JPH0615173A - Gas purifying catalyst and gas purifying method - Google Patents
Gas purifying catalyst and gas purifying methodInfo
- Publication number
- JPH0615173A JPH0615173A JP3359621A JP35962191A JPH0615173A JP H0615173 A JPH0615173 A JP H0615173A JP 3359621 A JP3359621 A JP 3359621A JP 35962191 A JP35962191 A JP 35962191A JP H0615173 A JPH0615173 A JP H0615173A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- dust
- exhaust gas
- layer
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims description 93
- 238000000034 method Methods 0.000 title claims description 24
- 239000000428 dust Substances 0.000 claims abstract description 62
- 239000011148 porous material Substances 0.000 claims abstract description 36
- 230000008929 regeneration Effects 0.000 claims abstract description 27
- 238000011069 regeneration method Methods 0.000 claims abstract description 27
- 238000006477 desulfuration reaction Methods 0.000 claims abstract description 21
- 230000023556 desulfurization Effects 0.000 claims abstract description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 150000002739 metals Chemical class 0.000 claims abstract 3
- 239000007789 gas Substances 0.000 claims description 174
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 52
- 238000000746 purification Methods 0.000 claims description 52
- 239000002245 particle Substances 0.000 claims description 22
- 238000002485 combustion reaction Methods 0.000 claims description 19
- 229910052815 sulfur oxide Inorganic materials 0.000 claims description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 9
- 239000004480 active ingredient Substances 0.000 claims description 6
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 5
- 239000005751 Copper oxide Substances 0.000 claims description 5
- 229910000431 copper oxide Inorganic materials 0.000 claims description 5
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims description 4
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 230000003009 desulfurizing effect Effects 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims description 2
- 230000001737 promoting effect Effects 0.000 claims description 2
- 230000009257 reactivity Effects 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 238000000151 deposition Methods 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 238000012856 packing Methods 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910000480 nickel oxide Inorganic materials 0.000 description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- QDZRBIRIPNZRSG-UHFFFAOYSA-N titanium nitrate Chemical compound [O-][N+](=O)O[Ti](O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O QDZRBIRIPNZRSG-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Filtering Materials (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ディーゼルエンジン排
ガス・ボイラ排ガスなどに含まれるばいじん(ダスト)
と窒素酸化物(NOx)を、また、場合によっては、硫
黄酸化物(SOx)をも同時に除去するガス浄化触媒及
びガス浄化方法に関するものである。TECHNICAL FIELD The present invention relates to dust contained in diesel engine exhaust gas, boiler exhaust gas, etc.
The present invention relates to a gas purification catalyst and a gas purification method for simultaneously removing nitrogen oxides (NOx) and, in some cases, sulfur oxides (SOx).
【0002】[0002]
【従来の技術】従来、ディーゼルエンジン排ガス中のダ
スト除去方法としては、発泡セラミックなどの多孔質フ
ィルターによるろ過集じんが主流である。この方法で
は、フィルター内に捕集されたダストによって、フィル
ターの目詰まりが進行し、通気抵抗が一定値以上に高く
なると、排ガスを切り換え捕集されたダストを焼却・除
去することによって、フィルターを再生する。なお、こ
の方法では、窒素酸化物、硫黄酸化物は別途処理しなけ
ればならない。2. Description of the Related Art Hitherto, as a method for removing dust from exhaust gas of a diesel engine, filtration and dust collection using a porous filter such as foam ceramic has been the mainstream. In this method, when the filter is clogged due to the dust collected in the filter and the ventilation resistance becomes higher than a certain value, the exhaust gas is switched to incinerate and remove the collected dust. Reproduce. In this method, nitrogen oxides and sulfur oxides must be treated separately.
【0003】また、特開平1−159034号公報に
は、ディーゼルエンジン排ガスの煙道中にアンモニアガ
スを注入し、その後、消石灰とバナジウム酸化物を担時
したγ−アルミナ又はアナターゼ型チタニアの粉末を噴
射し、つぎに、排ガス後流にセラミックスフィルターを
設けて、排ガス中の粉末及び燃焼ばいじんを捕集すると
ともに、この捕集灰の層を排ガスが通過するようにして
脱硝する方法が記載されている。また、特開昭61−1
11128号公報、111129号公報には、灰分、塩
化水素、窒素酸化物、硫黄酸化物を含む燃焼炉排ガス処
理装置として、多孔質セラミック材の排ガス流入面側に
目詰まり防止用の特殊反応助剤プリコート層を介して、
消石灰又は炭酸カルシウム及び塩化カルシウムを含む固
形物層を形成し、排ガス流出面側に窒素酸化物除去用触
媒層を設けた装置が記載されている。Further, in Japanese Patent Laid-Open No. 1-159034, an ammonia gas is injected into a flue of exhaust gas of a diesel engine, and then γ-alumina or anatase-type titania powder carrying slaked lime and vanadium oxide is injected. Then, a method is described in which a ceramics filter is provided downstream of the exhaust gas to collect powder and combustion dust in the exhaust gas, and denitrate the exhaust gas so that the exhaust gas passes through the layer. . In addition, JP-A-61-1
No. 11128, 111129 discloses a special reaction aid for preventing clogging on the exhaust gas inflow side of a porous ceramic material as a combustion furnace exhaust gas treatment apparatus containing ash, hydrogen chloride, nitrogen oxides, and sulfur oxides. Through the precoat layer,
An apparatus is described in which a solid layer containing slaked lime or calcium carbonate and calcium chloride is formed, and a catalyst layer for removing nitrogen oxides is provided on the exhaust gas outflow surface side.
【0004】[0004]
【発明が解決しようとする課題】上記のように、従来、
ディーゼルエンジン排ガスを浄化する場合、ダストのみ
を除去し、窒素酸化物、硫黄酸化物は、別途処理しなけ
ればならなかった。また、特開平1−159034号公
報、特開昭61−111128号公報、111129号
公報記載の方法を利用して、ダストと同時に窒素酸化物
を除去することも考えられるが、前段における消石灰を
含む触媒粉末で、後段のセラミックフィルターが目詰ま
りし易く、長時間効率よく、排ガス処理を行なうことが
困難であった。本発明は、上記の諸点に鑑みなされたも
ので、集じんと脱硝、又は集じんと脱硝と脱硫とを同時
に効率よく同時に行なうことができるガス浄化触媒及び
ガス浄化方法を提供することを目的とするものである。As described above, as described above,
When purifying exhaust gas from a diesel engine, only dust had to be removed and nitrogen oxides and sulfur oxides had to be treated separately. Further, it is conceivable to remove nitrogen oxides at the same time as dust by utilizing the methods described in JP-A-1-159904 and JP-A-61-111128, but the slaked lime in the preceding stage is included. With the catalyst powder, the ceramic filter in the subsequent stage was easily clogged, and it was difficult to efficiently treat the exhaust gas for a long time. The present invention has been made in view of the above points, and an object thereof is to provide a gas purification catalyst and a gas purification method that can efficiently perform dust collection and denitration, or dust collection, denitration, and desulfurization at the same time. To do.
