Nothing Special   »   [go: up one dir, main page]

JPH0616449B2 - Manufacturing method of hexagonal ferrite for magnetic recording media - Google Patents

Manufacturing method of hexagonal ferrite for magnetic recording media

Info

Publication number
JPH0616449B2
JPH0616449B2 JP7648385A JP7648385A JPH0616449B2 JP H0616449 B2 JPH0616449 B2 JP H0616449B2 JP 7648385 A JP7648385 A JP 7648385A JP 7648385 A JP7648385 A JP 7648385A JP H0616449 B2 JPH0616449 B2 JP H0616449B2
Authority
JP
Japan
Prior art keywords
hexagonal ferrite
powder
magnetic recording
ferrite
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7648385A
Other languages
Japanese (ja)
Other versions
JPS61236104A (en
Inventor
襄 石原
敏夫 内田
英世 児玉
敏夫 小川
哲郎 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7648385A priority Critical patent/JPH0616449B2/en
Publication of JPS61236104A publication Critical patent/JPS61236104A/en
Publication of JPH0616449B2 publication Critical patent/JPH0616449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、磁気記録媒体用六方晶フエライトの製法に係
り、とくに垂直磁気記録用に好適な六方晶フェライトの
製法に関する 〔発明の背景〕 磁気記録を用いたものとしては、オーデイオ,ビデオ,
OA機器等があり、これらの産業は今後も成長して行く
産業の一つである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hexagonal ferrite for magnetic recording media, and more particularly to a method for producing hexagonal ferrite suitable for perpendicular magnetic recording. BACKGROUND OF THE INVENTION Magnetic recording As for using, audio, video,
There are office automation equipment, etc., and these industries are one of the industries that continue to grow.

こうした磁気記録に用いられている記録媒体としては、
金属酸化物が一般に使用されており、なかでも、針状フ
エライト(γ−Fe)が広く用いられているが、
この針状フエライト粉は凝集し易く、またその形状から
垂直磁気記録媒体として用いるには不利である。しか
し、近年、前記磁気記録機器の小型化に伴つて、記録媒
体の記録密度向上が要求されているが、これに応えるた
めには、磁気記録媒体は垂直磁気記録ができるものを用
いるのが有利である。
As a recording medium used for such magnetic recording,
Metal oxides are generally used, and among them, needle-shaped ferrite (γ-Fe 2 O 3 ) is widely used.
This acicular ferrite powder easily aggregates, and its shape is disadvantageous for use as a perpendicular magnetic recording medium. However, in recent years, along with the downsizing of the magnetic recording equipment, it has been required to improve the recording density of the recording medium. To meet this demand, it is advantageous to use a magnetic recording medium capable of perpendicular magnetic recording. Is.

垂直磁気記録方式の記録媒体としては、六方晶フエライ
トが良い(特開昭56−67904)が、問題は六方晶フエラ
イトは記録媒体として用いるには飽和磁化値が約60em
u/gと低いことである。
As a recording medium of the perpendicular magnetic recording system, hexagonal ferrite is preferable (Japanese Patent Laid-Open No. 56-67904), but the problem is that hexagonal ferrite has a saturation magnetization value of about 60 em for use as a recording medium.
It is as low as u / g.

六方晶フエライトの飽和磁化値は、六方晶フエライトの
中のFe原子によつてもたらされるが、1分子中に含ま
れる12個のFe原子のうち4個は他の8個とスピン方
向が互に磁化を打消す方向に向いているため、これまで
低かつた。すなわち磁化の強さはFe原子できまるが、
8−4=4個しか寄与していないためである。
The saturation magnetization of hexagonal ferrite is brought about by the Fe atoms in the hexagonal ferrite, but 4 of the 12 Fe atoms contained in one molecule have spin directions that are the same as those of the other 8 Fe atoms. It has been low so far because it is oriented in the direction of canceling the magnetization. That is, the strength of magnetization depends on the Fe atom,
This is because only 4-4 = 4-4 contributed.

特公昭48−22265号公報には上記六方晶フエライトの製
造方法が示されている。
Japanese Examined Patent Publication No. 48-22265 discloses a method for producing the above hexagonal ferrite.

