Nothing Special   »   [go: up one dir, main page]

JPH061699A - Device for producing silicon carbide single crystal - Google Patents

Device for producing silicon carbide single crystal

Info

Publication number
JPH061699A
JPH061699A JP18474992A JP18474992A JPH061699A JP H061699 A JPH061699 A JP H061699A JP 18474992 A JP18474992 A JP 18474992A JP 18474992 A JP18474992 A JP 18474992A JP H061699 A JPH061699 A JP H061699A
Authority
JP
Japan
Prior art keywords
silicon carbide
crucible
sublimation
single crystal
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18474992A
Other languages
Japanese (ja)
Inventor
Yasuhiro Maeda
泰宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP18474992A priority Critical patent/JPH061699A/en
Publication of JPH061699A publication Critical patent/JPH061699A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To continuously generate a sublimated vapor and to produce a high- quality silicon carbide single crystal by successively using plural silicon carbide sintered compacts as the sublimation source. CONSTITUTION:Plural silicon carbide sintered compacts 11 and 12 are respectively put in the holes 21 and 22 of a material holder 20. The holder 20 on a crucible 30 contg. a seed crystal on its bottom is slid on the upper end of the side wall 32 of the crucible 30 to oppose the sublimating surface of the sintered compact 12 to the seed crystal. The sintered compact 11 is heated by heaters 50 and 51 and continuously sublimated. The holder 20 is slid at about the time when sublimation is finished to introduce the sintered compact 12 into the crucible 30, and sublimation is continued. Consequently, the crystal growth condition is stabilized, and a constant-quality long-sized single crystal 15 is obtained. Besides, since the sintered compact residue is not mixed into the single crystal, the quality of the obtained single crystal 15 is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化ケイ素原料の昇華
を連続化させ、安定した品質をもつ長尺の炭化ケイ素単
結晶を製造する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for continuous sublimation of a silicon carbide raw material to produce a long silicon carbide single crystal having stable quality.

【0002】[0002]

【従来の技術】炭化ケイ素単結晶は、炭化ケイ素粉末を
原料として使用する昇華法で通常作製されている。炭化
ケイ素粉末は、種結晶と共にルツボに収容され、不活性
雰囲気中で2000〜2400℃の温度に加熱される。
加熱により炭化ケイ素粉末から昇華した蒸気が種結晶に
接触し、結晶方位を揃えた単結晶が種結晶の上に成長す
る。
2. Description of the Related Art Silicon carbide single crystals are usually produced by a sublimation method using silicon carbide powder as a raw material. The silicon carbide powder is housed in a crucible together with a seed crystal and heated to a temperature of 2000 to 2400 ° C in an inert atmosphere.
The vapor sublimated from the silicon carbide powder by heating comes into contact with the seed crystal, and a single crystal having a uniform crystal orientation grows on the seed crystal.

【0003】ルツボには、黒鉛製のものが従来から使用
されている。黒鉛製ルツボの下部又は上部に20〜30
g程度の炭化ケイ素粉末を入れ、反対側に種結晶を配置
させる。たとえば図1に示すようにルツボ1の上部に炭
化ケイ素粉末2を入れる場合、ルツボ1の内部を多孔質
の黒鉛板3で仕切り、ルツボ1の底部に種結晶4を配置
する。そして、ルツボ1を取り巻くヒータ5によって所
定の温度勾配で炭化ケイ素粉末2を加熱昇華させ、種結
晶の上に単結晶4を成長させる。ヒータ5としては、抵
抗加熱方式,高周波誘導加熱方式等が採用されている。
また、ルツボの下部に炭化ケイ素粉末を入れる場合、ル
ツボの上蓋に種結晶を張り付けることもある。
A graphite crucible has been conventionally used. 20-30 at the bottom or top of the graphite crucible
About g of silicon carbide powder is put and a seed crystal is arranged on the opposite side. For example, as shown in FIG. 1, when the silicon carbide powder 2 is put in the upper part of the crucible 1, the inside of the crucible 1 is partitioned by the porous graphite plate 3, and the seed crystal 4 is arranged at the bottom of the crucible 1. Then, the heater 5 surrounding the crucible 1 heats and sublimates the silicon carbide powder 2 with a predetermined temperature gradient to grow the single crystal 4 on the seed crystal. As the heater 5, a resistance heating method, a high frequency induction heating method, or the like is adopted.
When silicon carbide powder is put in the lower part of the crucible, a seed crystal may be attached to the upper lid of the crucible.

