【0014】なお、コントローラ5は熱源素子1をオン
した後、測定値PVを監視しており、コントローラ5は
該測定値PVから制御対象2の温度が安定状態になる時
点を検出する。コントローラ5は前記安定状態を検出す
ると、HG,CG調整部7、8の感度調整制御を開始さ
せることを指令するための感度調整制御開始信号STを
演算部9に出力する。この感度調整制御開始信号STの
出力時点は、例えば制御対象2の温度が制御開始後、最
初に設定温度SVに達した後に、リミットサイクルが計
測された時点とする。The controller 5 monitors the measured value PV after turning on the heat source element 1, and the controller 5 detects the time when the temperature of the controlled object 2 becomes stable from the measured value PV. Upon detecting the stable state, the controller 5 outputs a sensitivity adjustment control start signal ST for instructing to start the sensitivity adjustment control of the HG and CG adjustment units 7 and 8 to the calculation unit 9. The output time of the sensitivity adjustment control start signal ST is, for example, the time when the limit cycle is measured after the temperature of the controlled object 2 first reaches the set temperature SV after the control is started.
【0015】演算部9は、コントローラ5の指令にした
がってPID制御のゲインGe(s)を求め、これに後述す
る感度調整処理によって得られた加熱感度HGまたは冷
却感度CGを掛け、これら掛算によって得られたヒート
ゲインGh(=Ge(s)・HG)またはクールゲインGc
(=Ge(s)・CG)をHG調整部7またはCG調整部8
に出力する。The calculation unit 9 obtains the gain Ge (s) of the PID control in accordance with the command of the controller 5, multiplies this by the heating sensitivity HG or the cooling sensitivity CG obtained by the sensitivity adjustment processing described later, and obtains them by multiplication. Heat gain Gh (= Ge (s) · HG) or cool gain Gc
(= Ge (s) · CG) is adjusted by the HG adjusting unit 7 or the CG adjusting unit 8
Output to.
【0016】図2は、コントローラ5および演算部9に
よる前記感度調整処理を示すもので、以下このフローチ
ャートを図3のタイムチャートを参照しながら説明す
る。FIG. 2 shows the sensitivity adjustment processing by the controller 5 and the calculation section 9. This flow chart will be described below with reference to the time chart of FIG.
【0017】熱源素子1がオンされると、コントローラ
5は、まずHG調整部7およびCG調整部8の感度が最
大値(HG=CG=100%)になるよう演算部9に指
令を与える。これにより演算部9はHG調整部7および
CG調整部8の感度が最大値100%になるようにHG
調整部7およびCG調整部8を調整する(ステップ10
0)。When the heat source element 1 is turned on, the controller 5 first gives a command to the computing unit 9 so that the sensitivities of the HG adjusting unit 7 and the CG adjusting unit 8 become maximum values (HG = CG = 100%). As a result, the calculation unit 9 adjusts the HG adjustment unit 7 and the CG adjustment unit 8 so that the sensitivity becomes 100% at the maximum value.
The adjusting unit 7 and the CG adjusting unit 8 are adjusted (step 10).
0).
【0018】その後、系が安定し、コントローラ5によ
ってリミットサイクルが計測されると(図3における初
期リミットサイクル期間)、コントローラ5は調整制御
開始信号STを演算部9に出力する。After that, when the system is stabilized and the limit cycle is measured by the controller 5 (initial limit cycle period in FIG. 3), the controller 5 outputs the adjustment control start signal ST to the arithmetic unit 9.
【0019】調整制御が開始されると、演算部9はリミ
ットサイクルによるON−OFF制御を実行する(ステ
ップ110)。また、コントローラ5は1サイクル毎
に、測定値PVの最大値PVmax、最小値PVmin、加熱
時間Th、冷却時間Tcを計測する(ステップ120、図
3参照)。When the adjustment control is started, the calculation unit 9 executes ON-OFF control by the limit cycle (step 110). Further, the controller 5 measures the maximum value PVmax, the minimum value PVmin, the heating time Th, and the cooling time Tc of the measured value PV for each cycle (step 120, see FIG. 3).