〔発明の目的〕[Object of the Invention]

本発明は、その飽和磁化値を向上させた磁気記録媒体用
六方晶フエライトの製造方法を提供するにある。
The present invention is to provide a method for producing a hexagonal ferrite for a magnetic recording medium having an improved saturation magnetization value.

〔発明の概要〕[Outline of Invention]

六方晶フエライトの飽和磁化値が強くない理由について
は既述の通りである。
The reason why the saturation magnetization value of hexagonal ferrite is not strong is as described above.

そこで本発明者らは、4個のFe原子のうち2個は結晶
学的に他と異つた位置(四配位)に存在するので、この
2個を何とか非磁性原子または弱磁性原子で置換できれ
ば相対的に見て飽和磁化値の高い六方晶フエライトが得
られるのではないかと考えた。
Therefore, since the present inventors have found that two of the four Fe atoms exist at positions (four-coordinates) different from each other in terms of crystallography, these two are managed to be replaced with a nonmagnetic atom or a weak magnetic atom. We thought that hexagonal ferrite with relatively high saturation magnetization could be obtained if possible.

本発明者らは、六方晶フエライト中の四配位のFeを非
磁性または弱磁性原子で置換すべく、各種の検討を重ね
た結果、目的とする六方晶フエライトを作成することに
成功した。
The present inventors have made various studies to replace tetracoordinated Fe in hexagonal ferrite with non-magnetic or weakly magnetic atoms, and as a result, succeeded in producing the intended hexagonal ferrite.

本発明は、一般式、MFe1219六方晶フェライト中の
Fe原子の2原子以下をAl,Cd及びZnの1種以上
の原子で置換された磁気記録媒体用六方晶フェライトの
製法において、前記M酸化物粉、Fe酸化物粉及び、A
l,Cd及びZnの1種以上の粉末を含む混合粉を溶融
し、該溶融物を冷却されて回転する回転ロール円周面に
注入してガラス化する急冷固化し、次いで該固化した固
化物を600〜750℃で熱処理し前記一般式の六方晶
フェライトを析出させた後、前記固化物よりガラス成分
を薬品によって溶解除去することを特徴とする磁気記録
媒体用六方晶フェライトの製法にある。
The present invention relates to a method for producing a hexagonal ferrite for a magnetic recording medium, which comprises substituting 2 or less of Fe atoms in a general formula, MFe 12 O 19 hexagonal ferrite, with one or more atoms of Al, Cd and Zn. M oxide powder, Fe oxide powder and A
A mixed powder containing one or more powders of 1, Cd and Zn is melted, and the melt is cooled and poured into the circumferential surface of a rotating rotating roll to be vitrified, which is rapidly cooled and solidified, and then the solidified solidified product. Is heat-treated at 600 to 750 ° C. to precipitate the hexagonal ferrite of the above general formula, and then the glass component is dissolved and removed from the solidified material by a chemical, which is a method for producing a hexagonal ferrite for a magnetic recording medium.

〔前記MはBa,Sr及びPbから選ばれる金属であ
る〕
[M is a metal selected from Ba, Sr and Pb]

上記フエライト(MFe1219)のAl,Cd,Znの
置換度は (Alwt%/9)+(Cdwt%/30)+(Znwt%/20)≦1を満足する
範囲内であればよい。この範囲を越えると飽和磁化値が
低下する。
The substitution degree of Al, Cd, and Zn of the ferrite (MFe 12 O 19 ) may be within a range satisfying (Alwt% / 9) + (Cdwt% / 30) + (Znwt% / 20) ≦ 1. If it exceeds this range, the saturation magnetization value decreases.

