JPH06142854A - Continuous casting method of steel using electromagnetic force and mold for continuous casting - Google Patents
Continuous casting method of steel using electromagnetic force and mold for continuous castingInfo
- Publication number
- JPH06142854A JPH06142854A JP29678292A JP29678292A JPH06142854A JP H06142854 A JPH06142854 A JP H06142854A JP 29678292 A JP29678292 A JP 29678292A JP 29678292 A JP29678292 A JP 29678292A JP H06142854 A JPH06142854 A JP H06142854A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- continuous casting
- high frequency
- conductivity
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電磁力を用いる鋼の連
続鋳造方法および連続鋳造用鋳型に関し、特に、鋳型内
に生成する初期凝固シェルの形状を制御することによ
り、鋳片(鋼スラブ)品質の一層の改善と共に、円滑な
高速鋳造を可能とする連続鋳造技術である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting steel using electromagnetic force and a mold for continuous casting, and more particularly, by controlling the shape of an initially solidified shell formed in the mold, a slab (steel slab) ) It is a continuous casting technology that enables smooth high speed casting with further improvement of quality.
【0002】[0002]
【従来の技術】一般的な鋼の連続鋳造では、図1に示す
ように、連続鋳造用鋳型の壁面にて溶鋼の凝固が始ま
り、初期凝固シェルが形成される。このとき、鋳型を所
定の振幅(周波数100 〜300cpm)にて縦振動させ(鋳型
オッシレーション)、上記振動凝固シェルと該鋳型内壁
面との間へのモールドパウダーの流入を促進すること
で、凝固シェルと鋳型内壁面との潤滑を確保していた。2. Description of the Related Art In general continuous casting of steel, as shown in FIG. 1, solidification of molten steel starts on the wall surface of a continuous casting mold to form an initial solidified shell. At this time, the mold is longitudinally oscillated at a predetermined amplitude (frequency 100 to 300 cpm) (mold oscillation) to promote the inflow of the mold powder between the oscillating solidification shell and the inner wall surface of the mold. Lubrication between the shell and the inner wall surface of the mold was ensured.
【0003】一方、メニスカス界面における溶鋼の状態
は、通常、モールドパウダー溶融層と溶鋼の界面張力の
バランスから湾曲形状をしており、そのため、初期凝固
シェルも鋳型中心(溶鋼側)に湾曲した形状を呈してい
た。On the other hand, the state of the molten steel at the meniscus interface is usually curved due to the balance of the interfacial tension between the mold powder molten layer and the molten steel. Therefore, the initial solidified shell is also curved toward the center of the mold (the molten steel side). Was present.
【0004】しかも、鋳型と凝固シェルとの間に介在し
ている溶融パウダー層の圧力が、上記鋳型オッシレーシ
ョンによって変動することから、初期凝固シェルが鋳型
中心側に倒れ、図1(c) に示すようなオッシレーション
マークの爪を形成する現象が多く見られた。その上、こ
のオッシレーションマーク爪部は、溶鋼中に含まれてい
る気泡あるいは介在物を捕捉しやすい傾向があり、これ
が連鋳鋳片の表面品質悪化の主要原因となっていた。Moreover, since the pressure of the molten powder layer interposed between the mold and the solidified shell fluctuates due to the above-described mold oscillation, the initial solidified shell falls toward the center of the mold, as shown in FIG. 1 (c). The phenomenon of forming the nail of the oscillation mark as shown was often seen. In addition, the oscillation mark claw portion tends to easily capture air bubbles or inclusions contained in the molten steel, which has been a major cause of deterioration of the surface quality of the continuous cast slab.
【0005】従って、表面品質の良好な鋼スラブを連続
鋳造するには、このオッシレーションマーク爪部の深さ
を低減させることが効果的であり、この爪部深さを低減
させるためには、 .メニスカス界面での初期凝固シェルの湾曲部長さを
短くすること、 .鋳型と凝固シェル間に存在する溶融パウダー層内の
圧力変動を低減させること、が有効と考えられていた。Therefore, in order to continuously cast a steel slab having a good surface quality, it is effective to reduce the depth of the oscillation mark claw portion. To reduce the depth of the claw portion, it is effective. . Shortening the curved length of the initial solidified shell at the meniscus interface ,. It was considered effective to reduce the pressure fluctuation in the molten powder layer existing between the mold and the solidified shell.
【0006】さらに、従来の連続鋳造法においては、引
き抜き速度3m/min 以上の高速鋳造を実現しようとする
と、鋳造鋳片単位体積当たりのパウダー消費量が不足し
やすくなり、そのために、凝固シェルと鋳型との間の円
滑な潤滑が行われず、いわゆる拘束性ブレークアウトが
多発する傾向が見られた。Further, in the conventional continuous casting method, if it is attempted to realize high-speed casting at a drawing speed of 3 m / min or more, the powder consumption amount per unit volume of cast slab tends to be insufficient, which results in a solidified shell. There was a tendency that smooth lubrication with the mold was not performed and so-called restraint breakouts frequently occurred.
