Nothing Special   »   [go: up one dir, main page]

JPH0614126B2 - Method for manufacturing synthetic resin optical transmitter - Google Patents

Method for manufacturing synthetic resin optical transmitter

Info

Publication number
JPH0614126B2
JPH0614126B2 JP59068594A JP6859484A JPH0614126B2 JP H0614126 B2 JPH0614126 B2 JP H0614126B2 JP 59068594 A JP59068594 A JP 59068594A JP 6859484 A JP6859484 A JP 6859484A JP H0614126 B2 JPH0614126 B2 JP H0614126B2
Authority
JP
Japan
Prior art keywords
base material
organic base
synthetic resin
diameter
resin optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59068594A
Other languages
Japanese (ja)
Other versions
JPS60212707A (en
Inventor
行範 渡辺
保男 桝家
裕一 青木
浩一 前田
育良 田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP59068594A priority Critical patent/JPH0614126B2/en
Priority to DE8484304531T priority patent/DE3466660D1/en
Priority to EP84304531A priority patent/EP0130838B1/en
Priority to US06/626,697 priority patent/US4587065A/en
Publication of JPS60212707A publication Critical patent/JPS60212707A/en
Priority to US06/827,468 priority patent/US4689000A/en
Publication of JPH0614126B2 publication Critical patent/JPH0614126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00355Production of simple or compound lenses with a refractive index gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29D11/00682Production of light guides with a refractive index gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0031Refractive

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、中心軸からの距離と共に変化する屈折率分布
を有する合成樹脂光伝送体を製造する方法に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing a synthetic resin optical transmission medium having a refractive index distribution that changes with the distance from the central axis.

〔発明の技術背景〕[Technical background of the invention]

屈折率分布が下記(1)式で表わされる透明棒状体は凸レ
ンズ作用を示し、この透明棒状体中を進む光束は中心軸
に沿って蛇行する。その周期Lは次に示す(2)式で表さ
れる。ここでnoは中心軸上の屈折率、n(r)は中心軸
からrの距離にある点の屈折率、Aは正の定数(屈折率
分布定数)である。
The transparent rod whose refractive index distribution is represented by the following formula (1) exhibits a convex lens action, and the light flux traveling in the transparent rod is meandering along the central axis. The period L is expressed by the following equation (2). Here, no is a refractive index on the central axis, n (r) is a refractive index at a point r from the central axis, and A is a positive constant (refractive index distribution constant).

屈折率分布が次に示す(3)式で表される場合には凹レン
ズ作用を示す。ここでBは正の定数(屈折率分布定数)
である。
When the refractive index distribution is represented by the following equation (3), it exhibits a concave lens action. Where B is a positive constant (refractive index distribution constant)
Is.

n(r)=no(1+1/2Br2) (3) 上記有機母材を成形するに際し、まず屈折率Naの網状重
合体Paを生成する単量体Maを予備重合させて、塑性流動
を表わす一般式 D=Kαn (4) (式中Dはずり速度、αはずり応力、Kは塑性粘度の逆
数、nは定数をそれぞれ表わす。)における20℃での
nの値が1.10以上である塑性流動を示す粘性流体
(以下においてはプレポリマー流体と称する)を得る。
次いで、このプレポリマー流体を押出し装置に入れ、押
し出し装置のピストン移動モータに一定電圧をかけて連
続的にプレポリマー流体を押し出し、成形装置に供給し
て、この成形装置内通路を進行させつつ加熱重合させる
ことによって前記有機母材を得る。
n (r) = no (1 + 1 / 2Br 2 ) (3) When molding the above-mentioned organic base material, first, the monomer Ma which forms the reticulated polymer Pa having the refractive index Na is prepolymerized and plastic flow In the general formula D = Kα n (4) (where D is the shear rate, α is the shear stress, K is the reciprocal of the plastic viscosity, and n is a constant), the value of n at 20 ° C. is 1. A viscous fluid exhibiting a plastic flow of 10 or more (hereinafter referred to as a prepolymer fluid) is obtained.
Then, this prepolymer fluid is put into an extrusion device, a constant voltage is applied to a piston moving motor of an extrusion device to continuously extrude the prepolymer fluid, and the prepolymer fluid is supplied to a molding device and heated while advancing through a passage in the molding device. The organic base material is obtained by polymerizing.