【0004】この条件下でルツボを圧力760トール以
下の不活性ガス雰囲気中にセットし、種結晶側が原料側
よりも低くなる温度勾配をつけて全体を2000〜24
00℃の高温雰囲気に維持する。これにより、原料であ
る炭化ケイ素粉末が昇華し、Si,Si2 C,SiC
2 ,SiC等の蒸気が種結晶に降り注ぐ。これら蒸気か
ら約0.5〜2mm/時の成長速度で、炭化ケイ素単結
晶が種結晶の表面に成長する。結晶成長工程が終了した
とき、原料としてルツボに収容された炭化ケイ素粉末が
結晶成長の時間内で全量昇華する量に予め設定されてい
ると、大部分の炭化ケイ素が昇華し消費される。そし
て、ルツボの内部に、煤状の炭素が残留する。
Under this condition, the crucible was set in an inert gas atmosphere with a pressure of 760 Torr or less, and a temperature gradient was set so that the seed crystal side became lower than the raw material side.
Maintain a high temperature atmosphere of 00 ° C. As a result, the raw material silicon carbide powder is sublimated, and Si, Si 2 C, SiC
2. Steam such as SiC pours onto the seed crystal. From these vapors, a silicon carbide single crystal grows on the surface of the seed crystal at a growth rate of about 0.5 to 2 mm / hour. When the crystal growth step is completed, if the silicon carbide powder contained in the crucible as a raw material is preset to an amount such that the total amount is sublimated within the crystal growth time, most of the silicon carbide is sublimated and consumed. Then, soot-like carbon remains inside the crucible.

【0005】[0005]

【発明が解決しようとする課題】炭化ケイ素の昇華反応
は、ルツボに収容される炭化ケイ素粉末の量に比例した
多量の昇華ガスを発生させるものではない。ルツボに収
容された炭化ケイ素粉末の量が昇華の条件を超えると
き、原料粉末層の内部に未分解の炭化ケイ素が凝固体と
なって残留し易い。残留した炭化ケイ素は、後続する昇
華反応を抑制し、蒸気の発生を妨げる原因となる。その
ため、製造装置によって定まる温度分布,圧力等の特性
や制御可能な範囲の条件に応じて、結晶成長の一工程が
決定される。このことから、安定した条件下で連続的に
単結晶を成長させる上で、結晶成長時に原料の昇華条件
を同一に設定することが必要とされる。
The sublimation reaction of silicon carbide does not generate a large amount of sublimation gas proportional to the amount of silicon carbide powder contained in the crucible. When the amount of silicon carbide powder stored in the crucible exceeds the sublimation condition, undecomposed silicon carbide tends to remain as a solidified body inside the raw material powder layer. The remaining silicon carbide suppresses the subsequent sublimation reaction and becomes a cause of hindering the generation of steam. Therefore, one step of crystal growth is determined according to the characteristics such as temperature distribution and pressure determined by the manufacturing apparatus and the conditions of the controllable range. From this, in order to continuously grow a single crystal under stable conditions, it is necessary to set the same sublimation condition of the raw material at the time of crystal growth.