【0020】そして、コントローラ5は |PVmax|>|PVmin|かつTh<Tc …(1) であったならば、加熱感度HGを小さく(あるいは冷却
感度CGを大きく)するよう演算部9に指令を出力する
(ステップ130、140)。Then, if | PVmax |> | PVmin | and Th <Tc (1), the controller 5 issues a command to the arithmetic unit 9 to decrease the heating sensitivity HG (or increase the cooling sensitivity CG). Output (steps 130 and 140).
【0021】また、逆に |PVmax|<|PVmin|かつTh>Tc …(2) であったならば、加熱感度HGを大きく(あるいは冷却
感度CGを小さく)するよう演算部9に指令を出力する
(ステップ150、160)。If .vertline.PVmax.vertline. <. Vertline.PVmin.vertline. And Th> Tc (2), on the other hand, a command is output to the arithmetic unit 9 to increase the heating sensitivity HG (or decrease the cooling sensitivity CG). (Steps 150 and 160).
【0022】そしてこのような制御を|PVmax|=|
PVmin|かつTh=Tcになるまで繰り返し実行する。
そして、|PVmax|=|PVmin|かつTh=Tcになっ
たときの加熱感度HGおよび冷却感度CGをその後の温
度制御で用いる感度値とする。このようにして、加熱能
力と冷却能力の異なる熱源素子1の加熱能力及び冷却能
力を等しくする。Then, such control is performed by | PVmax | = |
Repeatedly until PVmin | and Th = Tc.
Then, the heating sensitivity HG and the cooling sensitivity CG when | PVmax | = | PVmin | and Th = Tc are the sensitivity values used in the subsequent temperature control. In this way, the heating and cooling capacities of the heat source elements 1 having different heating and cooling capacities are made equal.
【0023】図3の例においては、最初は先の(1)式
が成立しているので、加熱感度HGを小さくする制御が
行われている。In the example of FIG. 3, since the above equation (1) is initially satisfied, the control for reducing the heating sensitivity HG is performed.
【0024】以上のようにして、加熱感度HGおよび冷
却感度CGが決定されると(ステップ170)、演算部
9はリミットサイクル法等によりPID制御における各
定数値P(比例ゲイン)、TD(微分時間)、TI(積分
時間)を下式のようにして演算し(ステップ180)、
更にこれら演算値からゲインGe(s)を下式にしたがって
求める。この場合、追値制御の場合と定値制御の場合を
示した。When the heating sensitivity HG and the cooling sensitivity CG are determined as described above (step 170), the arithmetic unit 9 uses the limit cycle method or the like to determine each constant value P (proportional gain) and TD (derivative) in the PID control. Time) and TI (integration time) are calculated by the following equation (step 180),
Further, the gain Ge (s) is obtained from these calculated values according to the following equation. In this case, the case of additional value control and the case of constant value control are shown.
【0025】<追値制御> TD=0.6T0 …(3) TI=0.1T0 <定値制御> TD=0.5T0 TI=0.125T0 …(4) ただし、T0=Th+Tc、α(duty)=Th/T0で、Mは
操作量制限値(manipulated variable limit)である。<Additional value control> TD = 0.6T0 (3) TI = 0.1T0 <Constant value control> TD = 0.5T0 TI = 0.125T0 (4) where T0 = Th + Tc, α (duty) = Th / T0, and M is a manipulated variable limit.
【0026】 そして、演算部9はこのようにして求めたゲインGe(s)
に先に求めた加熱感度HGおよび冷却感度CGをそれぞ
れ掛け、これら掛算によって得られたヒートゲインGh
(=HG・Ge(s))及びクールゲインGc(=CG・Ge
(s))をHG調整部7およびCG調整部8にそれぞれ設
定する。これにより、加熱制御が行われるときはHG調
整部7から加熱素子1にヒートゲインGhと操作量Ceの
積が印加され、冷却制御が行われるときにはCG調整部
8から加熱素子1にクールゲインGcと操作量Ceの積が
印加されることになる(ステップ190)。[0026] Then, the calculation unit 9 obtains the gain Ge (s) thus obtained.