上記本発明のフエライトを製造する方法はフエライトの
基礎成分にガラス形成物質を加え、これにAl,Cd,
Znを添加する。例えばBeO,Fe,B
にAl,Cd,Znの1種以上を添加混合したものを溶
融してガラスを作成し、この溶融ガラスを急冷すること
により非晶質ガラスを作成する。この非晶質ガラスを再
加熱することによりガラス中に粒径0.1μm前後の微
細な六方晶フエライトが析出する。ガラス成分を酸で溶
解除去することにより本発明の六方晶フエライトが得ら
れる。但し上記非晶質ガラスの再加熱温度は600℃以
上750℃以下であることが重要である。750℃を越
えると六方晶フエライト中のFe原子の前記元素による
置換が十分起らないためか、飽和磁化値の向上に対する
効果が低下する。600℃未満では六方晶フェライトの
析出が不十分で、十分な六方晶フェライト量が得られな
い。
The method for producing the ferrite of the present invention comprises adding a glass-forming substance to the basic component of the ferrite and adding Al, Cd,
Zn is added. For example, BeO, Fe 2 O 3 , B 2 O 5
A mixture of one or more of Al, Cd, and Zn is melted to form glass, and the molten glass is rapidly cooled to form amorphous glass. By reheating this amorphous glass, fine hexagonal ferrite with a grain size of about 0.1 μm precipitates in the glass. The hexagonal ferrite of the present invention can be obtained by dissolving and removing the glass component with an acid. However, it is important that the reheating temperature of the amorphous glass is 600 ° C. or higher and 750 ° C. or lower. If the temperature exceeds 750 ° C., the effect of improving the saturation magnetization value may decrease, probably because the Fe atoms in the hexagonal ferrite do not sufficiently substitute with the above-mentioned elements. If the temperature is lower than 600 ° C, precipitation of hexagonal ferrite is insufficient and a sufficient amount of hexagonal ferrite cannot be obtained.

なお、フエライトとしては針状フエライト(Fe
)または通常の六方晶フエライト(MFe
1219)、あるいは両者の混合物を用いてもよい。
As the ferrite, needle-shaped ferrite (Fe
2 O 3 ) or ordinary hexagonal ferrite (MFe
12 O 19 ), or a mixture of both may be used.

〔発明の実施例〕Example of Invention

実施例1 BaO粉末53wt%、Fe粉末26%、Al粉
末5wt%、B粉末16wt%をよく混合した
後、白金るつぼ中で1400℃に加熱し溶融した。
Example 1 53 wt% of BaO powder, 26% of Fe 2 O 3 powder, 5 wt% of Al powder and 16 wt% of B 2 O 3 powder were well mixed and then heated to 1400 ° C. in a platinum crucible and melted.

この溶融ガラスを第1図の様な装置を用いて急冷し非晶
質ガラスを得た。
This molten glass was rapidly cooled using an apparatus as shown in FIG. 1 to obtain amorphous glass.

るつぼ1中で溶融したガラス2を冷却ロール4上に滴下
する。冷却ロール4はガイドローラー6によつて案内さ
れ、冷却ロール4の表面周速と周速度で冷却ロール4に
沿つて移動する冷却ベルト5と接している。上記溶融ガ
ラス2は、冷却ロール1と冷却ベルト5との間に滴下さ
れて、順次冷却される。なお、冷却ベルト5が溶融ガラ
ス2を冷却ロール1と挟持して冷却するのを助けるため
ベルト冷却装置7が設けられている。また、冷却速度を
制御するために、冷却ロール1にもロール冷却装置8が
設けられている。
The glass 2 melted in the crucible 1 is dropped on the cooling roll 4. The cooling roll 4 is guided by a guide roller 6, and is in contact with a cooling belt 5 that moves along the cooling roll 4 at the surface peripheral speed and the peripheral speed of the cooling roll 4. The molten glass 2 is dropped between the cooling roll 1 and the cooling belt 5 and sequentially cooled. A belt cooling device 7 is provided to help the cooling belt 5 sandwich the molten glass 2 with the cooling roll 1 to cool it. Further, the cooling roll 1 is also provided with a roll cooling device 8 in order to control the cooling rate.

冷却された固体ガラス3は、はく離装置9によりかき落
される。なお、固体ガラス3は急冷されるために非晶質
ガラスとなる。
The cooled solid glass 3 is scraped off by the peeling device 9. Since the solid glass 3 is rapidly cooled, it becomes an amorphous glass.

得られた非晶質ガラスを、再加熱することにより、六方
晶フエライトを晶出させると同時に、六方晶フエライト
中の四配位のFeイオンを置換するわけであるが、その
ときの加熱温度の効果を見るために温度を変えて処理を
行ない、飽和磁化値に及ぼす影響を調べた。
By reheating the obtained amorphous glass, hexagonal ferrite is crystallized, and at the same time, tetracoordinate Fe ions in the hexagonal ferrite are replaced, but the heating temperature at that time is changed. In order to see the effect, the temperature was changed and the treatment was performed, and the effect on the saturation magnetization value was investigated.