【0005】[0005]
【課題を解決するための手段及び作用】上記の目的を達
成するために、本発明のガス浄化触媒は、シリカ、アル
ミナのうち少なくとも1種からなり、1〜50μ径の発
泡状細孔を有する粒状多孔体、板状多孔体又は中空円筒
状多孔体の細孔表面に、コバルト、ニッケル、バナジウ
ム、チタンからなる群より選ばれた金属の酸化物からな
る活性成分を0.2〜30μの厚みに均一に担持させた
ことを特徴としている。細孔径が1μ未満の場合は、ガ
ス拡散抵抗が大きくなり過ぎ、通気抵抗が過大となる
か、あるいはガス拡散律速により反応速度が低下すると
いう不具合がある。一方、細孔径が50μを越えると、
焼成条件等を工夫しても、触媒強度の維持が困難とな
る。また、担時厚みを0.2μ未満にしようとする場
合、細孔表面全体への均一な担時が困難となり、担時ム
ラが生じて触媒性能が低下する。一方、担時厚みが細孔
径の50〜60%以上になると、部分的な細孔の閉塞が
多くなり、ガス拡散抵抗が過大となったり、有効反応表
面積が減少するなどの不都合がある。したがって本発明
における最大細孔径50μの場合でも、担時厚みは30
μに抑える必要がある。また、上記のガス浄化触媒にお
いて、捕集ダストの燃焼促進用に、活性成分に白金を加
えたり、又は活性成分に脱硫成分としての酸化銅を加え
たりするのが望ましい。In order to achieve the above object, the gas purification catalyst of the present invention comprises at least one of silica and alumina and has foamed pores having a diameter of 1 to 50 μm. On the surface of the pores of the granular porous body, the plate-shaped porous body or the hollow cylindrical porous body, the active ingredient composed of an oxide of a metal selected from the group consisting of cobalt, nickel, vanadium and titanium is 0.2 to 30 μm thick. It is characterized in that it is uniformly supported on the substrate. If the pore size is less than 1 μ, there is a problem that the gas diffusion resistance becomes too large and the ventilation resistance becomes excessive, or the reaction rate decreases due to gas diffusion rate control. On the other hand, if the pore size exceeds 50μ,
Even if calcination conditions and the like are devised, it becomes difficult to maintain the catalyst strength. Further, if the supporting thickness is made to be less than 0.2 μm, it becomes difficult to evenly support the entire surface of the pores, and unevenness in carrying occurs to deteriorate the catalytic performance. On the other hand, if the supported thickness is 50 to 60% or more of the pore diameter, there are disadvantages such as partial pore clogging increases, gas diffusion resistance becomes excessive, and effective reaction surface area decreases. Therefore, even when the maximum pore diameter of the present invention is 50μ, the supported thickness is 30
It is necessary to suppress to μ. Further, in the above-mentioned gas purification catalyst, it is desirable to add platinum to the active component or to add copper oxide as a desulfurizing component to the active component in order to accelerate the combustion of the collected dust.
【0006】本発明の触媒は、以下の製法により、製造
が可能となった。 (1) シリカ、アルミナのうち1種以上の粉末と、粒
径1〜50μのカーボン粉末を混合し、水又はバインダ
ーを加えて粒状、板状、又は中空円筒状に成型し、つぎ
にこの成型物を乾燥させ、空気中で900℃で焼成して
カーボン成分を焼失させ発泡状細孔を形成せしめ、細孔
表面に上記活性成分をディップコーティング又はCVD
(chemical vapor depositio
n)等の方法で均一に担時させる。 (2) シリカ、アルミナのうち1種以上の粉末と、粒
径1〜50μのカーボン粉末を混合し、水又はバインダ
ーを加えて粒状、板状、又は中空円筒状に成型し、つぎ
にこの成型物を乾燥させて空気中で900℃で焼成して
カーボン成分を焼失させ発泡状細孔を形成せしめ、その
細孔表面にまずチタニアの薄層をディップコーティング
又はCVD等の方法でコーティングし、つぎに上記活性
成分を均一に担時させる。The catalyst of the present invention can be produced by the following production method. (1) Mixing one or more powders of silica and alumina and carbon powder having a particle size of 1 to 50 μ, adding water or a binder to form a granular, plate-like or hollow cylindrical shape, and then forming The product is dried and baked in air at 900 ° C. to burn off the carbon component to form foamed pores, and the active ingredient is dip-coated or CVD on the surface of the pores.
(Chemical vapor deposition
n) and other methods are used for uniform support. (2) One or more powders of silica and alumina are mixed with carbon powder having a particle size of 1 to 50μ, and water or a binder is added to form a granular, plate-like or hollow cylindrical shape, and then this forming The material is dried and fired at 900 ° C. in air to burn off the carbon component to form foamed pores, and the surface of the pores is first coated with a thin layer of titania by a method such as dip coating or CVD. To support the active ingredient evenly.