【0007】これに対し、従来、上述した問題点を克服
して、鋼スラブの表面欠陥を防止するための技術が、種
々提案されている。まず、特開平2−137653号公報で
は、鋳型の上部外周囲に通電コイルを設けて高周波電流
を流すことにより、発生する電磁的ピンチ力を用い、ノ
ズル,鋳型および鋳造金属を互いに非接触の状態としな
がら鋳造を行う方法を提案している。この従来方法は、
溶鋼の保持に密閉型の鋳型を用い、その鋳型上部に誘導
コイルを配置し、潤滑剤を溶鋼とコイルおよび鋳型の間
に注入する形態を取っているところに特徴がある。しか
しながら、この従来方法では、前記コイルを鋳型の上部
に配設しているため、電磁誘導によって溶鋼と鋳型を非
接触の状態に保持するための効率が悪く、結局、安定し
て溶鋼の連続高速鋳造を行うことが非常に困難であっ
た。On the other hand, conventionally, various techniques have been proposed for overcoming the above-mentioned problems and preventing the surface defects of the steel slab. First, in JP-A-2-137653, a nozzle, a mold, and a casting metal are in a non-contact state with each other by using an electromagnetic pinch force generated by providing an energizing coil around the outer periphery of the upper part of the mold and flowing a high frequency current. While proposing a method of casting. This conventional method
A characteristic is that a closed mold is used to hold the molten steel, an induction coil is arranged above the mold, and a lubricant is injected between the molten steel and the coil and the mold. However, in this conventional method, since the coil is arranged in the upper part of the mold, the efficiency for keeping the molten steel and the mold in a non-contact state by electromagnetic induction is poor, and in the end, the molten steel can be stably and continuously supplied at high speed. Casting was very difficult.
【0008】また、特開平2−70361 号公報では、メニ
スカスの外周近傍に鋳型の外側に電磁コイルを配設して
鋳造を行う方法を提案している。この従来方法の特徴
は、コイルによって発生する磁場と溶鋼内の誘導電流と
の相互作用により、メニスカス形状と鋳型内溶融金属の
流動を制御し、凝固シェルと鋳型との間隙に、より多く
のモールドパウダーを供給することにより、鋳片形状お
よび鋳片内部品質の向上を可能としたことにある。しか
しながら、この従来技術は、鋳型の外側にコイルを配置
し、鋳型内溶鋼に高周波を印加するので、溶鋼からの距
離が遠いという点と一部の高周波が鋳型に吸収されると
いう点で効率が悪いという問題があった。Further, Japanese Patent Application Laid-Open No. 2-70361 proposes a method of casting by disposing an electromagnetic coil outside the mold near the outer circumference of the meniscus. The feature of this conventional method is that the interaction between the magnetic field generated by the coil and the induced current in the molten steel controls the meniscus shape and the flow of the molten metal in the mold, so that more mold is formed in the gap between the solidified shell and the mold. By supplying the powder, it is possible to improve the shape of the cast piece and the internal quality of the cast piece. However, in this conventional technique, a coil is arranged outside the mold and a high frequency is applied to the molten steel in the mold, so that the efficiency is high in that the distance from the molten steel is long and part of the high frequency is absorbed by the mold. There was a problem of being bad.
【0009】[0009]
【発明が解決しようとする課題】以上説明したように、
従来の連続鋳造技術が抱える上述した問題点の解決に
は、1つに初期凝固シェルを含むメニスカス近傍を確実
に加熱することにより、この初期凝固シェルの湾曲形状
部分を短くするか、もしくは無くする方法が有効と考え
られるが、これを行う適切な方法は、未だ開発されてい
ないのが実情である。As described above,
In order to solve the above-mentioned problems of the conventional continuous casting technique, one is to surely heat the vicinity of the meniscus including the initial solidified shell to shorten or eliminate the curved shape part of the initial solidified shell. It seems that the method is effective, but the proper method for doing this has not yet been developed.
【0010】そこで本発明の目的は、連続鋳造における
上述したような問題を解消し、品質の良好な鋼スラブを
得ることができ、かつ高速鋳造を可能とするのに有効な
電磁力を用いた初期凝固シェルの制御を伴う連続鋳造技
術を提案することにある。Therefore, an object of the present invention is to solve the above problems in continuous casting, obtain a steel slab of good quality, and use an electromagnetic force effective for enabling high speed casting. It is to propose a continuous casting technique with control of an initially solidified shell.
【0011】[0011]
【課題を解決するための手段】このような目的を実現す
るために本発明者らは、炭素濃度が500ppm以下で、主に
Alで脱酸したアルミキルド鋼を用いた連続鋳造の際にお
ける表面品質について種々調査、検討を重ねた結果、以
下の如き知見を得た。[Means for Solving the Problems] In order to achieve such an object, the inventors of the present invention have a carbon concentration of 500 ppm or less,
As a result of various investigations and studies on the surface quality during continuous casting using aluminum-killed aluminum deoxidized with Al, the following findings were obtained.
【0012】すなわち、鋳型内の溶鋼流動と溶鋼温度お
よび鋳型壁面内の冷却水による冷却能力等によって、鋼
スラブの表面品質がある一定の傾向を示すことが明らか
となった。しかも、この鋳型内の溶鋼流動が抑えられて
いても、初期凝固シェルが異常に発達しなければ、鋼ス
ラブの表面品質は劣化しないことも判った。すなわち、
鋳型内の初期凝固シェルの発達を制御することができれ
ば、鋼スラブの表面品質は確実に改善することができる
との知見を得たのである。さらに、溶融したモールドパ
ウダーが潤滑の役割を担っているとの従来の知見より、
溶融したモールドパウダーを鋳型壁面と凝固シェルとの
間に十分に供給すれば、鋳型壁面と凝固シェルとの摩擦
抵抗が減少し、高速の連続鋳造が可能となることも判っ
た。That is, it became clear that the surface quality of the steel slab shows a certain tendency due to the flow of molten steel in the mold, the temperature of the molten steel, the cooling capacity of the cooling water in the wall surface of the mold, and the like. Moreover, it has been found that even if the molten steel flow in the mold is suppressed, the surface quality of the steel slab does not deteriorate unless the initial solidified shell develops abnormally. That is,
The inventors have found that if the development of the initially solidified shell in the mold can be controlled, the surface quality of the steel slab can be reliably improved. Furthermore, from the conventional knowledge that the molten mold powder plays a role of lubrication,
It was also found that if the molten mold powder is sufficiently supplied between the mold wall surface and the solidified shell, the frictional resistance between the mold wall surface and the solidified shell is reduced, and high-speed continuous casting is possible.