Is multiplied by the heating sensitivity HG and the cooling sensitivity CG previously obtained, respectively, and the heat gain Gh obtained by these multiplications is obtained.
(= HG ・ Ge (s)) and cool gain Gc (= CG ・ Ge)
(s)) is set in the HG adjusting unit 7 and the CG adjusting unit 8, respectively. Accordingly, when the heating control is performed, the product of the heat gain Gh and the manipulated variable Ce is applied from the HG adjusting unit 7 to the heating element 1, and when the cooling control is performed, the CG adjusting unit 8 cools the heating element 1 to the cool gain Gc. And the manipulated variable Ce are applied (step 190).
【0027】図3においては、初期リミットサイクル中
は|PVmax|≠|PVmin|かつTh≠Tcであるが、感
度調整サイクルにおいて加熱感度HG及び冷却感度CG
の調整が行われた結果、その後のリミットサイクルにお
いては|PVmax|=|PVmin|かつTh=Tcとなって
加熱能力と冷却能力が等しくなっている。In FIG. 3, | PVmax | ≠ | PVmin | and Th ≠ Tc during the initial limit cycle, but the heating sensitivity HG and the cooling sensitivity CG in the sensitivity adjustment cycle.
As a result of the adjustment, the heating capacity and the cooling capacity become equal in the subsequent limit cycle with | PVmax | = | PVmin | and Th = Tc.
【0028】なお、実施例では本発明をPID制御に適
用するようにしたが、その他のPI、PD制御などに本
発明を適用するようにしても良い。Although the present invention is applied to the PID control in the embodiment, the present invention may be applied to other PI and PD controls.
【0029】[0029]
【発明の効果】以上説明したようにこの発明によれば、
加熱及び冷却が可能で加熱能力と冷却能力との間に差が
ある冷熱可能素子を用いた温度調節器において、加熱冷
却感度を制御することにより加熱能力と冷却能力とを等
しくするようにしたので、安定な温度制御、オーバーシ
ュート量の低減、整定時間の短縮、温度制御の高精度化
を実現することができる。As described above, according to the present invention,
In a temperature controller using a heat-coolable element capable of heating and cooling and having a difference between the heating capacity and the cooling capacity, the heating capacity and the cooling capacity are made equal by controlling the heating and cooling sensitivity. It is possible to realize stable temperature control, reduction of overshoot amount, reduction of settling time, and high accuracy of temperature control.
【図1】図1はこの発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.
【図2】図2はこの発明の実施例の作用を示すフローチ
ャート。FIG. 2 is a flow chart showing the operation of the embodiment of the present invention.
【図3】図3はこの発明の実施例の作用を示すタイムチ
ャート。FIG. 3 is a time chart showing the operation of the embodiment of the present invention.