【0007】本発明のガス浄化方法は、上記のガス浄化
触媒を用い、排ガスを粒状多孔体間を通過させるか、又
は板状多孔体もしくは中空円筒状多孔体を一方の面から
他方の面に通過させて、排ガス中の窒素酸化物及びダス
ト、又は窒素酸化物、ダスト及び硫黄酸化物を除去する
ことを特徴としている。なお、排ガス中に、アンモニ
ア、炭化水素などの還元剤を添加する。そして、ガス浄
化操作を継続すると、多孔体のガス入口側にダストが堆
積して通気抵抗が増大するし、また酸化銅が硫酸銅に転
化して脱硫活性を失うため、使用済の粒状多孔体、板状
多孔体又は中空円筒状多孔体に再生ガスを流し、ダスト
の燃焼及び二酸化硫黄の脱離を行なう。再生ガスとして
は、空気、希釈空気、酸素、酸素富化空気などが用いら
れる。また、請求項6のガス浄化方法は、粒状ガス浄化
触媒を用いて充填層又は移動層を形成し、その層に排ガ
スを通過させて浄化させる際に、層を2分割し、ガス入
口側の層には反応性を持たない粒子を充填して排ガス中
のダスト除去のみを行なわせ、後流側の層に請求項1、
2又は3に記載のガス浄化触媒を充填し、排ガスの脱
硝、又は脱硝及び脱硫を行なわせることを特徴としてい
る。さらに、請求項7のガス浄化方法は、粒状ガス浄化
触媒で充填層又は移動層を形成し、その層に排ガスを通
過させて浄化させる際に、層を3分割し、ガス入口側の
層には反応性を持たない粒子を充填して排ガス中のダス
ト除去のみを行なわせ、2番目の層に請求項3に記載の
ガス浄化触媒又は硫酸銅のみを担持させたガス浄化触媒
を充填して主に排ガスの脱硫を行なわせ、ガス出口側の
層に請求項1又は2に記載のガス浄化触媒を充填して排
ガスの脱硝を行なわせることを特徴としている。The gas purification method of the present invention uses the above-mentioned gas purification catalyst to pass the exhaust gas between the granular porous bodies, or the plate-shaped porous body or the hollow cylindrical porous body from one surface to the other surface. It is characterized by removing nitrogen oxides and dust, or nitrogen oxides, dusts and sulfur oxides in the exhaust gas by passing them. A reducing agent such as ammonia or hydrocarbon is added to the exhaust gas. Then, when the gas purification operation is continued, dust is accumulated on the gas inlet side of the porous body to increase the ventilation resistance, and the copper oxide is converted to copper sulfate to lose the desulfurization activity. A regeneration gas is flowed through the plate-shaped porous body or the hollow cylindrical porous body to burn dust and desorb sulfur dioxide. As the regeneration gas, air, dilution air, oxygen, oxygen-enriched air, etc. are used. Further, in the gas purification method of claim 6, when a packed bed or a moving bed is formed by using a granular gas purification catalyst, and the exhaust gas is passed through the bed to be purified, the bed is divided into two parts, and the gas inlet side The layer having non-reactivity is filled in the layer so that only dust in the exhaust gas is removed, and the layer on the downstream side is provided with:
It is characterized in that it is filled with the gas purification catalyst described in 2 or 3, and the exhaust gas is subjected to denitration, or denitration and desulfurization. Further, in the gas purification method of claim 7, when a packed bed or a moving bed is formed with a particulate gas purification catalyst and the exhaust gas is passed through the bed to be purified, the bed is divided into three parts, and a layer on the gas inlet side is formed. Is filled with non-reactive particles to remove only the dust in the exhaust gas, and the second layer is filled with the gas purification catalyst according to claim 3 or the gas purification catalyst supporting only copper sulfate. It is characterized in that the exhaust gas is desulfurized mainly, and the layer on the gas outlet side is filled with the gas purification catalyst according to claim 1 or 2 to denitrate the exhaust gas.
【0008】再生ガスを処理対象ガスと同じ方向で流す
と、まず入口側に堆積したダストに着火し、おき燃焼の
状態でダストが燃焼する。ダストに着火させるためには
再生ガス温度を上昇させる必要があるが、触媒に白金成
分を添加することあるいは再生ガスとして酸素富化空気
を用いることは、燃焼促進、着火温度低下のために有効
である。ただし、条件によっては過熱による触媒劣化を
防止するため希釈空気を再生ガスとして用いることもあ
り得る。硫酸銅を酸化銅に戻し、脱硫活性を再生するた
めには、本来硫酸鉄の熱分解まで触媒を加熱する必要が
あるが、本発明の方法では、再生ガスはダスト燃焼熱に
よってさらに加熱されて触媒層又は触媒内部を通過する
ため、この際に外部からの熱供給なしに再生することが
可能である。請求項6に記載の、層を2分割し、ガス入
口側の層ではダスト除去のみを行なわせ、後流側の層に
ガス浄化触媒を充填して脱硝と脱硫を行なわせる方法で
も、再生時にダスト除去層で発生した燃焼熱が再生ガス
によって触媒層に運ばれ、触媒再生に用いられるが、ダ
スト燃焼による局所発熱が触媒層では生じないため、触
媒の劣化抑制にさらに効果的である。請求項7に記載
の、層を3分割し、ガス入口側の層ではダスト除去のみ
を行なわせ、2番目の層で脱硫、3番目の層で脱硝を行
なわせる方法では、通常運転時にSO2に起因する脱硝
触媒活性の低下が生じにくい上、再生時にダスト除去層
で発生した燃焼熱が再生ガスによってまず脱硫層に運ば
れて触媒再生に用いられ、最後に脱硝触媒層を通過する
ため、ダスト燃焼発熱による脱硝触媒の劣化はさらに抑
制される。When the regenerated gas is caused to flow in the same direction as the gas to be treated, the dust accumulated on the inlet side is ignited first, and the dust is burned in the state of combustion. In order to ignite the dust, it is necessary to raise the temperature of the regenerated gas, but adding a platinum component to the catalyst or using oxygen-enriched air as the regenerated gas is effective for promoting combustion and lowering the ignition temperature. is there. However, depending on the conditions, dilution air may be used as the regeneration gas in order to prevent catalyst deterioration due to overheating. In order to return copper sulfate to copper oxide and regenerate the desulfurization activity, it is necessary to heat the catalyst until the pyrolysis of iron sulfate, but in the method of the present invention, the regenerated gas is further heated by the heat of dust combustion. Since it passes through the catalyst layer or the inside of the catalyst, it can be regenerated without external heat supply. The method according to claim 6, wherein the layer is divided into two parts, only the dust is removed in the layer on the gas inlet side, and the layer on the downstream side is filled with a gas purification catalyst to perform denitration and desulfurization. The combustion heat generated in the dust removal layer is carried to the catalyst layer by the regeneration gas and used for catalyst regeneration. However, local heat generation due to dust combustion does not occur in the catalyst layer, which is more effective in suppressing catalyst deterioration. According to claim 7, the layer divided into three, in the layer of the gas inlet side to perform only dust removal, desulfurization in the second layer, the method to perform the denitration in the third layer, SO 2 during normal operation In addition, it is difficult for the denitration catalyst activity to decrease due to, and the combustion heat generated in the dust removal layer during regeneration is first carried to the desulfurization layer by the regeneration gas and used for catalyst regeneration, and finally passes through the denitration catalyst layer. Deterioration of the denitration catalyst due to dust combustion heat generation is further suppressed.