【0006】昇華条件を連続的に且つ同一に維持するた
め、原料である炭化ケイ素粉末を連続供給する方法が考
えられる。しかし、炭化ケイ素の昇華後に煤状炭素等が
ルツボ内に残留することから、炭化ケイ素粉末を長時間
にわたり連続して供給することはできない。また、原料
を連続供給する構造では、開口部が生じることが避けら
れない、開口部は、昇華蒸気が外部に漏れないことが要
求されるルツボ構造には不向きであることは勿論、ルツ
ボ周辺に発生した昇華蒸気の流れを乱す原因にもなる。
In order to maintain the sublimation conditions continuously and the same, a method of continuously supplying silicon carbide powder as a raw material can be considered. However, since soot-like carbon remains in the crucible after sublimation of silicon carbide, it is impossible to continuously supply the silicon carbide powder for a long time. Further, in the structure for continuously supplying the raw material, it is inevitable that an opening will be generated. The opening is not suitable for the crucible structure in which sublimation vapor is required not to leak to the outside. It also causes disturbance of the generated sublimation vapor flow.

【0007】本発明は、このような問題を解消すべく案
出されたものであり、昇華の進行に応じて複数の炭化ケ
イ素焼結体を間欠的にルツボ内に順次送り込むことによ
り、昇華蒸気の発生を連続化させると共に、安定した条
件下で炭化ケイ素単結晶を成長させることを目的とす
る。
The present invention has been devised to solve such a problem, and a plurality of silicon carbide sintered bodies are intermittently sequentially fed into the crucible in accordance with the progress of sublimation, whereby the sublimation vapor is produced. The objective is to make the generation of silicon carbide continuous and to grow a silicon carbide single crystal under stable conditions.

【0008】[0008]

【課題を解決するための手段】本発明の炭化ケイ素単結
晶製造装置は、その目的を達成するため、種結晶を一側
に取り付けたルツボと、複数の炭化ケイ素焼結体を収容
し、前記ルツボ内に引き込まれた前記炭化ケイ素焼結体
の昇華面が前記種結晶に対向するように、前記ルツボの
他側で移動可能に設けられた原料ホルダーと、前記ルツ
ボの外周を取り巻くヒータとを備え、前記原料ホルダー
の移動によって前記炭化ケイ素焼結体が前記ルツボ内に
順次引き入れられることを特徴とする。
In order to achieve the object, a silicon carbide single crystal production apparatus of the present invention contains a crucible having a seed crystal attached to one side and a plurality of silicon carbide sintered bodies, A raw material holder movably provided on the other side of the crucible and a heater surrounding the outer periphery of the crucible, so that the sublimation surface of the silicon carbide sintered body drawn into the crucible faces the seed crystal. The silicon carbide sintered body is sequentially drawn into the crucible by the movement of the raw material holder.

【0009】[0009]

【作 用】本発明においては、昇華原料として炭化ケイ
素焼結体を複数用意する。この焼結体は、通常のセラミ
ックス焼結体を得る方法と同様な焼結法によって製造さ
れる。或いは、図2に示すように、円筒状の容積をもっ
た黒鉛製容器6に炭化ケイ素粉末7を収容し、不活性ガ
ス雰囲気中で500〜1000℃に加熱することによっ
て円板状の焼結体を得ることもできる。複数の炭化ケイ
素焼結体11,12は、図3に示すように原料ホルダー
20に形成されている孔部21,22にそれぞれ収容さ
れ、昇華位置で炭化ケイ素焼結体11がルツボ30内の
結晶成長面に対向するように、断熱ライニングが施され
たチャンバー40内にセットされる。原料ホルダー20
は、矢印Dで示すようにチャンバー40内をスライドす
る。
[Operation] In the present invention, a plurality of silicon carbide sintered bodies are prepared as sublimation raw materials. This sintered body is manufactured by the same sintering method as the method for obtaining a normal ceramics sintered body. Alternatively, as shown in FIG. 2, silicon carbide powder 7 is housed in a graphite container 6 having a cylindrical volume and heated to 500 to 1000 ° C. in an inert gas atmosphere to perform disc-shaped sintering. You can also get a body. As shown in FIG. 3, the plurality of silicon carbide sintered bodies 11 and 12 are respectively housed in the hole portions 21 and 22 formed in the raw material holder 20, and the silicon carbide sintered body 11 is placed inside the crucible 30 at the sublimation position. It is set in a chamber 40 provided with a heat insulating lining so as to face the crystal growth surface. Raw material holder 20
Slides in the chamber 40 as indicated by arrow D.