【0013】本発明者らは、このような数々の知見の下
に、上記目的を実現する方法として、一対の短辺壁と長
辺壁との組合せからなる連続鋳造用鋳型の上部に、高周
波電流を直接通電し、初期凝固シェル上部に鋳片幅方向
に沿って誘導電流を誘起させることにより、この凝固シ
ェルの形状を制御する方法を見出した。特に、本発明
は、上記方法を、より効果的に実現し得るために開発し
た技術である。Based on these various findings, the inventors of the present invention have found that as a method for achieving the above object, a high frequency wave is formed on the upper part of a continuous casting mold composed of a pair of short side walls and long side walls. We have found a method of controlling the shape of this solidified shell by directly applying an electric current and inducing an induced current in the upper part of the initial solidified shell along the width direction of the slab. In particular, the present invention is a technique developed in order to realize the above method more effectively.
【0014】すなわち、本発明は、タンディッシュ内溶
鋼を、それぞれ一対の短辺壁と長辺壁との組合せからな
る連続鋳造用鋳型内に、浸漬ノズルを介して供給するこ
とによって、鋼スラブを連続鋳造するに方法において、
上記鋳型の上部に高周波電流を直接通電することにより
初期凝固シェルの形状を制御しながら鋼スラブを鋳造す
る際に、この鋳型上部の高周波通電域の導電率が、他の
高周波非通電域に比べて高い導電率を示す材料にて形成
された鋳型を用いることを特徴とする電磁力を用いる鋼
の連続鋳造方法である。この方法の実施に於いて好適な
連続鋳造用鋳型の構造として本発明は、この鋳型上部に
高周波通電域を具え、かつこの高周波通電域の導電率
が、他の高周波非通電域に比べて高い導電率を示す材料
にて形成された鋳型を提案する。また、この鋳型につい
ては、高周波非通電域の導電率が、高周波通電域の導電
率に対して1/2以下であることが好ましく、しかも、
高周波通電域と高周波非通電域とが絶縁された状態にあ
ることが好ましい。さらに、高周波通電域は、内部冷却
されていることがより好ましい実施形態である。That is, the present invention provides a steel slab by supplying molten steel in a tundish into a continuous casting mold composed of a pair of short side walls and long side walls, respectively, through a dipping nozzle. In the method of continuous casting,
When casting a steel slab while controlling the shape of the initial solidification shell by directly passing a high-frequency current to the upper part of the mold, the conductivity of the high-frequency energized region of this mold upper part, compared to other high-frequency non-energized region Is a continuous casting method for steel using electromagnetic force, which is characterized by using a mold formed of a material exhibiting high electrical conductivity. The present invention, as a structure of a continuous casting mold suitable for carrying out this method, has a high-frequency energization region on the upper part of the mold, and the conductivity of this high-frequency energization region is higher than other high-frequency non-conduction regions. We propose a mold made of a material that exhibits electrical conductivity. Further, in this mold, it is preferable that the conductivity in the high frequency non-conduction region is 1/2 or less of the conductivity in the high frequency conduction region, and
It is preferable that the high frequency conduction region and the high frequency non-conduction region are insulated from each other. Further, it is a more preferable embodiment that the high frequency conduction region is internally cooled.
【0015】[0015]
【作用】図1は、従来の連続鋳造方法を示す概略図であ
り、図中に示した符号の1は、一対の短辺壁1a,1′a
と、長辺壁1b,1′bとで構成された連続鋳造用鋳型、2
は、上記の鋳型1内へタンディッシュ内溶鋼を供給する
ための浸漬ノズルである。3は、粉末状のモールドパウ
ダーであり、4は、3が溶融したモールドパウダーであ
る。5は、溶鋼であり、5aは、この溶鋼が冷却されて生
成した初期凝固シェルである。なお、上記の鋳型には鋳
型オッシレーションとして、縦方向の振動が加えられ
る。FIG. 1 is a schematic view showing a conventional continuous casting method. Reference numeral 1 in the drawing indicates a pair of short side walls 1a, 1'a.
And the long side walls 1b and 1'b for continuous casting, 2
Is an immersion nozzle for supplying molten steel in the tundish into the mold 1. 3 is a powdery mold powder, and 4 is a molten mold powder of 3. Reference numeral 5 is molten steel, and 5a is an initial solidified shell produced by cooling the molten steel. In addition, vertical vibration is applied to the above-mentioned mold as mold oscillation.
【0016】図1−(c) は、このような構成の下で鋳造
した従来の連続鋳造方法によって生成する初期凝固シェ
ルの形状を例示したものであり、鋳片品質に悪影響を及
ぼすオッシレーションマーク爪部5bが発生している。FIG. 1- (c) exemplifies the shape of the initially solidified shell produced by the conventional continuous casting method which is cast under such a structure. Oscillation marks which adversely affect the quality of the slab are shown. The claw portion 5b is generated.
【0017】図2は、本発明の連続鋳造方法の概略を示
すものである。この図に示すように、本発明方法の特徴
は、例えば高周波発生器6を用いて、鋳型1に高周波電
流を直接通電することにより、初期凝固シェルの生成を
制御するようにしたことにある。FIG. 2 shows the outline of the continuous casting method of the present invention. As shown in this figure, a characteristic of the method of the present invention is that the generation of the initial solidified shell is controlled by directly supplying a high frequency current to the mold 1 using the high frequency generator 6, for example.