【0009】[0009]
【実施例】以下、本発明の実施例を挙げて説明する。 実施例1 シリカ55wt%、アルミナ45wt%の粉末担体原料10に
対し、平均粒径15μのカーボン粉末を2の割合で混合
し、水を噴霧しながら転動造粒機で粒状に造粒した。つ
ぎにこの成型物を乾燥させ、空気中で900℃で焼成し
てカーボン成分を焼失させて発泡状細孔を形成せしめた
後、硝酸ニッケル、硝酸チタン混合溶液への浸漬と、空
気雰囲気下400℃での焼成を4回繰り返し、細孔表面
に活性成分を均一に担時させた。最終的に、平均気孔径
が16μで、細孔表面に酸化チタン、酸化ニッケル混合
層が平均6μの厚みでほぼ均一に担時された触媒が得ら
れた。EXAMPLES Examples of the present invention will be described below. Example 1 Carbon powder having an average particle diameter of 15 μm was mixed with powder carrier material 10 of 55 wt% silica and 45 wt% alumina at a ratio of 2 and granulated with a tumbling granulator while spraying water. Next, this molded product is dried and calcined in air at 900 ° C. to burn off the carbon component to form foamed pores, which is then immersed in a mixed solution of nickel nitrate and titanium nitrate and exposed to an air atmosphere of 400 The firing at 0 ° C. was repeated 4 times to uniformly support the active ingredient on the surface of the pores. Finally, a catalyst having an average pore diameter of 16μ and a titanium oxide / nickel oxide mixed layer on the surface of the pores having an average thickness of 6μ was carried almost uniformly.
【0010】実施例2 実施例1と同じ粉末担体原料とカーボン粉末の混合物に
水を加えてスラリー化し、抽出し成型機で板状に成型し
た。つぎにこの成型物を乾燥させ、空気中で900℃で
焼成してカーボン成分を焼失させて発泡状細孔を形成せ
しめた後、実施例1と同じ原料、方法で細孔表面に活性
成分を均一に担時させた。最終的に、平均気孔径が12
μで、細孔表面に酸化チタン、酸化ニッケル混合層が平
均5μの厚みでほぼ均一に担時された触媒が得られた。Example 2 Water was added to a mixture of the same powder carrier raw material and carbon powder as in Example 1 to form a slurry, which was extracted and molded into a plate shape by a molding machine. Next, this molded product was dried and calcined in air at 900 ° C. to burn off the carbon component to form foamed pores, and the active ingredient was applied to the pore surface by the same raw material and method as in Example 1. It was carried evenly. Finally, the average pore size is 12
In μ, a catalyst was obtained in which a mixed layer of titanium oxide and nickel oxide was carried almost uniformly on the surface of pores with an average thickness of 5 μ.
【0011】実施例3 実施例1と同じ粉末担体原料とカーボン粉末の混合物に
水を加えてスラリー化し、ラバープレスで中空円筒状に
成型した。つぎにこの成型物を乾燥させ、空気中で90
0℃で焼成してカーボン成分を焼失させて発泡状細孔を
形成せしめた。この成型物に真空中で金属Tiを蒸着さ
せ、再度空気中で900℃で焼成して酸化チタン層を形
成させた後、硝酸ニッケル水溶液への浸漬と、空気雰囲
気下400℃での焼成を2回繰り返し、細孔表面に酸化
ニッケル層を均一に担時させた。最終的に、平均気孔径
が8μで、細孔表面に酸化チタン及び酸化ニッケル層が
平均4μの厚みでほぼ均一に担時された触媒が得られ
た。上記の製造例では、触媒細孔径は混合するカーボン
粉末粒径で、活性成分担時量及び担時層の厚みは含浸溶
液濃度、含浸回数、蒸着時間によって自由に調節するこ
とができた。Example 3 Water was added to a mixture of the same powder carrier raw material and carbon powder as in Example 1 to form a slurry, which was molded into a hollow cylinder by a rubber press. Next, the molded product is dried and dried in air to 90
Firing was performed at 0 ° C. to burn off the carbon component to form foamed pores. Metal Ti was vapor-deposited on this molded product in a vacuum, and again fired at 900 ° C. in air to form a titanium oxide layer, then immersed in an aqueous solution of nickel nitrate and fired at 400 ° C. in an air atmosphere. Repeated times, the nickel oxide layer was uniformly supported on the surface of the pores. Finally, a catalyst having an average pore diameter of 8 μ and a titanium oxide and nickel oxide layer on the surface of the pores having an average thickness of 4 μ and being almost uniformly carried was obtained. In the above production example, the catalyst pore size was the particle size of the carbon powder to be mixed, and the amount of the active component supported and the thickness of the supporting layer could be freely adjusted by the concentration of the impregnating solution, the number of impregnations, and the vapor deposition time.
【0012】実施例4 実施例2の方法で製造した板状触媒を、ヘキサクロロ白
金酸溶液に含浸し、乾燥させた後H25%雰囲気で30
0℃で還元し、表面に白金成分を担時させた。Example 4 The plate-shaped catalyst prepared by the method of Example 2 was impregnated with a hexachloroplatinic acid solution, dried, and then dried in an atmosphere of H 2 5% at 30%.
It was reduced at 0 ° C., and the platinum component was supported on the surface.
【0013】実施例5 実施例1の方法で製造した粒状触媒を硝酸銅溶液に含浸
し、乾燥させた後空気雰囲気で400℃で焼成し、表面
に酸化銅成分を担時させた。Example 5 The granular catalyst prepared by the method of Example 1 was impregnated in a copper nitrate solution, dried and then calcined at 400 ° C. in an air atmosphere to carry a copper oxide component on the surface.