【0010】ルツボ30は、多孔質黒鉛板31が装着さ
れる段部が上端に形成された側壁32をもっている。多
孔質黒鉛板31は、炭化ケイ素焼結体11が昇華してい
るとき或いは昇華終了時に焼結体残渣が結晶成長面に落
下することを防止する。また、昇華位置にある原料ホル
ダー20の孔部21は、上蓋33で閉塞されている。原
料ホルダー20は、昇華蒸気13がルツボ30の外部に
漏出しないように、側壁31の上端に接触して或いは少
なくとも極めて近接した位置に配置される。
The crucible 30 has a side wall 32 having a step formed at the upper end on which the porous graphite plate 31 is mounted. The porous graphite plate 31 prevents the residue of the sintered body from dropping onto the crystal growth surface when the silicon carbide sintered body 11 is sublimated or at the end of sublimation. The hole 21 of the raw material holder 20 at the sublimation position is closed by the upper lid 33. The raw material holder 20 is arranged in contact with the upper end of the side wall 31 or at least in a very close position so that the sublimation vapor 13 does not leak to the outside of the crucible 30.

【0011】ルツボ30の外周は、円筒状のヒータ50
で取り囲まれている。昇華位置にある炭化ケイ素焼結体
11の上方にも、ヒータ51が配置されている。ヒータ
50は、上下方向に複数のブロックに区分されており、
それぞれのブロックごとに供給される電流を制御するこ
とによってルツボ30の内部に垂直方向に関して所定の
温度勾配を付けている。具体的には、炭化ケイ素焼結体
11側を高温とし、種結晶側を低温に設定する。
The outer circumference of the crucible 30 is a cylindrical heater 50.
It is surrounded by. The heater 51 is also arranged above the silicon carbide sintered body 11 at the sublimation position. The heater 50 is vertically divided into a plurality of blocks,
By controlling the current supplied to each block, the crucible 30 is provided with a predetermined temperature gradient in the vertical direction. Specifically, the silicon carbide sintered body 11 side is set to a high temperature and the seed crystal side is set to a low temperature.

【0012】排気口41を介してチャンバー40内を排
気し、給気口42から不活性ガスをチャンバー40に導
入する。排気及び給気を繰り返すことによりチャンバー
40内をクリーニングし、炭化ケイ素の昇華及び結晶成
長に適した不活性ガス雰囲気に調整する。次いで、ヒー
タ50,51によって炭化ケイ素焼結体11を加熱し、
昇華蒸気13を発生させる。昇華蒸気13は、多孔質黒
鉛板31を透過してルツボ30内を流下し、ルツボ30
の底部に配置した種結晶の上に成長して単結晶15とな
る。
The chamber 40 is evacuated through the exhaust port 41, and an inert gas is introduced into the chamber 40 through the air supply port 42. The interior of the chamber 40 is cleaned by repeating exhaustion and air supply, and an inert gas atmosphere suitable for sublimation and crystal growth of silicon carbide is adjusted. Next, the silicon carbide sintered body 11 is heated by the heaters 50 and 51,
Sublimation steam 13 is generated. The sublimation vapor 13 permeates the porous graphite plate 31 and flows down in the crucible 30.
The single crystal 15 grows on the seed crystal arranged at the bottom of the.