500℃〜900℃の間で温度を変えたものについて大
気中でそれぞれ30時間加熱後、酢酸水溶液中で2時間
煮沸してガラス成分を溶解し、ろ別して本発明の粒径
0.1μm前後の六方晶フエライト粉を作成した。
After heating for 30 hours in the atmosphere with respect to each of which the temperature was changed between 500 ° C. and 900 ° C., the glass component was dissolved by boiling in an acetic acid aqueous solution for 2 hours, and the glass component of the present invention having a particle size of about 0.1 μm Hexagonal ferrite powder was prepared.

上記フエライト粉末を内径5mm×90mm長さの石英管に
封入し、10エルステツドの磁場中で磁化し、飽和磁化
値を測定し熱処理温度の影響を調べた。結果を第2図に
示す。
The above ferrite powder was enclosed in a quartz tube having an inner diameter of 5 mm × 90 mm and magnetized in a magnetic field of 10 o'clock, and the saturation magnetization value was measured to examine the influence of the heat treatment temperature. Results are shown in FIG.

第2図から明らかな様に、加熱温度750℃以下で磁化
の強さは急激に高くなる。即ち換言すると750℃以下
になると六方晶フエライト中のFe原子の置換が進行す
ることを示している。
As is clear from FIG. 2, the magnetization intensity rapidly increases at a heating temperature of 750 ° C. or lower. That is, in other words, it shows that the substitution of Fe atoms in the hexagonal ferrite proceeds at 750 ° C. or lower.

なお、再加熱温度600℃未満および850℃よりも高
い温度で加熱したものは、六方晶フエライトの晶出が悪
く、酢酸によるガラス溶解により回収されたフエライト
量が少なかつた。実用性を考慮した場合、再加熱温度は
600℃〜750℃の範囲が好ましい。
Those heated at a reheating temperature of less than 600 ° C. or higher than 850 ° C. had poor crystallization of hexagonal ferrite and the amount of ferrite recovered by glass dissolution with acetic acid was small. In consideration of practicality, the reheating temperature is preferably in the range of 600 ° C to 750 ° C.

実施例2 BaO粉末53wt%、Feの粉末18wt%、
粉末16wt%、Al粉末2wt%、Cd粉末
11wt%をよく混合した後、白金るつぼ中で1400
℃に加熱し溶融した。これを実施例1と同様にして本発
明の六方晶フエライトを得た。そのフエライト粉の磁化
特性は、第2図と同様のものが得られた。
Example 2 53% by weight of BaO powder, 18% by weight of Fe 2 O 3 powder,
After thoroughly mixing 16 wt% of B 2 O 3 powder, 2 wt% of Al powder and 11 wt% of Cd powder, 1400 in a platinum crucible.
It was heated to ℃ and melted. In the same manner as in Example 1, a hexagonal ferrite of the present invention was obtained. The magnetization characteristics of the ferrite powder were similar to those shown in FIG.

実施例3 BaO粉末53wt%、Feの粉末20wt%、
粉末16wt%、Al粉末1wt%、Cd粉末
3wt%およびZn粉末7wt%をよく混合した後、白
金るつぼ中で1400℃に加熱し溶融した。これを実施
例1と同様にして本発明の六方晶フエライトを得た。そ
のフエライト粉の磁化特性は、第2図と同様のものが得
られた。
Example 3 53% by weight of BaO powder, 20% by weight of Fe 2 O 3 powder,
After thoroughly mixing 16 wt% of B 2 O 3 powder, 1 wt% of Al powder, 3 wt% of Cd powder and 7 wt% of Zn powder, the mixture was heated to 1400 ° C. in a platinum crucible and melted. In the same manner as in Example 1, a hexagonal ferrite of the present invention was obtained. The magnetization characteristics of the ferrite powder were similar to those shown in FIG.