【0014】上記のようにして製造したガス浄化触媒を
用いて、以下のような、ガス浄化性能試験を行なった。 (1) 脱硝 実施例1で製造した粒状触媒を用いた。触媒充填層に、
NOx300ppm、O23%、H2O8%、残りN2からな
るガスをSV5000h-1で流した。触媒充填層及びガ
ス温度は350℃に保った。触媒充填層上流に、ガス中
NOxに対し2倍のモル比でNH3を供給したところ、ほ
ぼ安定して92%のNOx除去率が維持され、触媒の脱
硝効果が確認された。 (2) 脱硝・脱じん・再生(燃焼) 実施例2及び4で製造した板状触媒を用いた。板状充填
に、NOx300ppm、ダスト200mg/Nm3を含むディー
ゼル排ガスを流速4cm/sで流した。触媒及びガス温度は
320℃に保った。触媒充填層上流に、ガス中NOxに
対し2倍のモル比でNH3を供給したところ、6時間に
わたって86%のNOx除去率が維持され、触媒の脱硝
効果が確認された。6時間通ガス後、触媒への供給ガス
を空気に切り替え、供給空気温度を次第に上昇させた。
実施例2の触媒では、空気温度が490℃に達した時点
で捕集ダストの燃焼が開始した。それに対し、実施例4
の触媒では420℃でダスト燃焼が開始し、Pt成分に
よる燃焼促進効果が確認された。 (3) 脱硫・脱じん・再生(燃焼同時) 実施例5で製造した粒状触媒を用いた。触媒充填層に、
SOx600ppm、ダスト200mg/Nm3を含むディーゼル
排ガスをSV5000h-1で流した。触媒充填層及びガ
ス温度は350℃に保った。触媒充填層入口/出口のガ
ス組成を比較すると、6時間にわたって72%のSOx
除去率が維持された後破過し、触媒の脱硫効果が確認さ
れた。6時間通ガス後、触媒への供給ガスを空気に切り
替え、供給空気温度を520℃まで昇温して、1時間か
けてダストを燃焼させた。ダスト燃焼後の触媒層に再度
当初と同じディーゼル排ガスを流したところ、脱硫効果
はほぼ旧に復しており、排ガス供給、ダスト燃焼を5回
繰り返した後も同様であった。このことからダスト燃焼
と同時に脱硫成分の再生が同時に起こっていることが確
認された。Using the gas purification catalyst produced as described above, the following gas purification performance test was conducted. (1) Denitration The granular catalyst produced in Example 1 was used. In the catalyst packed bed,
A gas consisting of NOx 300 ppm, O 2 3%, H 2 O 8% and the balance N 2 was flowed at SV 5000 h -1 . The catalyst packed bed and the gas temperature were kept at 350 ° C. When NH 3 was supplied upstream of the catalyst-packed bed at a molar ratio twice that of NOx in the gas, the NOx removal rate of 92% was maintained almost stably, and the denitration effect of the catalyst was confirmed. (2) Denitration / Dust removal / regeneration (combustion) The plate catalysts produced in Examples 2 and 4 were used. Diesel exhaust gas containing 300 ppm NOx and 200 mg / Nm 3 of dust was flown through the plate-like packing at a flow rate of 4 cm / s. The catalyst and gas temperatures were kept at 320 ° C. When NH 3 was supplied upstream of the catalyst-packed bed at a molar ratio twice that of NOx in the gas, the NOx removal rate of 86% was maintained for 6 hours, and the denitration effect of the catalyst was confirmed. After passing gas for 6 hours, the gas supplied to the catalyst was switched to air, and the temperature of the supplied air was gradually raised.
In the catalyst of Example 2, the combustion of the collected dust started when the air temperature reached 490 ° C. On the other hand, Example 4
With the catalyst of No. 3, dust combustion started at 420 ° C., and it was confirmed that the Pt component promoted combustion. (3) Desulfurization / Dust removal / Regeneration (simultaneous combustion) The granular catalyst produced in Example 5 was used. In the catalyst packed bed,
SOx600ppm, shed diesel exhaust gas containing dust 200 mg / Nm 3 in SV5000h -1. The catalyst packed bed and the gas temperature were kept at 350 ° C. Comparing the gas composition of the catalyst packed bed inlet / outlet, 72% SOx over 6 hours
After the removal rate was maintained, the catalyst passed through and the desulfurization effect of the catalyst was confirmed. After passing the gas for 6 hours, the gas supplied to the catalyst was switched to air, the temperature of the supplied air was raised to 520 ° C., and the dust was burned for 1 hour. When the same diesel exhaust gas as that at the beginning was flowed again in the catalyst layer after the dust combustion, the desulfurization effect was almost restored to the old one, and it was the same after repeating the exhaust gas supply and the dust combustion five times. From this, it was confirmed that the desulfurization component was regenerated at the same time as the dust combustion.
【0015】つぎに、本発明の粒状ガス浄化触媒、板状
ガス浄化触媒、中空円筒状ガス浄化触媒を使用する装置
例について説明する。 (1) 粒状ガス浄化触媒 図1及び図2に示すように、この排ガス処理装置は、金
網、多孔板、パンチングメタル等の多孔支持体20で形
成され、内部に粒状ガス浄化触媒21からなる粒子充填
層22を有する円盤状容器24と、この円盤状容器24
を収納する本体26と、この本体26に、円盤状容器2
4が回転できるように支承された回転軸28と、本体2
6内を二室30、32に仕切るための、回転軸方向の仕
切板34と、一方の室30に接続された排ガス入口36
及び浄化ガス出口38と、他方の室32に接続された再
生ガス入口40及び再生オフガス出口42とを備えてい
る。44、46はガスシール部である。なお、排ガスの
流れ方向と再生ガスの流れ方向とを同方向とすることも
可能である。この装置において、回転式の円盤状容器2
4に充填した粒子充填層22の一部に排ガスを通過させ
て、ガス中のダストを捕集・除去するとともに、ガス中
のNOx、又はNOx及びSOxを除去し、粒子充填層2
2の残部に再生ガスを流しながら粒子充填層22を連続
的又は間欠的に回転させ、集じん・脱硝、又は集じん・
脱硝・脱硫と、粒子充填層内に捕集されたダストの焼却
・除去及び粒子(触媒)の再生とを同時に、かつ、連続
的に行なう。なお、粒状ガス浄化触媒21は、発泡状細
孔を有しているので、この細孔内を若干のガスが通過す
るが、通気抵抗が大きいので、大部分のガスは触媒2
1、21間の間隙を通過する。Next, an example of an apparatus using the granular gas purification catalyst, plate-shaped gas purification catalyst and hollow cylindrical gas purification catalyst of the present invention will be described. (1) Granular Gas Purification Catalyst As shown in FIGS. 1 and 2, this exhaust gas treatment device is formed of a porous support 20 such as a wire mesh, a perforated plate, or a punching metal, and has a particle gas purification catalyst 21 inside. A disk-shaped container 24 having a filling layer 22, and the disk-shaped container 24
A main body 26 for accommodating a disk-shaped container 2
4, a rotation shaft 28 rotatably supported by the main body 2
A partition plate 34 in the direction of the rotation axis for partitioning the interior of the chamber 6 into two chambers 30 and 32, and an exhaust gas inlet 36 connected to one chamber 30.
And a purified gas outlet 38, and a regeneration gas inlet 40 and a regeneration off-gas outlet 42 connected to the other chamber 32. 44 and 46 are gas seal portions. It should be noted that the flow direction of the exhaust gas and the flow direction of the regenerated gas can be the same. In this device, the rotary disk-shaped container 2
The exhaust gas is allowed to pass through a part of the particle packed layer 22 filled in 4 to collect and remove dust in the gas, and at the same time, remove NOx or NOx and SOx in the gas.
The particle packing layer 22 is continuously or intermittently rotated while flowing a regeneration gas to the remaining part of No. 2 to collect dust, denitrate, or collect dust.
Simultaneous and continuous denitration / desulfurization, incineration / removal of dust collected in the particle packed bed, and regeneration of particles (catalyst). Since the granular gas purification catalyst 21 has foamed pores, some gas passes through these pores, but most of the gas is catalyst 2 because the ventilation resistance is large.
It passes through the gap between 1 and 21.