【0018】図2(b),(c)によって、従来の凝固形態と
本発明法による凝固形態を比較すると、従来の鋳造方法
によって生成する初期凝固シェルは5a′であり、本発明
による初期凝固シェルは5aであり、長辺壁と初期凝固シ
ェル5a,5a′とのギャップは、それぞれδ,δ′とな
る。本発明では、高周波電流の磁気圧のためギャップδ
が従来より大きくなり、それ故に、パウダーの供給が容
易となると同時に前記爪深さ,すなわち湾曲部の長さを
小さくすることも可能となっている。以下にこのことを
詳細に説明する。2 (b) and 2 (c), when comparing the conventional solidification morphology with the solidification morphology of the method of the present invention, the initial solidification shell produced by the conventional casting method is 5a '. The shell is 5a, and the gaps between the long side walls and the initial solidified shells 5a and 5a 'are δ and δ', respectively. In the present invention, the gap δ due to the magnetic pressure of the high frequency current.
Is larger than the conventional one, and therefore, it becomes possible to easily supply the powder, and at the same time, it is possible to reduce the depth of the nail, that is, the length of the curved portion. This will be described in detail below.
【0019】すなわち、図3に示すように、鋳型1に高
周波電流7を流すと、その周囲には磁場9が形成され
る。一方、初期凝固シェル5aの近傍には磁場9を打ち消
す方向に高周波電流7と逆向きの誘導電流8が発生し、
この誘導電流8の周囲にも磁場9と逆向きの磁場10が発
生する。ここで、上記初期凝固シェル5aの近傍にのみ誘
導電流8が流れるのは、高周波電流7によって発生する
電磁波が、表皮効果によりあまり深く侵入しないからで
ある。That is, as shown in FIG. 3, when a high frequency current 7 is passed through the mold 1, a magnetic field 9 is formed around it. On the other hand, in the vicinity of the initial solidification shell 5a, an induction current 8 opposite to the high frequency current 7 is generated in the direction of canceling the magnetic field 9,
A magnetic field 10 opposite to the magnetic field 9 is also generated around the induced current 8. Here, the induction current 8 flows only in the vicinity of the initial solidification shell 5a because the electromagnetic waves generated by the high frequency current 7 do not penetrate too deeply due to the skin effect.
【0020】そして、この初期凝固シェル5aの近傍に発
生した誘導電流8は、この初期凝固シェル5a自身を加熱
するために、図2(b) において鎖線で示した従来例のよ
うに、初期凝固シェルがメニスカスに沿って湾曲しなが
ら長く延びたオッシレーションマーク爪部5bの発生を防
止する作用がある。The induced current 8 generated in the vicinity of the initial solidification shell 5a heats the initial solidification shell 5a itself so that the initial solidification is performed as in the conventional example shown by the chain line in FIG. 2 (b). The shell has a function of preventing the generation of the oscillation mark claw portion 5b that extends long while curving along the meniscus.
【0021】また、初期凝固シェル5a近傍に発生した磁
場10は、誘導電流8との相互作用により、反発力Fを誘
起させ、これにより、鋳型壁面と凝固シェルとの間隙δ
を拡大する。The magnetic field 10 generated in the vicinity of the initial solidification shell 5a induces a repulsive force F due to the interaction with the induced current 8, whereby the gap δ between the mold wall surface and the solidification shell is set.
To expand.
【0022】従って、本発明によれば、図2(c)に示す
ように、メニスカス界面での初期凝固シェル5aの湾曲部
の生成を事実上抑制することができる。それに加えて、
鋳型内壁面と初期凝固シェル5aとの間のパウダー通路内
の圧力が間隙δの増大に伴って低減するため、このこと
によっても初期凝固シェル5aの鋳型中心(溶鋼側)への
倒れ込みを軽減することができ、ひいては、オッシレー
ションマークの爪を小さくし、鋳片表面欠陥を著しく低
減することとなる。Therefore, according to the present invention, as shown in FIG. 2 (c), the generation of the curved portion of the initial solidified shell 5a at the meniscus interface can be effectively suppressed. In addition to it,
Since the pressure in the powder passage between the inner wall surface of the mold and the initial solidification shell 5a decreases as the gap δ increases, this also reduces the collapse of the initial solidification shell 5a into the mold center (molten steel side). As a result, the claws of the oscillation mark can be made small, and the cast slab surface defects can be significantly reduced.
【0023】しかも、鋳型壁面と凝固シェルとの間隙δ
を、高周波電流を通電しない場合の間隙δ′に比べて著
しく大きくできるから、溶融パウダーが入りやすくな
り、溶融パウダーによる潤滑性が向上し、この面から高
速鋳造を可能にする。Moreover, the gap δ between the mold wall surface and the solidified shell δ
Can be made significantly larger than the gap δ'when a high-frequency current is not applied, so that the molten powder can easily enter and the lubricity by the molten powder is improved, which enables high-speed casting.
【0024】このような初期凝固シェルの制御をより効
果的に行うためには、鋳型壁面内部のメニスカス近傍に
高周波電流を効率良く通電することが必要である。その
ため、本発明では、図4に示したように、連続鋳造用鋳
型は、特に、鋳型上部に設けた高周波通電域の材料と他
の高周波非通電域の材料を導電率の異なるものとした。
すなわち、高周波通電域の材料をより導電率の高いもの
とした。なかでも、鋳型の高周波非通電域における導電
率を鋳型上部の高周波通電域における導電率に対して1
/2以下とすることによって、より大きな高周波電流を
初期凝固シェル近傍に通電させることが可能となる。こ
れにより、高周波通電による初期凝固シェルの制御効果
はより顕著となる。また、導電率の高い材料からなる高
周波通電域と導電率の低い材料からなる高周波非通電域
とを絶縁することによっても高周波通電域に高周波電流
が効率良く流れるので、初期凝固シェルをより効果的に
制御することができる。さらに、高周波通電域を内部冷
却することによっても、高周波通電による発熱を防止す
ることができることから、大電流を効率良く通電するこ
とが可能となるので、初期凝固シェルをより効果的に制
御することができる。In order to more effectively control such an initial solidified shell, it is necessary to efficiently apply a high frequency current to the vicinity of the meniscus inside the wall surface of the mold. Therefore, in the present invention, as shown in FIG. 4, in the continuous casting mold, in particular, the material in the high frequency conduction region provided on the upper part of the mold and the material in the other high frequency non-conduction region have different electric conductivity.