【0013】炭化ケイ素焼結体11の主成分の昇華が終
了するころ、原料ホルダー20をスライドさせて次の炭
化ケイ素焼結体12をルツボ30内に引き入れる。この
とき、昇華し終った炭化ケイ素焼結体11の残渣は、原
料ホルダー20の移動と共にルツボ30の外部に排出さ
れる。引き入れられた炭化ケイ素焼結体12は、すでに
高温状態となっているので、すぐに昇華を開始する。そ
して、一定時間にわたり、昇華蒸気13を発生させる。
このように、複数の炭化ケイ素焼結体11,12を一定
の時間間隔をおいて連続的にルツボ30に導入すること
により、昇華蒸気13が定常的に得られる。その結果、
結晶成長が安定した条件下で行われ、一定した品質をも
つ単結晶15が得られる。
When the sublimation of the main component of the silicon carbide sintered body 11 is completed, the raw material holder 20 is slid to draw the next silicon carbide sintered body 12 into the crucible 30. At this time, the residue of the silicon carbide sintered body 11 that has been sublimated is discharged to the outside of the crucible 30 as the raw material holder 20 moves. Since the silicon carbide sintered body 12 that has been drawn in is already in a high temperature state, it immediately starts sublimation. Then, the sublimation vapor 13 is generated for a certain period of time.
In this way, the sublimation vapor 13 is constantly obtained by continuously introducing the plurality of silicon carbide sintered bodies 11 and 12 into the crucible 30 at regular time intervals. as a result,
The crystal growth is performed under stable conditions, and the single crystal 15 having a constant quality is obtained.

【0014】種結晶と炭化ケイ素焼結体との位置関係
は、図4に示すように逆転させることも可能である。こ
の場合、ルツボ30の上部に種結晶を取り付け、複数の
炭化ケイ素焼結体11,12を収容した原料ホルダー3
0を下部に配置する。原料ホルダー30は、図3の場合
と同様に、炭化ケイ素焼結体11の昇華が終了するこ
ろ、矢印Dで示す方向にスライドされる。この位置関係
では、炭化ケイ素焼結体11の残渣が原料ホルダー30
に留まるため、多孔質黒鉛板31を省略することができ
る。また、炭化ケイ素焼結体11,12は、原料ホルダ
ー20に形成した凹部23,24に収容される。
The positional relationship between the seed crystal and the silicon carbide sintered body can be reversed as shown in FIG. In this case, a seed crystal is attached to the upper part of the crucible 30 and the raw material holder 3 containing a plurality of silicon carbide sintered bodies 11 and 12 is housed.
Place 0 at the bottom. Raw material holder 30 is slid in the direction indicated by arrow D when the sublimation of silicon carbide sintered body 11 is completed, as in the case of FIG. 3. In this positional relationship, the residue of the silicon carbide sintered body 11 is the raw material holder 30.
Therefore, the porous graphite plate 31 can be omitted. The silicon carbide sintered bodies 11 and 12 are housed in the recesses 23 and 24 formed in the raw material holder 20.

【0015】図3及び図4の例では、スライド式の原料
ホルダー30を採用している。しかし、本発明はこれに
拘束されるものではなく、複数の炭化ケイ素焼結体を間
欠的にルツボ内に導入するものである限り、他の形式の
原料ホルダーを採用することも可能である。たとえば、
炭化ケイ素焼結体を収容する複数の孔部又は凹部を同心
円状に形成した回転円板を組み込み、昇華による炭化ケ
イ素焼結体の消耗に伴って回転円板を間欠的に回転させ
てもよい。
In the example of FIGS. 3 and 4, a slide type raw material holder 30 is adopted. However, the present invention is not limited to this, and as long as a plurality of silicon carbide sintered bodies are intermittently introduced into the crucible, other types of raw material holders can be adopted. For example,
A rotary disk having a plurality of concentric circular holes or recesses for accommodating the silicon carbide sintered body may be incorporated, and the rotary disk may be intermittently rotated as the silicon carbide sintered body is consumed by sublimation. .

【0016】[0016]