この有機母材にMaと異なる屈折率を有する重合体を形成
する単量体Mbと、上記有機母材表面から液相または気相
により拡散させた後または拡散と同時に重合させること
により、屈折率が表面から内部に向かって連続的に変化
する合成樹脂光伝送体を製造することができる。
Monomer Mb forming a polymer having a refractive index different from Ma in this organic base material, and after being polymerized after being diffused in the liquid phase or the gas phase from the surface of the organic base material or simultaneously with the diffusion, the refractive index It is possible to manufacture a synthetic resin light transmission body in which the value changes continuously from the surface to the inside.

上記のようにして連続的に合成樹脂光伝送体を製造する
方法は、先に特願昭58−120625,特願昭58−12062
6,特願昭58−120627で本発明者らが提案している。
しかし、この方法には次のような問題がある。即ち、押
出し装置は、シリンダとピストンから構成されている
が、送りネジのピッチ誤差、モーターの速度誤差を0に
することは不可能で、ピストンを一定の速度で動かすに
は限度がある。
The method for continuously producing a synthetic resin optical transmission body as described above is described in Japanese Patent Application Nos. 58-120625 and 58-12062.
6, the Japanese Patent Application No. 58-120627 proposes the present inventors.
However, this method has the following problems. That is, although the extrusion device is composed of a cylinder and a piston, it is impossible to reduce the pitch error of the feed screw and the speed error of the motor to zero, and there is a limit to move the piston at a constant speed.

また、シリンダの内径精度にも限界があり、バラつきの
あることが予想される。
Further, there is a limit to the accuracy of the inner diameter of the cylinder, and it is expected that there will be variations.

従って、押出し装置から押し出されるプレポリマー流体
の体積速度は一定となりにくい。
Therefore, the volume velocity of the prepolymer fluid extruded from the extruder is unlikely to be constant.

さらに、このプレポリマー流体は、有機母材を形成する
ために加熱重合されるために、体積変動が生じその変化
率も常に一定とは限らない。
Furthermore, since this prepolymer fluid is heated and polymerized to form an organic matrix, a volume change occurs and the rate of change is not always constant.

このために、上記有機母材の体積速度の安定性がより一
層低下している。上記有機母材は一定速度で引張られて
いるために、有機母材の体積速度に経時変化があると、
有機母材の径も変動することになる。
For this reason, the stability of the volume velocity of the organic base material is further reduced. Since the organic base material is pulled at a constant speed, if the volume speed of the organic base material changes with time,
The diameter of the organic base material also changes.

また、有機母材の径の変動のあるまま、Maの重合体と異
なる屈折率を有する重合体を形成する単量体Mbを上記母
材に拡散させると、屈折率分布にも変動を生じる事にな
る。
Further, when the monomer Mb forming a polymer having a refractive index different from that of the Ma polymer is diffused into the base material while the diameter of the organic base material is changed, the refractive index distribution may be changed. become.

以上より合成樹脂光伝送体を一定の品質で連続製造する
ためには、まず上記有機母材の径を安定化させるべく、
制御しなければならない。
From the above, in order to continuously manufacture a synthetic resin optical transmission body with constant quality, first, in order to stabilize the diameter of the organic base material,
Have to control.

〔発生の目的〕[Purpose of occurrence]

本発明は、従来技術の上述のような欠点を除去して、上
記合成樹脂光伝送体を安定した線径で連続的に製造する
方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for continuously producing the above synthetic resin optical transmission body with a stable wire diameter by eliminating the above-mentioned drawbacks of the prior art.

〔発明の概要〕[Outline of Invention]

上記の目的を達成する本発明方法は、プレポリマー流体
を成形手段に圧送し、形状を保持し、且つその内部に添
加剤を拡散させ得る状態にある有機母材を上記成形手段
から連続的に押し出し、この連続的に押し出される有機
母材に拡散手段と加熱手段とを連続的に通過させ、この
際、上記拡散手段によって上記有機母材中に添加剤を拡
散させると共に、上記加熱手段によって上記有機母材を
加熱して上記有機母材中の上記添加剤の分布を固定させ
るようにした合成樹脂光伝送体の製造方法において、上
記成形手段から連続的に押し出された有機母材の径を成
形手段の出口付近で測定し、該測定値に基づいて前記成
形手段へのプロポリマー送給量を調整することにより、
上記有機母材の径を制御することを要旨としている。
The method of the present invention to achieve the above-mentioned object, the pre-polymer fluid is pressure-fed to the molding means, the shape is maintained, and the organic base material in a state in which the additive can be diffused therein is continuously formed from the molding means. Extruding, continuously passing through the diffusion means and heating means to the continuously extruded organic base material, at this time, while the additive is diffused in the organic base material by the diffusion means, by the heating means In the method for producing a synthetic resin optical transmission body, in which the distribution of the additive in the organic base material is fixed by heating the organic base material, the diameter of the organic base material continuously extruded from the molding means is changed. By measuring in the vicinity of the outlet of the molding means and adjusting the amount of the propolymer fed to the molding means based on the measured value,
The gist is to control the diameter of the organic base material.