That is, the material in the high frequency conduction region has a higher conductivity. Above all, the conductivity in the high frequency non-conducting region of the mold is 1 with respect to the conductivity in the high frequency conducting region above the mold.
By setting it to be equal to or less than / 2, it becomes possible to pass a larger high frequency current near the initial solidified shell. As a result, the effect of controlling the initial solidification shell by the high-frequency current becomes more remarkable. In addition, the high-frequency current flows efficiently in the high-frequency energized region by insulating the high-frequency energized region made of a material having a high electrical conductivity from the high-frequency non-energized region made of a material having a low electrical conductivity. Can be controlled. Furthermore, by internally cooling the high-frequency energization area, it is possible to prevent heat generation due to the high-frequency energization, so that it is possible to efficiently energize a large current, so that the initial solidification shell can be controlled more effectively. You can
【0025】[0025]
(実施例1)2ストランドの連続鋳造機連鋳機を用い、
以下に示す鋳造条件で、酸素濃度35ppm 以下の低炭素ア
ルミキルド鋼を、1ヒート 280トンで3チャージ連続鋳
造する実験を行った。 鋳造鋳型のサイズ :厚み方向260mm,
幅方向1600mm 高さ方向900mm 鋳型材質 :銅合金(導電率60
IACS%) タンディッシュでのスーパーヒート:26〜30℃ 鋳造速度 :2.2m/min 鋳型オシレーション :振動数130cpm, 振
幅4mm この鋳造実験においては、一方のストランドで、鋳型上
部に高周波電流を通電する本発明方法による連続鋳造
を、また他方のストランドで、高周波電流を通電しない
従来方法による連続鋳造を、それぞれ25ヒート行い、得
られたスラブをそれぞれ熱間および冷間圧延して1.2mm
厚みの冷延鋼板を製造した。なお、鋳型の通電部の形
状,電流の強度,周波数およびその発生磁場は以下の通
りである。 通電部の形状 :85mm(高さ)×7
mm(厚さ) 通電部の導電率 :92IACS%*1 鋳型壁面内の電流 :2500 A 周波数 : 10kHz 最大磁束密度 :0.05T *1:IACS%は、純鋼の導電率を100%としたときの相対
的な導電率を示す。(Example 1) Two strand continuous casting machine Using a continuous casting machine,
Under the casting conditions shown below, an experiment was conducted in which low-carbon aluminum killed steel with an oxygen concentration of 35 ppm or less was continuously cast for 3 charges at 280 tons per heat. Casting mold size: 260mm in thickness direction,
Width direction 1600mm Height direction 900mm Mold material: Copper alloy (conductivity 60
IACS%) Super heat in tundish: 26-30 ° C Casting speed: 2.2m / min Mold oscillation: Frequency 130cpm, Amplitude 4mm In this casting experiment, one strand is energized with high frequency current at the top of the mold. Continuous casting according to the method of the present invention, also on the other strand, continuous casting by a conventional method not energizing a high frequency current, each 25 heat, the slab obtained is 1.2 mm hot and cold rolled respectively.
A cold-rolled steel sheet having a thickness was manufactured. The shape of the current-carrying part of the mold, the intensity of the current, the frequency and the magnetic field generated are as follows. Current-carrying part shape: 85 mm (height) x 7
mm (thickness) Conductivity of current-carrying part: 92IACS% * 1 Current in mold wall: 2500 A Frequency: 10kHz Maximum magnetic flux density: 0.05T * 1: IACS% is based on 100% conductivity of pure steel Shows the relative conductivity of
【0026】このようにして得られた冷延鋼板の表面欠
陥発生率を図5 に示す。この図から明らかなように、高
周波電流を鋳型に流して鋳造したスラブから製造した本
発明方法による冷延鋼板の表面品質の方が比較例のもの
と比べて著しく良好であることが判った。The surface defect occurrence rate of the cold-rolled steel sheet thus obtained is shown in FIG. As is clear from this figure, it was found that the surface quality of the cold-rolled steel sheet produced by the method of the present invention produced from the slab cast by passing a high-frequency current through the mold was significantly better than that of the comparative example.
【0027】(実施例2)鋳型の高周波非通電域におけ
る導電率を高周波通電域における導電率に対して1/2
以下としたこと以外は実施例1と同様の方法で冷延鋼板
を製造した。その結果、得られた冷延鋼板の表面欠陥発
生率を図6に示す。この図に示す結果から明らかなよう
に、メニスカス近傍に導電率のより高い高周波通電域を
設けることによって、初期凝固シェルが加熱および磁気
圧を受けやすくなり、表面性状が良くなっていることが
判った。(Embodiment 2) The conductivity in the high frequency non-conduction region of the mold is 1/2 of the conductivity in the high frequency conduction region.