【実施例】炭化ケイ素粉末50gを直径25mmの黒鉛
製円筒容器に収容し、不活性ガス雰囲気中で1000〜
1500℃の温度に約1時間加熱焼結し、直径25mm
及び厚さ10mmの円柱状炭化ケイ素焼結体を得た。ル
ツボ30として、内径25mmの黒鉛製ルツボを使用し
た。ルツボ30は、下蓋の台座34に種結晶を載せ、側
壁32の上端に多孔質黒鉛板31を装着させた。そし
て、孔部21,22に炭化ケイ素焼結体11,12を収
容した原料ホルダー20を、ルツボ30の上部にスライ
ド可能に配置した。炭化ケイ素焼結体11,12は、周
辺が原料ホルダー20の肩部で支持され、ルツボ30内
に引き込まれた状態では多孔質黒鉛板31及び上蓋33
で閉じられた空間内にセットされる。
[Example] 50 g of silicon carbide powder was placed in a graphite cylindrical container having a diameter of 25 mm, and 1000 to 1000 in an inert gas atmosphere.
Heat-sintered at a temperature of 1500 ℃ for about 1 hour, diameter 25mm
And a cylindrical silicon carbide sintered body having a thickness of 10 mm was obtained. As the crucible 30, a graphite crucible having an inner diameter of 25 mm was used. In the crucible 30, the seed crystal was placed on the pedestal 34 of the lower lid, and the porous graphite plate 31 was attached to the upper end of the side wall 32. Then, the raw material holder 20 containing the silicon carbide sintered bodies 11 and 12 in the holes 21 and 22 was slidably arranged on the upper portion of the crucible 30. The peripheral portions of the silicon carbide sintered bodies 11 and 12 are supported by the shoulders of the raw material holder 20, and in the state of being pulled into the crucible 30, the porous graphite plate 31 and the upper lid 33 are provided.
Is set in the closed space.

【0017】炭化ケイ素焼結体11をルツボ30内に引
き入れた状態で不活性ガスをチャンバー40に導入し、
ヒータ50,51によって炭化ケイ素焼結体11及びル
ツボ30を加熱した。ルツボ30が2000〜2400
℃に達したとき、炭化ケイ素焼結体11の昇華が開始し
た。昇華蒸気13は、多孔質黒鉛板31を透過して種結
晶に降り注ぎ、単結晶15として成長した。昇華を3時
間継続させた後、原料ホルダー20を矢印D方向にスラ
イドさせ、新しい炭化ケイ素焼結体12をルツボ30内
に引き入れた。この時点から更に3時間かけて昇華を継
続させ、結晶成長を行った。炭化ケイ素焼結体11から
約3mmの結晶成長がみられ、更に炭化ケイ素焼結体1
2を昇華させた後では約6mmの結晶成長が確認され
た。このことから、炭化ケイ素焼結体1個当り約3mm
の結晶成長が行われていることが判る。また、得られた
単結晶は、炭化ケイ素焼結体11から炭化ケイ素焼結体
12に昇華原料を切り換えたことに起因する影響がみら
れず、均一で安定した品質をもっていた。
An inert gas is introduced into the chamber 40 with the silicon carbide sintered body 11 being drawn into the crucible 30,
The silicon carbide sintered body 11 and the crucible 30 were heated by the heaters 50 and 51. Crucible 30 is 2000-2400
When the temperature reached ℃, sublimation of the silicon carbide sintered body 11 started. The sublimation vapor 13 passed through the porous graphite plate 31 and was poured onto the seed crystal to grow as a single crystal 15. After continuing sublimation for 3 hours, the raw material holder 20 was slid in the direction of arrow D, and a new silicon carbide sintered body 12 was drawn into the crucible 30. From this point, sublimation was continued for another 3 hours to grow crystals. Crystal growth of about 3 mm was observed from the silicon carbide sintered body 11, and further the silicon carbide sintered body 1
After sublimating No. 2, crystal growth of about 6 mm was confirmed. From this, it is about 3 mm per silicon carbide sintered body.
It can be seen that the crystal growth of Further, the obtained single crystal had a uniform and stable quality without any influence caused by switching the sublimation raw material from the silicon carbide sintered body 11 to the silicon carbide sintered body 12.