また、本発明は上記方法を実施する好適な装置として、
プレポリマー流体を成形手段に圧送するとともに成形さ
れた母材を押し出す押し出し装置と押し出し装置から供
給されるプレポリマー流体を成形するとともに成形され
あ母材を押し出す押し出し装置と、成形装置で成形され
た母材の径を測定する母材径測定装置と、径測定信号に
応じて前記押し出し装置のプレポリマー流体吐出量を制
御する測定装置とを備えた合成樹脂光伝送体の製造装置
を提供する。
The present invention also provides a suitable apparatus for carrying out the above method,
Extruder for sending prepolymer fluid to forming means and extruding the formed base material, and extruding device for forming prepolymer fluid supplied from the extruding equipment and extruding base material, and formed by forming equipment Provided is an apparatus for manufacturing a synthetic resin optical transmission body, which comprises a base material diameter measuring device for measuring a diameter of a base material and a measuring device for controlling a prepolymer fluid discharge amount of the extrusion device according to a diameter measurement signal.

〔実施例〕〔Example〕

以下本発明に係る合成樹脂光伝送体を製造する方法の一
実施例につき、図面を参照しながら説明する。
An embodiment of a method for manufacturing a synthetic resin optical transmission body according to the present invention will be described below with reference to the drawings.

第1図において、冷却水によって冷却されているシリン
ダ(1)の中には、合成樹脂光伝送体の原料として用いら
れるプレポリマー流体(30)が入れられており、ピスト
ン(2)によって供給管(9)内に上記プレポリマー流体(3
0)を圧送し得るようになっている。また、このピスト
ン(2)は第2図に示すように、送りネジ(21)を介し
て、押出しモーター(4)によって動かされるようになっ
ている。次に黄銅製の円柱から成る成形手段としての成
形具(12)の中心には既述の供給管(9)の外径よりも少
し径の大きい貫通孔(3)が形成されていて、この貫通孔
(3)の中にはさらこの貫通孔(3)と同径のポリテトラフル
オロエチレン製チューブからなる成形管(13)が取り付
けられている。そして供給管(9)から押し出された上記
プレポリマー流体(30)がこのポリテトラフルオロエチ
レン製チューブ(13)の中を通過するようになってい
る。また、上記成形具(12)の上記及び下部にはそれぞ
れ比較的温度の高い温水を通すジャケット管(11)及び
比較的温度の低い温水を通すジャケット管(10)が設けら
れていて、この成形具(12)の下部から上部に向かって
温度が次第に高くなるような温度勾配が付けられてい
る。
In Fig. 1, a cylinder (1) cooled by cooling water contains a prepolymer fluid (30) used as a raw material for a synthetic resin optical transmission medium, and a piston (2) supplies a supply pipe. The above prepolymer fluid (3
0) can be pumped. Further, as shown in FIG. 2, this piston (2) is moved by a pushing motor (4) via a feed screw (21). Next, a through hole (3) having a diameter slightly larger than the outer diameter of the above-mentioned supply pipe (9) is formed at the center of the forming tool (12) as a forming means composed of a brass cylinder. Through hole
Further, a molded tube (13) made of a polytetrafluoroethylene tube having the same diameter as the through hole (3) is attached to the inside of (3). The prepolymer fluid (30) extruded from the supply pipe (9) passes through the polytetrafluoroethylene tube (13). Further, a jacket pipe (11) for passing warm water having a relatively high temperature and a jacket pipe (10) for passing warm water having a relatively low temperature are provided at the above and lower portions of the molding tool (12), respectively. There is a temperature gradient such that the temperature gradually increases from the lower part to the upper part of the ingredient (12).

成形具(12)の上方には拡散手段としての拡散管(18)
が設けられていて、成形具(12)によって成形された円
柱状の有機母材(21)は、この拡散管(18)内で所定の
拡散を行なわれるようになっている。
Above the molding tool (12), a diffusion pipe (18) as a diffusion means.
The columnar organic base material (21) molded by the molding tool (12) is diffused in the diffusion tube (18) in a predetermined manner.