A cold-rolled steel sheet was manufactured in the same manner as in Example 1 except for the following. As a result, the surface defect occurrence rate of the obtained cold rolled steel sheet is shown in FIG. As is clear from the results shown in this figure, by providing a high-frequency energization area with higher conductivity near the meniscus, the initial solidified shell is more susceptible to heating and magnetic pressure, and the surface quality is improved. It was
【0028】(実施例3)2ストランドの連続鋳造機連
鋳機を用い、以下に示す鋳造条件で、酸素濃度35ppm 以
下の低炭素アルミキルド鋼を、連続鋳造する実験を行っ
た。 鋳造鋳型のサイズ :厚み方向260mm,
幅方向1600mm 高さ方向900mm 鋳型材質 :銅合金(導電率35
IACS%) タンディッシュでのスーパーヒート:25〜30℃ 鋳造速度 :2.0m/min 鋳型オシレーション :振動数130cpm, 振
幅4.0mm ヒートサイズ :280 ton 通電部の形状 :100mm(高さ)×
5mm(厚さ) 鋳型接着型 通電部の導電率 :92IACS% 鋳型壁面内の電流 :2500 A 周波数 : 10kHz 最大磁束密度 :0.05T この鋳造実験においては、一方のストランドで、導電率
の高い材料からなる通電域と導電率の低い材料からなる
非通電域とを絶縁して形成した鋳型を用いて高周波通電
を行う本発明方法による連続鋳造を、また他方のストラ
ンドで、高周波通電を行わない従来方法による連続鋳造
を、それぞれ15ヒート行い、得られたスラブをそれぞれ
熱間および冷間圧延して1.2mm 厚みの冷延鋼板を製造し
た。なお、鋳型のサイズ,鋳造速度,注湯量等の条件は
双方のストランドとも同条件になるように設定した。Example 3 Two Strand Continuous Casting Machine A continuous casting machine was used to carry out an experiment of continuously casting a low carbon aluminum killed steel having an oxygen concentration of 35 ppm or less under the following casting conditions. Casting mold size: 260mm in thickness direction,
Width 1600mm Height 900mm Mold material: Copper alloy (conductivity 35
IACS%) Super heat in tundish: 25 ~ 30 ℃ Casting speed: 2.0m / min Mold oscillation: Frequency 130cpm, Amplitude 4.0mm Heat size: 280 ton Conducting part shape: 100mm (height) ×
5mm (thickness) Mold adhesion type Conductivity of current-carrying part: 92IACS% Current in mold wall: 2500 A Frequency: 10kHz Maximum magnetic flux density: 0.05T In this casting experiment, one strand was selected from materials with high conductivity. Continuous casting according to the method of the present invention in which a high-frequency current is applied using a mold formed by insulating a current-carrying region and a non-current-conducting region made of a material having low conductivity, and a conventional method in which the high-frequency current is not applied in the other strand. The continuous casting was performed for 15 heats each, and the obtained slabs were hot-rolled and cold-rolled to produce cold-rolled steel sheets with a thickness of 1.2 mm. The conditions such as the size of the mold, the casting speed, and the pouring amount were set to be the same for both strands.
【0029】このようにして得られた冷延鋼板の表面欠
陥発生率を図7に示す。この図から明らかなように、従
来方法によって鋳造した鋼板の表面欠陥発生率を1とす
ると、本発明方法によって鋳造した鋼板の表面欠陥発生
率は0.37以下であり、本発明の有効性を明らかにした。FIG. 7 shows the surface defect occurrence rate of the cold rolled steel sheet thus obtained. As is clear from this figure, assuming that the surface defect occurrence rate of the steel sheet cast by the conventional method is 1, the surface defect occurrence rate of the steel sheet cast by the method of the present invention is 0.37 or less, which clearly demonstrates the effectiveness of the present invention. did.
【0030】(実施例4)2ストランドの連続鋳造機連
鋳機を用い、以下に示す鋳造条件で、酸素濃度35ppm 以
下の低炭素アルミキルド鋼を、連続鋳造する実験を行っ
た。 鋳造鋳型のサイズ :厚み方向260mm,
幅方向1200mm 高さ方向900mm 鋳型材質 :銅合金(導電率35
IACS%) タンディッシュでのスーパーヒート:25〜31℃ 鋳造速度 :1.8m/min 鋳型オシレーション :振動数130cpm, 振
幅4.0mm ヒートサイズ :250 ton 通電部の形状 :100mm(高さ)×2
0mm(厚さ),通電 部の鋳型側、内部水冷型 通電部の導電率 :92IACS% 鋳型壁面内の電流 :3800 A 周波数 : 10kHz 最大磁束密度 :0.08T この鋳造実験においては、一方のストランドで、高周波
通電域を内部冷却した図5(a)に示すような鋳型を用い
て高周波通電を行う本発明方法による連続鋳造を、また
他方のストランドで、高周波通電を行わない従来方法に
よる連続鋳造を、それぞれ15ヒート行い、得られたスラ
ブをそれぞれ熱間および冷間圧延して1.2mm 厚みの冷延
鋼板を製造した。なお、鋳型のサイズ,鋳造速度,注湯
量等の条件は双方のストランドとも同条件になるように
設定した。(Example 4) Two-strand continuous casting machine A continuous casting machine was used to carry out an experiment of continuously casting low carbon aluminum killed steel having an oxygen concentration of 35 ppm or less under the following casting conditions. Casting mold size: 260mm in thickness direction,
Width 1200mm Height 900mm Mold material: Copper alloy (conductivity 35
IACS%) Super heat in tundish: 25-31 ℃ Casting speed: 1.8m / min Mold oscillation: Frequency 130cpm, Amplitude 4.0mm Heat size: 250 ton Conducting part shape: 100mm (height) × 2
0 mm (thickness), mold side of current-carrying part, internal water cooling type Conductivity of current-carrying part: 92IACS% Current in mold wall: 3800 A Frequency: 10 kHz Maximum magnetic flux density: 0.08T In this casting experiment, one strand was used. The continuous casting according to the method of the present invention in which high-frequency current is applied using a mold as shown in FIG. 5 (a) in which the high-frequency current region is internally cooled, and the continuous casting by the conventional method in which the high-frequency current is not applied to the other strand Each of them was subjected to 15 heats, and the resulting slabs were hot-rolled and cold-rolled to produce cold-rolled steel sheets having a thickness of 1.2 mm. The conditions such as the size of the mold, the casting speed, and the pouring amount were set to be the same for both strands.