【0018】[0018]

【発明の効果】以上に説明したように、本発明において
は、複数の炭化ケイ素焼結体を順次ルツボ内に送り込
み、昇華を連続化させている。そのため、結晶成長面に
は同じ条件の下で昇華蒸気が連続的に降り注ぎ、結晶成
長が連続的に行われ、長尺の単結晶が製造される。しか
も、常に新鮮な原料が供給されることから、従来のよう
な残渣が製品単結晶に混入することが防止され、良質の
炭化ケイ素単結晶が得られる。
As described above, in the present invention, a plurality of silicon carbide sintered bodies are sequentially fed into the crucible to make sublimation continuous. Therefore, sublimation vapor is continuously poured onto the crystal growth surface under the same conditions, crystal growth is continuously performed, and a long single crystal is manufactured. Moreover, since the fresh raw material is always supplied, it is possible to prevent the conventional residue from being mixed into the product single crystal, and to obtain a high-quality silicon carbide single crystal.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来の炭化ケイ素粉末を原料とした単結晶製
造装置
FIG. 1 Conventional single crystal production apparatus using silicon carbide powder as a raw material

【図2】 炭化ケイ素粉末を焼結体とする一例FIG. 2 An example of using silicon carbide powder as a sintered body

【図3】 本発明に従ってルツボの上下に炭化ケイ素焼
結体及び種結晶をそれぞれ配置した単結晶製造装置
FIG. 3 is a single crystal manufacturing apparatus in which a silicon carbide sintered body and a seed crystal are arranged above and below a crucible according to the present invention.

【図4】 本発明に従ってルツボの上下に種結晶及び炭
化ケイ素焼結体をそれぞれ配置した単結晶製造装置
FIG. 4 is an apparatus for producing a single crystal in which a seed crystal and a silicon carbide sintered body are arranged above and below a crucible according to the present invention.

【符号の説明】 11,12 炭化ケイ素焼結体 13 昇華蒸気
15 単結晶 20 原料ホルダー 21,22 炭化ケイ素焼結体を収容するための孔部 23,24 凹部 30 ルツボ
31 多孔質黒鉛板 32 側壁 33 上蓋 34 台座
40 チャンバー 50,51 ヒータ
[Explanation of Codes] 11,12 Silicon Carbide Sintered Body 13 Sublimation Steam
15 Single Crystal 20 Raw Material Holder 21, 22 Hole 23, 24 for Receiving Silicon Carbide Sintered Body Recess 30 Crucible
31 porous graphite plate 32 side wall 33 upper lid 34 pedestal
40 chamber 50,51 heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 種結晶を一側に取り付けたルツボと、複
数の炭化ケイ素焼結体を収容し、前記ルツボ内に引き込
まれた前記炭化ケイ素焼結体の昇華面が前記種結晶に対
向するように、前記ルツボの他側で移動可能に設けられ
た原料ホルダーと、前記ルツボの外周を取り巻くヒータ
とを備え、前記原料ホルダーの移動によって前記炭化ケ
イ素焼結体が前記ルツボ内に順次引き入れられることを
特徴とする炭化ケイ素単結晶製造装置。
1. A crucible having a seed crystal attached to one side and a plurality of silicon carbide sintered bodies are accommodated, and a sublimation surface of the silicon carbide sintered body drawn into the crucible faces the seed crystal. As described above, the raw material holder movably provided on the other side of the crucible and the heater surrounding the outer periphery of the crucible are provided, and the silicon carbide sintered body is sequentially drawn into the crucible by the movement of the raw material holder. An apparatus for producing a silicon carbide single crystal, which is characterized in that:
JP18474992A 1992-06-19 1992-06-19 Device for producing silicon carbide single crystal Withdrawn JPH061699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18474992A JPH061699A (en) 1992-06-19 1992-06-19 Device for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18474992A JPH061699A (en) 1992-06-19 1992-06-19 Device for producing silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JPH061699A true JPH061699A (en) 1994-01-11