実施例4 BaO粉末53wt%、Feの粉末16wt%、
粉末18wt%、Zn粉末6wt%およびCd
粉末9wt%をよく混合した後、白金るつぼ中で140
0℃に加熱し溶融した。これを実施例1と同様にして本
発明の六方晶フエライトを得た。そのフエライト粉の磁
化特性は、第2図と同様のものが得られた。
Example 4 53 wt% BaO powder, 16 wt% Fe 2 O 3 powder,
18 wt% B 2 O 3 powder, 6 wt% Zn powder and Cd
After mixing 9 wt% of powder well, 140 in a platinum crucible
It was heated to 0 ° C. and melted. In the same manner as in Example 1, a hexagonal ferrite of the present invention was obtained. The magnetization characteristics of the ferrite powder were similar to those shown in FIG.

実施例5 BaO粉末44wt%、Feの粉末15wt%、
BaFe1219粉末20wt%、B粉末16wt
%、Al粉末5wt%をよく混合した後、白金るつぼ中
で1400℃に加熱し溶融した。これを実施例1と同様
にして本発明の六方晶フエライトを得た。そのフエライ
ト粉の磁化特性は、第2図と同様のものが得られた。
Example 5 44 wt% BaO powder, 15 wt% Fe 2 O 3 powder,
20 wt% BaFe 12 O 19 powder, 16 wt B 2 O 3 powder
%, Al powder 5 wt% were mixed well, and then heated to 1400 ° C. in a platinum crucible and melted. In the same manner as in Example 1, a hexagonal ferrite of the present invention was obtained. The magnetization characteristics of the ferrite powder were similar to those shown in FIG.

〔発明の効果〕〔The invention's effect〕

本発明で得た六方晶フエライトは従来のものに比べて磁
化強さが約50%upした。これを用いて、磁気記録媒
体を作成した。その結果再生出力が従来の六方晶フエラ
イトを用いたものに比べ、約50%アツプし、記録が明
確になつた。
The hexagonal ferrite obtained in the present invention had a magnetization intensity of about 50% up as compared with the conventional one. Using this, a magnetic recording medium was created. As a result, the reproduction output was about 50% higher than that of the conventional hexagonal ferrite, and the recording was clear.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の六方晶フエライトの製造装置の略
図、第2図は、六方晶フエライトの製造時における加熱
処理温度と飽和磁化値の関係を示す曲線図である。 2……溶融ガラス、3……固化ガラス、4……冷却ロー
ル、5……冷却ベルト、7,8……冷却装置、10……
ロール清掃用ローラー。
FIG. 1 is a schematic diagram of an apparatus for producing hexagonal ferrite according to the present invention, and FIG. 2 is a curve diagram showing a relationship between a heat treatment temperature and a saturation magnetization value during production of hexagonal ferrite. 2 ... Molten glass, 3 ... Solidified glass, 4 ... Cooling roll, 5 ... Cooling belt, 7, 8 ... Cooling device, 10 ...
Roll cleaning roller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 敏夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 内田 哲郎 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (56)参考文献 特開 昭56−60001(JP,A) 特開 昭56−118305(JP,A) 特開 昭58−2225(JP,A) 特開 昭59−106107(JP,A) 特開 昭60−229307(JP,A) 特開 昭60−81028(JP,A) 特開 昭61−24207(JP,A) 特開 昭60−127242(JP,A) 特開 昭60−161602(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Ogawa 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture, Hitachi Research Institute, Ltd. (72) Tetsuro Uchida 4026 Kuji Town, Hitachi City, Ibaraki Prefecture, Hitachi Corporation Inside Hitachi Research Laboratory (56) Reference JP-A-56-60001 (JP, A) JP-A-56-118305 (JP, A) JP-A-58-2225 (JP, A) JP-A-59-106107 (JP, A) JP 60-229307 (JP, A) JP 60-81028 (JP, A) JP 61-24207 (JP, A) JP 60-127242 (JP, A) JP 60 -161602 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式、MFe1219六方晶フェライト中
のFe原子の2原子以下をAl,Cd及びZnの1種以
上の原子で置換された磁気記録媒体用六方晶フェライト
の製法において、前記M酸化物粉、Fe酸化物粉及び、
Al,Cd及びZnの1種以上の粉末を含む混合粉を溶
融し、該溶融物を冷却されて回転する回転ロール円周面
に注入してガラス化する急冷固化し、次いで該固化した
固化物を600〜750℃で熱処理し前記一般式の六方
晶フェライトを析出させた後、前記固化物よりガラス成
分を薬品によって溶解除去することを特徴とする磁気記
録媒体用六方晶フェライトの製法。 〔前記MはBa,Sr及びPbから選ばれる金属であ
る〕
1. A method for producing a hexagonal ferrite for a magnetic recording medium, wherein 2 atoms or less of Fe atoms in the general formula, MFe 12 O 19 hexagonal ferrite are substituted with one or more atoms of Al, Cd and Zn, The M oxide powder, the Fe oxide powder, and
A mixed powder containing one or more powders of Al, Cd, and Zn is melted, and the melt is cooled and poured into the circumferential surface of a rotating rotating roll to be vitrified, which is rapidly cooled and solidified, and then the solidified solidified product. Is heat-treated at 600 to 750 ° C. to precipitate the hexagonal ferrite of the above general formula, and then the glass component is dissolved and removed from the solidified material by a chemical, and a method for producing a hexagonal ferrite for a magnetic recording medium. [M is a metal selected from Ba, Sr and Pb]
JP7648385A 1985-04-12 1985-04-12 Manufacturing method of hexagonal ferrite for magnetic recording media Expired - Lifetime JPH0616449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7648385A JPH0616449B2 (en) 1985-04-12 1985-04-12 Manufacturing method of hexagonal ferrite for magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7648385A JPH0616449B2 (en) 1985-04-12 1985-04-12 Manufacturing method of hexagonal ferrite for magnetic recording media