【0031】このようにして得られた冷延鋼板の表面欠
陥発生率を図8に示す。この図から明らかなように、従
来方法によって鋳造した鋼板の表面欠陥発生率を1とす
ると、本発明方法によって鋳造した鋼板の表面欠陥発生
率は0.30以下であり、本発明の有効性を明らかにした。
すなわち、高周波通電域を内部冷却することにより大き
な電流が通電可能となり、それ故に初期凝固シェルの形
状を容易に制御し、圧延により得られる冷延鋼板の表面
欠陥を著しく低減することが可能となった。FIG. 8 shows the surface defect occurrence rate of the cold-rolled steel sheet thus obtained. As is clear from this figure, assuming that the surface defect occurrence rate of the steel sheet cast by the conventional method is 1, the surface defect occurrence rate of the steel sheet cast by the method of the present invention is 0.30 or less, which clearly demonstrates the effectiveness of the present invention. did.
That is, a large current can be passed by internally cooling the high-frequency conduction area, and therefore the shape of the initial solidified shell can be easily controlled, and the surface defects of the cold-rolled steel sheet obtained by rolling can be significantly reduced. It was
【0032】[0032]
【発明の効果】以上説明したように本発明の連続鋳造方
法および連続鋳造用鋳型によれば、鋳型内に生成する初
期凝固シェルの形状を効果的に制御することができ、そ
の結果、表面品質の優れた鋼スラブを得ることができる
と同時に生産性の向上をも図ることができる。しかも、
安定した高速連続鋳造が可能となる。As described above, according to the continuous casting method and continuous casting mold of the present invention, the shape of the initially solidified shell formed in the mold can be effectively controlled, resulting in surface quality. It is possible to obtain an excellent steel slab and to improve productivity at the same time. Moreover,
Stable high speed continuous casting becomes possible.
【図1】従来の連続鋳造方法を示す概略図であり、(a),
(b) はその構成を示す図, (c)は初期凝固シェルの状態
を示す図である。FIG. 1 is a schematic view showing a conventional continuous casting method, (a),
(b) is a figure which shows the structure, (c) is a figure which shows the state of an initial solidification shell.
【図2】本発明の連続鋳造方法を示す概略図であり、
(a) は高周波電流の通電方法を示す概略図, (b),(c)は
本発明法と従来法における初期凝固シェルの状態を比較
する図である。FIG. 2 is a schematic view showing a continuous casting method of the present invention,
(a) is a schematic diagram showing a method of passing a high frequency current, and (b) and (c) are diagrams comparing the states of the initial solidification shell in the method of the present invention and the conventional method.
【図3】本発明における高周波電流の効果を示す概念図
である。FIG. 3 is a conceptual diagram showing the effect of high frequency current in the present invention.
【図4】本発明の連続鋳造用鋳型の構成の具体例を示す
図であり、(a)は高周波通電域と高周波非通電域の材料を
導電率の異なるものとした鋳型を示す図,(b)は高周波通
電域を内部冷却した鋳型を示す図である。FIG. 4 is a diagram showing a specific example of the configuration of the continuous casting mold of the present invention, in which (a) is a diagram showing a mold in which the materials of the high-frequency conducting region and the high-frequency non-conducting region have different electrical conductivity; b) is a diagram showing a mold in which a high-frequency energized region is internally cooled.
【図5】表面欠陥発生率に関し、本発明法(高周波通電)
と従来法を比較した図である。FIG. 5: Regarding the surface defect occurrence rate, the method of the present invention (high-frequency current application)
It is the figure which compared with the conventional method.
【図6】表面欠陥発生率に関し、本発明法(高周波非通電
域における導電率が高周波通電域における導電率に対し
て1/2以下である鋳型を用いた場合)と従来法を比較
した図である。FIG. 6 is a diagram comparing a method of the present invention (when a mold whose conductivity in a high frequency non-conduction region is 1/2 or less with respect to a conductivity in a high frequency conduction region) is used with a conventional method regarding a surface defect occurrence rate. Is.
【図7】表面欠陥発生率に関し、本発明法(導電率の高い
材料からなる高周波通電域と導電率の低い材料からなる
高周波非通電域とを絶縁した鋳型を用いた場合)と従来
法を比較した図である。FIG. 7 relates to the surface defect occurrence rate between the method of the present invention (when a mold in which a high frequency conducting region made of a material having a high conductivity and a high frequency non-conducting region made of a material having a low conductivity are used as an insulator) and a conventional method. It is the figure which compared.
【図8】表面欠陥発生率に関し、本発明法(導電率の高い
材料からなる高周波通電域と導電率の低い材料からなる
高周波非通電域とを絶縁し、さらに高周波通電域を内部
冷却した鋳型を用いた場合)と従来法を比較した図であ
る。FIG. 8 relates to the surface defect generation rate, a mold in which the method of the present invention (a high frequency conducting area made of a material having a high conductivity and a high frequency non-conducting area made of a material having a low conductivity are insulated, and the high frequency conducting area is internally cooled. FIG. 6 is a diagram comparing a conventional method with a case of using).