この拡散管(18)と成形具(12)の間には、有機母材の
線径を測定するための透明ガラス窓(14),(15)が取
り付けられている円管(19)が、はさみ込まれている。
2つの窓(14),(15)は、有機母材(21)を間にはさ
んで平行に向きあった形で取り付けられている。
A circular tube (19) having transparent glass windows (14) and (15) for measuring the wire diameter of the organic base material is attached between the diffusion tube (18) and the molding tool (12). It's sandwiched.
The two windows (14) and (15) are mounted in parallel with each other with the organic base material (21) interposed therebetween.

この窓つき円管(19)の両側に、レーザ発光部(7)、レ
ーザ受光部(6)が設置されており、レーザ光(8)は音又に
よって窓(14)を通して有機母材(21)を横切る方向に
走査するようになっている。
A laser emitting part (7) and a laser receiving part (6) are installed on both sides of the circular tube (19) with a window, and the laser light (8) is transmitted through the window (14) by the sound or the organic base material (21). ) Is designed to scan in the direction across.

母材(21)を透過した光線(8)は受光部(6)で検出され、
走査の間の受光量が低減した時間つまり母材(21)を透
過した走査時間をもとにその直径が算出される。
The light ray (8) transmitted through the base material (21) is detected by the light receiving section (6),
The diameter is calculated based on the time during which the amount of received light during scanning is reduced, that is, the scanning time through which the base material (21) is transmitted.

このレーザ受光部(6)は線径コントローラ(5)につながれ
ており、有機母材の線径測定値と設定値の偏差が線径コ
ントローラ(5)に送られる。そしてこの入力信号を基に
して制御信号が計算され、押出しモータ(4)の駆動電圧
にフィードバックされ、有機母材の線径を設定値に合わ
せるべくピストン(2)の押出し速度を測定する。
The laser light receiving unit (6) is connected to the wire diameter controller (5), and the deviation between the measured value and the set value of the wire diameter of the organic base material is sent to the wire diameter controller (5). Then, a control signal is calculated based on this input signal and is fed back to the drive voltage of the extrusion motor (4), and the extrusion speed of the piston (2) is measured so as to match the wire diameter of the organic base material with the set value.

ピストン(2)の押圧力で成形具(12)から連続的に押出
される母材(21)は保形性を有しており、またその内部
に添加剤を拡散させ得る状態にある。
The base material (21) continuously extruded from the molding tool (12) by the pressing force of the piston (2) has a shape-retaining property, and the additive can be diffused inside.

成形具(12)を出た母材(21)は次いで拡散管(18)に
入る。この拡散管(18)内には、母材を構成する単量体
Maの重合体とは屈折率の異なる重合体を形成する単量体
Mbが気相状態にあるいは液相状態で供給されている。こ
の単量体Mbは母材(21)の表面から内部へ拡散し、母材
中にはMbの濃度が表面から中心に向けて次第に減少する
分布が形成される。
The base material (21) exiting the molding tool (12) then enters the diffusion tube (18). In this diffusion tube (18), the monomer that constitutes the base material
Monomers that form polymers with different refractive indices from Ma polymers
Mb is supplied in vapor or liquid state. This monomer Mb diffuses from the surface of the base material (21) to the inside, and a distribution is formed in the base material in which the concentration of Mb gradually decreases from the surface toward the center.

拡散管(18)を出た母材(21)は次に加熱管(20)に入
りここで加熱されて重合が進行し、母材中に拡散した上
記単量体Mbの分布が固定される。
The base material (21) exiting the diffusion pipe (18) then enters the heating pipe (20) where it is heated to cause polymerization to proceed and the distribution of the monomer Mb diffused in the base material is fixed. .

加熱管(20)を通過する間に重合がほぼ完結した母材
(21)は引き出しローラ(16),(17)で引き出され、
図外の切断装置で所定長さに切断される。
The base material (21) whose polymerization is almost completed while passing through the heating pipe (20) is drawn out by the drawing rollers (16) and (17),
It is cut into a predetermined length by a cutting device (not shown).

切断された内部に屈折率分布を有する母材は両端を研磨
してレンズ,光伝送ファイバ等に用いるかあるいはさら
に加熱延伸して径を細くした後に上記処理を施してレン
ズ,光伝送ファイバ等に使用される。
The cut base material having a refractive index distribution inside is used for a lens, an optical transmission fiber, etc. by polishing both ends, or it is further heated and stretched to reduce the diameter and then subjected to the above treatment to produce a lens, an optical transmission fiber, etc. used.