【0016】図3及び図4は、粒状ガス浄化触媒21の
他の使用例を示している。この排ガス処理装置は、多孔
支持体20で形成され、内部に粒子充填層22を有する
中空円筒状容器50と、この中空円筒状容器50を、粒
子充填層22外面と本体26内面との間に間隙52が生
じるように収納する本体26と、この本体26に、中空
円筒状容器50が回転できるように支承された回転軸2
8と、本体26内を二室54、56に仕切るための仕切
板58と、一方の室54の粒子充填層外側の間隙52に
接続された排ガス入口36と、一方の室54の粒子充填
層内側の中空部60に接続された浄化ガス出口38と、
他方の室56の粒子充填層内側の中空部60に接続され
た再生ガス入口40と、他方の室56の粒子充填層外側
の間隙52に設けられた再生オフガス出口42とを備え
ている。62、64はガスシール部、66、68、7
0、72、74、76は仕切板である。なお、排ガスの
流れ方向と再生ガスの流れ方向とを対向する方向とする
ことも可能である。この装置において、回転式の中空円
筒状容器50に充填した粒子充填層22の一部に排ガス
を通過させて、ガス中のダストを捕集・除去するととも
に、ガス中のNOx、又はNOx及びSOxを除去し、粒
子充填層22の残部に再生ガスを流しながら粒子充填層
22を連続的又は間欠的に回転させ、集じん・脱硝、又
は集じん・脱硝・脱硫と、粒子充填層内に捕集されたダ
ストの焼却・除去及び粒子(触媒)の再生とを同時に、
かつ、連続的に行なう。3 and 4 show another example of use of the particulate gas purification catalyst 21. This exhaust gas treating apparatus is formed of a porous support 20, and has a hollow cylindrical container 50 having a particle packing layer 22 therein, and the hollow cylindrical container 50 is provided between the outer surface of the particle packing layer 22 and the inner surface of the main body 26. A main body 26 which is housed so that a gap 52 is formed, and a rotary shaft 2 which is rotatably supported by the main body 26 so that the hollow cylindrical container 50 can rotate.
8, a partition plate 58 for partitioning the inside of the main body 26 into two chambers 54 and 56, an exhaust gas inlet 36 connected to the gap 52 outside the particle packing layer of one chamber 54, and a particle packing layer of one chamber 54. A purified gas outlet 38 connected to the inner hollow portion 60,
The other chamber 56 is provided with a regeneration gas inlet 40 connected to the hollow portion 60 inside the particle packing layer, and a regeneration off-gas outlet 42 provided in a gap 52 outside the particle packing layer of the other chamber 56. 62 and 64 are gas seal parts, 66, 68 and 7
Partition plates 0, 72, 74 and 76 are provided. The flow direction of the exhaust gas and the flow direction of the regenerated gas may be opposite to each other. In this device, the exhaust gas is passed through a part of the particle packed layer 22 filled in the rotary hollow cylindrical container 50 to collect and remove dust in the gas, and NOx in the gas, or NOx and SOx. The particle-packed layer 22 is continuously or intermittently rotated while flowing a regeneration gas to the rest of the particle-packed layer 22 to collect dust / denitrification, or dust / denitrification / desulfurization, and trap in the particle-packed layer. Incineration / removal of collected dust and regeneration of particles (catalyst) at the same time,
And continuously.
【0017】(2) 板状ガス浄化触媒 図5及び図6に示すように、金属製支持体80で、数枚
〜数十枚の板状ガス浄化触媒82を一体に支持し、通気
性円筒84を形成する。この通気性円筒84を図3及び
図4に示す粒子充填層22と同様に設置する。ガスは、
通気性円筒84の外方向から内方向へ、又は内方向から
外方向へ板状ガス浄化触媒82の発泡状細孔を通過して
流れる。なお、金属製支持体として、棒状部材の代わり
に、金網、多孔板、パンチングメタルなどの多孔支持体
を用いてもよい。(2) Plate-shaped gas purifying catalyst As shown in FIGS. 5 and 6, a metal support 80 integrally supports several to several tens of plate-shaped gas purifying catalysts 82 to form a breathable cylinder. 84 is formed. This breathable cylinder 84 is installed in the same manner as the particle-filled layer 22 shown in FIGS. 3 and 4. Gas is
The gas flows through the foamed pores of the plate-like gas purification catalyst 82 from the outside to the inside of the breathable cylinder 84 or from the inside to the outside. As the metal support, a porous support such as a wire mesh, a perforated plate, or a punching metal may be used instead of the rod-shaped member.
【0018】また、図7及び図8に示すように、板状ガ
ス浄化触媒82を2枚対設し、下端及び両側に盲板8
6、88を設けて、排ガスを板状ガス浄化触媒82を通
して浄化するように構成することもできる。90は本
体、92は排ガス入口、94は浄化ガス出口、96は再
生ガス入口、98、100は仕切板である。なお、再生
時は、浄化ガス出口94が再生オフガス出口となる。Further, as shown in FIGS. 7 and 8, two plate-shaped gas purification catalysts 82 are provided in pairs, and the blind plates 8 are provided at the lower end and both sides.
6, 88 may be provided to purify the exhaust gas through the plate-shaped gas purification catalyst 82. Reference numeral 90 is a main body, 92 is an exhaust gas inlet, 94 is a purified gas outlet, 96 is a regeneration gas inlet, and 98 and 100 are partition plates. During the regeneration, the purified gas outlet 94 becomes the regeneration off-gas outlet.
【0019】(3) 中空円筒状ガス浄化触媒 図9及び図10に示すように、中空円筒状ガス浄化触媒
102を、図7及び図8に示す板状ガス浄化触媒82と
同様に設置する。他の構成は図7及び図8に示す場合と
同様である。(3) Hollow cylindrical gas purifying catalyst As shown in FIGS. 9 and 10, the hollow cylindrical gas purifying catalyst 102 is installed in the same manner as the plate gas purifying catalyst 82 shown in FIGS. 7 and 8. Other configurations are similar to those shown in FIGS. 7 and 8.
【0020】[0020]
【発明の効果】本発明は、上記のように構成されている
ので、つぎのような効果を奏する。 (1) 集じんと脱硝、又は集じんと脱硝と脱硫とを同
時に効率よく行なうことができる。 (2) 捕集ダストを焼却する場合、燃焼速度が速いの
で、低めの温度で行なうことができ、捕集ダストの焼却
処理が円滑に行なわれる。 (3) 捕集ダストを焼却する場合、捕集ダストの焼却
熱により、使用済み脱硫成分の再生(熱分解→SO2脱
離)が同時に起こる。 (4) 触媒を連続的又は間欠的に移動(回転)させる
か、あるいは排ガスと再生ガスの導入位置を連続的又は
間欠的に移動させることにより、ガス浄化処理(脱じん
・脱硝・脱硫)と再生(ダスト焼却・SO2脱離)を同
時に行なうことができる。Since the present invention is constructed as described above, it has the following effects. (1) Dust collection and denitration, or dust collection, denitration, and desulfurization can be simultaneously and efficiently performed. (2) When the collected dust is incinerated, the burning speed is high, so that it can be performed at a lower temperature, and the incineration process of the collected dust is smoothly performed. (3) When the collected dust is incinerated, the incineration heat of the collected dust causes regeneration of the used desulfurization component (pyrolysis → SO 2 desorption) at the same time. (4) By carrying out a gas purification treatment (dedusting, denitration, desulfurization) by moving (rotating) the catalyst continuously or intermittently, or by moving the introduction positions of the exhaust gas and the regenerated gas continuously or intermittently. Regeneration (dust incineration / SO 2 desorption) can be performed simultaneously.