1 連鋳鋳型 1a,1′a 短辺壁 1b,1′b 長辺壁 2 浸漬ノズル 3 モールドパウダー(粉末) 4 モールドパウダー(溶融) 5 溶鋼 5a, 5a′,5b 凝固シェル 6 高周波発生器 7 高周波電流 8 誘導電流 9 高周波電流によって発生した磁場 10 誘導電流によって発生した磁場 11 内部冷却部 12 高周波通電域 1 Continuous casting mold 1a, 1'a Short side wall 1b, 1'b Long side wall 2 Immersion nozzle 3 Mold powder (powder) 4 Mold powder (molten) 5 Molten steel 5a, 5a ', 5b Solidified shell 6 High frequency generator 7 High frequency current 8 Induction current 9 Magnetic field generated by high frequency current 10 Magnetic field generated by induction current 11 Internal cooling section 12 High frequency conduction area
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 整司 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 戸澤 宏一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 山崎 久生 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 別所 永康 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 藤井 徹也 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Keiji Taguchi, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Technical Research Headquarters (72) Koichi Tozawa 1-kawasaki, Chuo-ku, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Hisao Yamazaki 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Bessho Nagayasu No. 1 Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Tetsuya Fujii No. 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Co., Ltd. Technical Research Division
Claims (5)
の短辺壁と長辺壁との組合せからなる連続鋳造用鋳型内
に、浸漬ノズルを介して供給することにより、鋼スラブ
を連続鋳造する方法において、上記鋳型の上部に高周波
電流を直接通電することにより初期凝固シェルの形状を
制御しながら鋼スラブを鋳造する際に、 この鋳型上部に設けた高周波通電域の導電率が、他の高
周波非通電域に比べて高い導電率を示す材料にて形成さ
れた鋳型を用いることを特徴とする電磁力を用いる鋼の
連続鋳造方法。1. A method for continuously casting a steel slab by supplying molten steel in a tundish into a continuous casting mold comprising a pair of a short side wall and a long side wall, respectively, through a dipping nozzle. In the case of casting a steel slab while controlling the shape of the initial solidification shell by directly passing a high-frequency current to the upper part of the mold, the conductivity of the high-frequency energization area provided on the upper part of the mold is A continuous casting method for steel using electromagnetic force, characterized in that a mold formed of a material having a higher conductivity than that of a current-carrying region is used.
せからなる連続鋳造用鋳型において、この鋳型上部に高
周波通電域を具え、かつこの高周波通電域の導電率が、
他の高周波非通電域に比べて高い導電率を示す材料にて
形成されたことを特徴とする連続鋳造用鋳型。2. A continuous casting mold comprising a pair of a short side wall and a long side wall, each of which has a high frequency conduction region on the upper part of the mold, and the conductivity of the high frequency conduction region is
A casting mold for continuous casting, which is made of a material having a higher conductivity than other high frequency non-energized regions.
通電域の導電率が、高周波通電域の導電率に対して1/
2以下であることを特徴とする連続鋳造用鋳型。3. The mold according to claim 2, wherein the conductivity in the high frequency non-conducting region is 1 / the electric conductivity in the high frequency conducting region.
A mold for continuous casting, which is 2 or less.
記鋳型は、高周波通電域と高周波非通電域とが絶縁され
た状態にあることを特徴とする連続鋳造用鋳型。4. The continuous casting mold according to claim 2 or 3, wherein the high frequency energization region and the high frequency non-conduction region are insulated from each other.
記載の上記鋳型は、高周波通電域が内部冷却されている
ことを特徴とする連続鋳造用鋳型。5. The continuous casting mold according to any one of claims 2, 3 and 4, wherein the high-frequency energization region is internally cooled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29678292A JPH06142854A (en) | 1992-11-06 | 1992-11-06 | Continuous casting method of steel using electromagnetic force and mold for continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29678292A JPH06142854A (en) | 1992-11-06 | 1992-11-06 | Continuous casting method of steel using electromagnetic force and mold for continuous casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06142854A true JPH06142854A (en) | 1994-05-24 |
Family
ID=17838068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29678292A Pending JPH06142854A (en) | 1992-11-06 | 1992-11-06 | Continuous casting method of steel using electromagnetic force and mold for continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06142854A (en) |
-
1992
- 1992-11-06 JP JP29678292A patent/JPH06142854A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0929396A (en) | Method and device for molten metal excitation for biroll type continuous casting machine | |
EP1120180B1 (en) | Process and device for the continuous casting of metals | |
JPH06142854A (en) | Continuous casting method of steel using electromagnetic force and mold for continuous casting | |
JP3042801B2 (en) | Continuous casting method of steel using electromagnetic force | |
US6520246B2 (en) | Method and device for continuous casting of molten materials | |
JP3056659B2 (en) | Continuous casting method of molten metal | |
JP3061192B2 (en) | Continuous casting method of steel using mold with electromagnetic field | |
JP2611559B2 (en) | Metal continuous casting apparatus and casting method | |
US20080179038A1 (en) | Apparatus For Continuous Casting of Magnesium Billet or Slab Using Electromagnetic Field and the Method Thereof | |
JPH0679418A (en) | Method for continuously casting steel using electromagnetic force | |
JP3412691B2 (en) | Continuous casting of molten metal | |
JP2555768B2 (en) | Continuous metal casting apparatus and casting method | |
JPH08155605A (en) | Method for continuously casting molten metal | |
JP3887200B2 (en) | Steel continuous casting method and apparatus | |
KR100679313B1 (en) | Apparatus for continuous casting of Magnesium billet or slab using high frequency electromagnetic field | |
JP3157641B2 (en) | Steel continuous casting equipment | |
JP3216312B2 (en) | Metal continuous casting equipment | |
JP4910357B2 (en) | Steel continuous casting method | |
JPH04162940A (en) | Continuous casting method | |
JPH06182497A (en) | Method for continuously casting metal | |
JPH04322842A (en) | Mold for continuously casting molten metal | |
JPH10286659A (en) | Continuous casting method for steel | |
JP2757736B2 (en) | Metal continuous casting equipment | |
JPS58224043A (en) | Continuous casting method of thin metallic sheet | |
JPH08187553A (en) | Mold for continuous casting applying electromagnetic force and continuous casting method |