1…熱源素子(冷熱可能素子) 2…制御対象 3…計測部 5…コントローラ 6…加熱/冷却切替スイッチ 7…HG調整部 8…CG調整部 9…演算部 DESCRIPTION OF SYMBOLS 1 ... Heat source element (element which can be cooled) 2 ... Control object 3 ... Measuring part 5 ... Controller 6 ... Heating / cooling changeover switch 7 ... HG adjusting part 8 ... CG adjusting part 9 ... Arithmetic part
Claims (1)
子を加熱冷却制御する冷熱可能素子の温度制御方法にお
いて、 リミットサイクルに達した後、1サイクルにおける測定
値の最大値と最小値が等しくかつ加熱時間と冷却時間が
等しくなるまで加熱用感度および冷却用感度の調整制御
を行い、 この後前記調整した加熱用感度および冷却用感度を用い
て前記冷熱可能素子を加熱冷却制御するようにしたこと
を特徴とする冷熱可能素子の温度制御方法。1. A temperature control method for a heatable element having a difference in heating capacity and a cooling capacity, which controls heating and cooling of a heatable element, wherein a maximum value and a minimum value of measured values in one cycle are reached after a limit cycle is reached. The heating and cooling sensitivities are adjusted and controlled until they are equal and the heating time and the cooling time are equal, and thereafter the heating and cooling control is performed using the adjusted heating and cooling sensitivities. A method for controlling temperature of a heatable element, comprising:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4310413A JPH06161569A (en) | 1992-11-19 | 1992-11-19 | Temperature control method for cooling/heating enable element |
KR1019930023231A KR950015023A (en) | 1992-11-19 | 1993-11-03 | Temperature Control Method of Coolable Elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4310413A JPH06161569A (en) | 1992-11-19 | 1992-11-19 | Temperature control method for cooling/heating enable element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06161569A true JPH06161569A (en) | 1994-06-07 |
Family
ID=18004966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4310413A Pending JPH06161569A (en) | 1992-11-19 | 1992-11-19 | Temperature control method for cooling/heating enable element |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH06161569A (en) |
KR (1) | KR950015023A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014087805A1 (en) * | 2012-12-07 | 2014-06-12 | オムロン株式会社 | Adjustment device, control method, and control program |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101684107B1 (en) | 2015-05-07 | 2016-12-20 | 현대자동차주식회사 | Electronic device and driver determining method thereof |
-
1992
- 1992-11-19 JP JP4310413A patent/JPH06161569A/en active Pending
-
1993
- 1993-11-03 KR KR1019930023231A patent/KR950015023A/en not_active Application Discontinuation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014087805A1 (en) * | 2012-12-07 | 2014-06-12 | オムロン株式会社 | Adjustment device, control method, and control program |
CN104813244A (en) * | 2012-12-07 | 2015-07-29 | 欧姆龙株式会社 | Adjustment device,control method,and control program |
JP5983765B2 (en) * | 2012-12-07 | 2016-09-06 | オムロン株式会社 | Controller, control method and control program |
JP2016170806A (en) * | 2012-12-07 | 2016-09-23 | オムロン株式会社 | Regulator, control method, and control program |
TWI587106B (en) * | 2012-12-07 | 2017-06-11 | Omron Tateisi Electronics Co | Regulator, control method, and recording medium on which a control program is recorded |
US10248084B2 (en) | 2012-12-07 | 2019-04-02 | Omron Corporation | Controller, control method, and control program |
Also Published As
Publication number | Publication date |
---|---|
KR950015023A (en) | 1995-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3555609B2 (en) | Control device, temperature controller and heat treatment device | |
JP3869388B2 (en) | air conditioner | |
US7003379B2 (en) | Limit cycle autotuning method and heat/cool control apparatus | |
JPH06161569A (en) | Temperature control method for cooling/heating enable element | |
JPH0736504A (en) | Control constant controller for pid controller | |
JP2002108411A (en) | Temperature controller and heat treatment device | |
JP2009076098A (en) | Closed loop system process controller including pid controller | |
JP3028448B2 (en) | Control system | |
JPS61109104A (en) | Pid controller | |
JP2003114725A (en) | Temperature regulator, and heat treatment device | |
JP3304478B2 (en) | Fluid temperature control method and apparatus | |
JP2001265448A (en) | Temperature controller and heat treating device | |
JPH10124104A (en) | Control method for semiconductor manufacturing equipment | |
JP3473347B2 (en) | Control device | |
JPH09114502A (en) | Controller | |
JP4468868B2 (en) | Power consumption prediction apparatus and power usage prediction method | |
JP3204490B2 (en) | Temperature control method for thermal fixing device | |
JPH0934503A (en) | Adjustment method for pid controller | |
JP3412020B2 (en) | Fluid temperature controller | |
JP3378183B2 (en) | Hot plate temperature control method | |
JP7050616B2 (en) | Control device and control method | |
JP3334356B2 (en) | Automatic temperature control device | |
JP2861276B2 (en) | Controller | |
JPH08320705A (en) | Controller of feedback control unit | |
JPH05127704A (en) | Controller |