【図1】本発明の粒状ガス浄化触媒を用いた排ガス処理
装置の一例を示す縦断面説明図(図2における1−1線
断面図)である。FIG. 1 is a vertical cross-sectional explanatory view (cross-sectional view taken along line 1-1 in FIG. 2) showing an example of an exhaust gas treating apparatus using a particulate gas purification catalyst of the present invention.
【図2】図1における2−2線断面図である。2 is a sectional view taken along line 2-2 in FIG.
【図3】本発明の粒状ガス浄化触媒を用いた排ガス処理
装置の他の例を示す縦断面説明図(図4における3−3
線断面図)である。FIG. 3 is a vertical cross-sectional explanatory view (3-3 in FIG. 4) showing another example of the exhaust gas treating apparatus using the particulate gas purification catalyst of the present invention.
It is a line sectional view).
【図4】図3における4−4線断面図である。4 is a cross-sectional view taken along line 4-4 of FIG.
【図5】本発明の板状ガス浄化触媒の使用例を示す斜視
図である。FIG. 5 is a perspective view showing an example of use of the plate-like gas purification catalyst of the present invention.
【図6】図5に示す板状ガス浄化触媒まわりの拡大断面
図である。FIG. 6 is an enlarged cross-sectional view around the plate-shaped gas purification catalyst shown in FIG.
【図7】本発明の板状ガス浄化触媒の他の使用例を示す
断面図である。FIG. 7 is a cross-sectional view showing another example of use of the plate-shaped gas purification catalyst of the present invention.
【図8】図7における8−8線断面図である。8 is a sectional view taken along line 8-8 in FIG.
【図9】本発明の中空円筒状ガス浄化触媒の使用例を示
す断面図である。FIG. 9 is a cross-sectional view showing an example of use of the hollow cylindrical gas purification catalyst of the present invention.
【図10】図9における10−10線断面図である。10 is a sectional view taken along line 10-10 in FIG.
20 多孔支持体 21 粒状ガス浄化触媒 22 粒子充填層 24 円盤状容器 26 本体 28 回転軸 36 排ガス入口 38 排ガス出口 40 再生ガス入口 42 再生オフガス出口 50 中空円筒状容器 80 金属製支持体 82 板状ガス浄化触媒 84 通気性円筒 92 排ガス入口 94 浄化ガス出口 96 再生ガス入口 102 中空円筒状ガス浄化触媒 20 Porous Support 21 Granular Gas Purification Catalyst 22 Particle Packing Layer 24 Disk Container 26 Main Body 28 Rotating Shaft 36 Exhaust Gas Inlet 38 Exhaust Gas Outlet 40 Regeneration Gas Inlet 42 Regeneration Off Gas Outlet 50 Hollow Cylindrical Container 80 Metal Support 82 Plate Gas Purification catalyst 84 Breathable cylinder 92 Exhaust gas inlet 94 Purification gas outlet 96 Regenerated gas inlet 102 Hollow cylindrical gas purification catalyst
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 104 A 9042−4D B01J 23/22 A 8017−4G 23/89 A 8017−4G 35/04 331 7821−4G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location B01D 53/36 104 A 9042-4D B01J 23/22 A 8017-4G 23/89 A 8017-4G 35 / 04 331 7821-4G
Claims (7)
からなり、1〜50μ径の発泡状細孔を有する粒状多孔
体、板状多孔体又は中空円筒状多孔体の細孔表面に、コ
バルト、ニッケル、バナジウム、チタンからなる群より
選ばれた金属の酸化物からなる活性成分を0.2〜30
μの厚みに均一に担持させたことを特徴とするガス浄化
触媒。1. A granular porous body, a plate-shaped porous body or a hollow cylindrical porous body, which comprises at least one of silica and alumina and has foamed pores having a diameter of 1 to 50 .mu. 0.2 to 30 active ingredients composed of oxides of metals selected from the group consisting of vanadium and titanium.
A gas purification catalyst characterized by being uniformly supported in a thickness of μ.
白金を加えたことを特徴とする請求項1記載のガス浄化
触媒。2. The gas purifying catalyst according to claim 1, wherein platinum is added to the active component for promoting combustion of the collected dust.
えたことを特徴とする請求項1又は2記載のガス浄化触
媒。3. The gas purification catalyst according to claim 1 or 2, wherein copper oxide as a desulfurizing component is added to the active component.
を用い、排ガスを粒状多孔体間を通過させるか、又は板
状多孔体もしくは中空円筒状多孔体を一方の面から他方
の面に通過させて、排ガス中の窒素酸化物及びダスト、
又は窒素酸化物、ダスト及び硫黄酸化物を除去すること
を特徴とするガス浄化方法。4. An exhaust gas is passed between granular porous bodies by using the gas purification catalyst according to claim 1, 2 or 3, or a plate-shaped porous body or a hollow cylindrical porous body is passed from one surface to the other surface. Nitrogen oxide and dust in the exhaust gas,
Alternatively, a gas purification method characterized by removing nitrogen oxides, dust and sulfur oxides.
空円筒状多孔体に再生ガスを流し、ダストの燃焼及び二
酸化硫黄の脱離を行なうことを特徴とする請求項4記載
のガス浄化方法。5. The gas according to claim 4, wherein a regeneration gas is caused to flow through the used granular porous material, plate-shaped porous material or hollow cylindrical porous material to burn dust and desorb sulfur dioxide. Purification method.