Publications (2)

Publication Number Publication Date
JPS61236104A JPS61236104A (en) 1986-10-21
JPH0616449B2 true JPH0616449B2 (en) 1994-03-02

Family

ID=13606444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7648385A Expired - Lifetime JPH0616449B2 (en) 1985-04-12 1985-04-12 Manufacturing method of hexagonal ferrite for magnetic recording media

Country Status (1)

Country Link
JP (1) JPH0616449B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422643B2 (en) * 2008-10-02 2014-02-19 エスエヌユー アール アンド ディービー ファウンデーション Multiferroic substance and method for producing the same
JP5697399B2 (en) * 2010-03-31 2015-04-08 富士フイルム株式会社 Hexagonal ferrite magnetic particles and method for producing the same, magnetic powder for magnetic recording medium, and magnetic recording medium
JP5603901B2 (en) * 2012-05-30 2014-10-08 富士フイルム株式会社 Hexagonal ferrite magnetic powder and manufacturing method thereof, and magnetic recording medium and manufacturing method thereof

Also Published As

Publication number Publication date
JPS61236104A (en) 1986-10-21

Similar Documents

Publication Publication Date Title
US4690768A (en) Process for the preparation of ferrite magnetic particulate for magnetic recording
JPH10203847A (en) Crystalline glass substrate for magnetic head and its production
JPH0239844B2 (en)
JPH0512842B2 (en)
US4582623A (en) Barium ferrite magnetic powder and recording medium employing the same
JPS62100418A (en) Fine isometric hexaferrite pigments having w structure
JPH0616449B2 (en) Manufacturing method of hexagonal ferrite for magnetic recording media
JPS5842203A (en) Manufacture of magnetic powder for high density magnetic recurding medium
JP3083891B2 (en) Magnetic powder for magnetic recording medium and method for producing the same
JPS6181608A (en) Preparation of powder of hexagonal ferrite particle
JPS6324935B2 (en)
JPH0685370B2 (en) Method for producing hexagonal ferrite powder
KR960000502B1 (en) Method of preparing magnetic hexagonal ferrite powder
JP2802653B2 (en) Magnetic powder for high-density magnetic recording and method for producing the same
KR930011236B1 (en) Magnetic materials
KR960000501B1 (en) Method of preparing high density magnetic hexagonal ferrite powder
JPS6121921A (en) Preparation of magnetic powder
JPH0727809B2 (en) Method for producing hexagonal ferrite powder
JPH04321537A (en) Magnetic crystallized glass
KR0139130B1 (en) Method of preparing cubic ferrite powder for magnetic tape
JPS61278104A (en) Manufacture of hexagonal system ferrite particle powder
JPS6194303A (en) Manufacture of hexagonal system ferrite particle powder
JPH03248505A (en) Manufacture of magnetic powder for magnetic recording
JPS6163530A (en) Production of hard magnetic material
JPH0378211A (en) Manufacture of magnetic recording magnetic powder