Family

ID=16158674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18474992A Withdrawn JPH061699A (en) 1992-06-19 1992-06-19 Device for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPH061699A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003527295A (en) * 2000-03-13 2003-09-16 トゥー‐シックス・インコーポレイテッド Axial gradient transport apparatus and method for making large single crystals of silicon carbide
JP2006290685A (en) * 2005-04-12 2006-10-26 Bridgestone Corp Method for producing silicon carbide single crystal
JP2011136903A (en) * 2011-03-30 2011-07-14 Denso Corp Production method and production apparatus for silicon carbide single crystal
CN105040104A (en) * 2015-06-25 2015-11-11 江苏艾科勒科技有限公司 Method for preparing thick silicon carbide monocrystal ingot
CN114108096A (en) * 2021-11-30 2022-03-01 江苏集芯半导体硅材料研究院有限公司 Silicon carbide crystal growing device
CN116136030A (en) * 2023-04-04 2023-05-19 内蒙古晶环电子材料有限公司 Device for bidirectionally growing silicon carbide crystal
JP2023520827A (en) * 2020-04-14 2023-05-19 眉山博雅新材料股▲ふん▼有限公司 Crystal growth method and apparatus
CN118127609A (en) * 2024-03-07 2024-06-04 安徽昱升光电科技有限公司 Crystal growth device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003527295A (en) * 2000-03-13 2003-09-16 トゥー‐シックス・インコーポレイテッド Axial gradient transport apparatus and method for making large single crystals of silicon carbide
JP2006290685A (en) * 2005-04-12 2006-10-26 Bridgestone Corp Method for producing silicon carbide single crystal
JP2011136903A (en) * 2011-03-30 2011-07-14 Denso Corp Production method and production apparatus for silicon carbide single crystal
CN105040104A (en) * 2015-06-25 2015-11-11 江苏艾科勒科技有限公司 Method for preparing thick silicon carbide monocrystal ingot
JP2023520827A (en) * 2020-04-14 2023-05-19 眉山博雅新材料股▲ふん▼有限公司 Crystal growth method and apparatus
US11926922B2 (en) 2020-04-14 2024-03-12 Meishan Boya Advanced Materials Co., Ltd. Methods for crystal growth by replacing a sublimated target source material with a candidate source material
CN114108096A (en) * 2021-11-30 2022-03-01 江苏集芯半导体硅材料研究院有限公司 Silicon carbide crystal growing device
CN116136030A (en) * 2023-04-04 2023-05-19 内蒙古晶环电子材料有限公司 Device for bidirectionally growing silicon carbide crystal
CN118127609A (en) * 2024-03-07 2024-06-04 安徽昱升光电科技有限公司 Crystal growth device

Similar Documents

Publication Publication Date Title
US6336971B1 (en) Method and apparatus for producing silicon carbide single crystal
JP2941426B2 (en) Apparatus and method for producing SiC single crystal
JP3898278B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
JP3165685B2 (en) Sublimation growth of silicon carbide single crystal
TW552325B (en) Method and apparatus for growing silicon carbide crystals
JP4691291B2 (en) SiC single crystal sublimation growth apparatus having crucible lined with foil
EP1026290B1 (en) Method and apparatus for producing silicon carbide single crystal
CN111748843A (en) Silicon carbide single crystal growth device
KR102107626B1 (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
RU2162117C2 (en) Method of epitaxial growth of silicon carbide single crystals and reactor for its embodiment
JPH061699A (en) Device for producing silicon carbide single crystal
US3275415A (en) Apparatus for and preparation of silicon carbide single crystals
JP3902225B2 (en) Method and apparatus for producing silicon carbide single crystal by sublimation breeding
JP5179690B2 (en) Axial core gradient transport apparatus and method for making large single crystals of silicon carbide
JP4310880B2 (en) Method and apparatus for producing silicon carbide single crystal
JP4597285B2 (en) Method and apparatus for producing silicon carbide single crystal
JPH06128094A (en) Production of silicon carbide single crystal
JPH0710697A (en) Device for producing silicon carbide single crystal
JP4578964B2 (en) Formation of single crystal silicon carbide
JP2009184897A (en) Method for manufacturing silicon carbide single crystal
CN109234805B (en) Growth method of high-purity silicon carbide single crystal
JPH06183897A (en) Method for growing silicon carbide single crystal
US20230407519A1 (en) Improved Furnace Apparatus for Crystal Production
KR101841109B1 (en) Apparatus for fabricating ingot
WO2022106639A1 (en) Improved furnace apparatus for crystal production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831