動層を形成し、その層に排ガスを通過させて浄化させる
際に、層を2分割し、ガス入口側の層には反応性を持た
ない粒子を充填して排ガス中のダスト除去のみを行なわ
せ、後流側の層に請求項1、2又は3に記載のガス浄化
触媒を充填し、排ガスの脱硝、又は脱硝及び脱硫を行な
わせることを特徴とするガス浄化方法。6. A packed bed or a moving bed is formed using a particulate gas purification catalyst, and when the exhaust gas is passed through the bed for purification, the bed is divided into two, and the layer on the gas inlet side is made to have reactivity. Particles that do not have are filled to remove only dust in the exhaust gas, and the gas purification catalyst according to claim 1, 2 or 3 is filled in the layer on the downstream side to perform denitration of the exhaust gas, or denitration and desulfurization. A gas purification method characterized by:
形成し、その層に排ガスを通過させて浄化させる際に、
層を3分割し、ガス入口側の層には反応性を持たない粒
子を充填して排ガス中のダスト除去のみを行なわせ、2
番目の層に請求項3に記載のガス浄化触媒又は硫酸銅の
みを担持させたガス浄化触媒を充填して主に排ガスの脱
硫を行なわせ、ガス出口側の層に請求項1又は2に記載
のガス浄化触媒を充填して排ガスの脱硝を行なわせるこ
とを特徴とするガス浄化方法。7. When forming a packed bed or a moving bed with a particulate gas purification catalyst and passing exhaust gas through the bed to purify
The layer is divided into three parts, and the layer on the gas inlet side is filled with non-reactive particles to remove only the dust in the exhaust gas.
The second layer is filled with the gas purification catalyst according to claim 3 or the gas purification catalyst supporting only copper sulfate to mainly perform desulfurization of exhaust gas, and the layer on the gas outlet side is according to claim 1 or 2. A method for purifying gas, comprising filling the gas purifying catalyst according to 1 above to denitrate exhaust gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3359621A JPH0824846B2 (en) | 1991-12-30 | 1991-12-30 | Gas purification catalyst and gas purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3359621A JPH0824846B2 (en) | 1991-12-30 | 1991-12-30 | Gas purification catalyst and gas purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0615173A true JPH0615173A (en) | 1994-01-25 |
JPH0824846B2 JPH0824846B2 (en) | 1996-03-13 |
Family
ID=18465436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3359621A Expired - Lifetime JPH0824846B2 (en) | 1991-12-30 | 1991-12-30 | Gas purification catalyst and gas purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0824846B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004058054A (en) * | 2002-06-25 | 2004-02-26 | Ford Global Technologies Llc | CATALYST COMPOSITION OF SOx TRAP FOR DIESEL ENGINE AND LEAN BURN GASOLINE ENGINE, METHOD OF USING THE CATALYST COMPOSITION, DIESEL OXIDATION CATALYST HAVING THE CATALYST COMPOSITION, AND CATALYZED SOOT FILTER |
JP2006205091A (en) * | 2005-01-28 | 2006-08-10 | Takuma Co Ltd | Denitration catalyst and exhaust gas treating method |
JP2008215093A (en) * | 2007-02-28 | 2008-09-18 | Babcock Hitachi Kk | Exhaust gas cleaning filter and automobile equipped with the same |
JP2015202425A (en) * | 2014-04-11 | 2015-11-16 | 国立大学法人金沢大学 | Fine particle collection device |
JP2016049520A (en) * | 2014-09-02 | 2016-04-11 | 株式会社アルバック | Method of producing exhaust gas purification catalyst |
CN114392609A (en) * | 2021-12-30 | 2022-04-26 | 安徽工业大学 | Preparation method and application of dedusting, desulfurization and denitration integrated double-layer mullite ceramic filter material |
-
1991
- 1991-12-30 JP JP3359621A patent/JPH0824846B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004058054A (en) * | 2002-06-25 | 2004-02-26 | Ford Global Technologies Llc | CATALYST COMPOSITION OF SOx TRAP FOR DIESEL ENGINE AND LEAN BURN GASOLINE ENGINE, METHOD OF USING THE CATALYST COMPOSITION, DIESEL OXIDATION CATALYST HAVING THE CATALYST COMPOSITION, AND CATALYZED SOOT FILTER |
JP2006205091A (en) * | 2005-01-28 | 2006-08-10 | Takuma Co Ltd | Denitration catalyst and exhaust gas treating method |
JP2008215093A (en) * | 2007-02-28 | 2008-09-18 | Babcock Hitachi Kk | Exhaust gas cleaning filter and automobile equipped with the same |
JP2015202425A (en) * | 2014-04-11 | 2015-11-16 | 国立大学法人金沢大学 | Fine particle collection device |
JP2016049520A (en) * | 2014-09-02 | 2016-04-11 | 株式会社アルバック | Method of producing exhaust gas purification catalyst |
CN114392609A (en) * | 2021-12-30 | 2022-04-26 | 安徽工业大学 | Preparation method and application of dedusting, desulfurization and denitration integrated double-layer mullite ceramic filter material |
Also Published As
Publication number | Publication date |
---|---|
JPH0824846B2 (en) | 1996-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6411358B2 (en) | Ammonia oxidation catalyst | |
RU2675363C2 (en) | Ammonia slip catalyst | |
EP3004578B1 (en) | Catalyzed filter for treating exhaust gas | |
US9687786B2 (en) | Catalyzed filter for treating exhaust gas | |
RU2669556C2 (en) | Zeolite blend catalysts for treating exhaust gas | |
RU2392456C2 (en) | Method and device for cleaning of exhaust gas | |
JP2002520136A (en) | Method and catalyst / adsorbent for treating exhaust gas containing sulfur compounds | |
JP2003245547A (en) | Catalyst for exhaust gas treatment and method for exhaust gas treatment | |
JP2016531736A (en) | Tungsten / titania oxidation catalyst | |
JP2019508221A (en) | Reactor for reducing nitric oxide | |
TW202103768A (en) | Catalysed filter system for treating particulate-containing exhaust gas from stationary emission sources | |
JP2002361047A (en) | Method for cleaning exhaust and apparatus therefor | |
JPH0615173A (en) | Gas purifying catalyst and gas purifying method | |
JP2004188388A (en) | Filter for cleaning diesel exhaust gas and its production method | |
JPH09108570A (en) | Oxidation catalyst for cleaning exhaust gas and preparation thereof | |
JP2005264868A (en) | Diesel exhaust gas emission control device | |
JP2004033855A (en) | Dust collection filter for gas, its manufacturing method, and exhaust gas treatment method | |
JP6126858B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2001079346A (en) | Method and device for treating gas and method for regenerating honeycomb activated carbon | |
KR100460665B1 (en) | A method for simultaneous removal of nitrogen oxides and dioxins from waste gases | |
JPH0663411A (en) | Exhaust gas cleaning catalyst for diesel engine | |
JP3111491B2 (en) | Exhaust gas purification catalyst | |
JPH05138026A (en) | Catalyst for purifying exhaust gas of diesel engine | |
JPH10202103A (en) | Oxidation catalyst for diesel engine and production thereof | |
RU2772861C2 (en) | Catalytic product for exhaust gas treatment |