上述の実施例における有機母材としての透明ゲル物体の
原料となるべき単量体Maとしては、アリル基、アクリル
酸基、メタクリル酸基またはビニル基のうちの2種類以
上の基を有する単量体を用いることができる。次に単量
体Maの具体例を挙げる。
As the monomer Ma to be a raw material of the transparent gel body as the organic matrix in the above-mentioned examples, a monomer having two or more kinds of allyl group, acrylic acid group, methacrylic acid group or vinyl group is used. The body can be used. Next, specific examples of the monomer Ma will be given.

(1)、アリル化合物 フタル酸ジアリル,イソフタル酸ジアリル,テレフタル
酸ジアリル,ジエチレングリコールビスアリルカーボネ
ート等のジアリルエステル:トリメリト酸トリアリル,
リン酸トリアリル,亜リン酸トリアリル等のトリアリル
エステル:メタクリル酸アリル,アクリル酸アリル等の
不飽和酸アリルエステル。
(1), allyl compounds diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diallyl esters such as diethylene glycol bisallyl carbonate: triallyl trimellitate,
Triallyl esters such as triallyl phosphate and triallyl phosphite: unsaturated acid allyl esters such as allyl methacrylate and allyl acrylate.

(2)、R1-R2-R3で表わされる化合物 R1及びR3がいずれもビニル基、アクリル基、ビニルエス
テル基またはメタクリル基である化合物:R1及びR3のい
ずれか一方がビニル基、アクリル基、メタクリル基及び
ビニルエステル基の4つの基のうちいずれかであり、他
方が残りの3つの基のうちのいずれかである化合物。こ
こでR2は以下に示され2価の基のうちから選択できる。
(2), compounds represented by R 1 -R 2 -R 3 wherein R 1 and R 3 are both vinyl group, acryl group, vinyl ester group or methacryl group: one of R 1 and R 3 is A compound which is any one of four groups of a vinyl group, an acrylic group, a methacrylic group and a vinyl ester group, and the other one of the remaining three groups. Here, R 2 can be selected from the divalent groups shown below.

(3)、上記(1)と(2)の単量体の混合物、またはモノビニ
ル化合物、ビニルエステル類、アクリル酸エステル類及
びメタクリル酸エステル類の5種のうちの少なくとも1
種と上記(1)または(2)の単量体(またはその混合物)と
の混合物。
(3), a mixture of the above (1) and (2) monomers, or at least one of five types of monovinyl compounds, vinyl esters, acrylic acid esters and methacrylic acid esters
A mixture of the seed and the monomer (or mixture thereof) of (1) or (2) above.

また単量体Mbとしては、次のようなものが挙げられる。Further, examples of the monomer Mb include the following.

ただし、式中Xは水素原子またはメチル基、 Yは −CH=CH2、 −(CH2)lH (l=1〜8)、i−プロピル基、i−ブチル
基、s−ブチル基、t−ブチル基、 及び から成る群から選ばれた基、または−{CF2)a−F(a=1
〜6)、−CH2(CF2)bH b=1〜8)、 −CH2CH2O・CH2CF3、−(CH2CH2O)cCF2CF2H (c=1〜4)、 −CH2CH2O・CH2(CF2)aF (a=1〜6)、 −CH2(CF2)dO(CF2)lF(d=1〜2、l=1〜4)及び−Sl(OC2
H5)3から成る群より選ばれた基を表す。
However, in the formula, X is a hydrogen atom or a methyl group, and Y is -CH = CH 2, - (CH 2) lH (l = 1~8), i- propyl, i- butyl, s- butyl, t- butyl group, as well as Group selected from the group consisting of or, - {CF 2) a -F (a = 1
~ 6), -CH 2 (CF 2 ) b H b = 1 to 8), -CH 2 CH 2 O ・ CH 2 CF 3 ,-(CH 2 CH 2 O) c CF 2 CF 2 H (c = 1 ~4), -CH 2 CH 2 O · CH 2 (CF 2) a F (a = 1~6), -CH 2 (CF 2) d O (CF 2) l F (d = 1~2, l = 1 to 4) and −Sl (OC 2
H 5 ) 3 represents a group selected from the group consisting of.

ただし、式中R4は−(CH2)f-CH3(f=0〜2)、−(CH2)gH
(g=1〜3)、 及び から成る群より選ばれた基を表わす。
However, in the formula, R 4 is-(CH 2 ) f -CH 3 (f = 0 to 2),-(CH 2 ) g H
(g = 1-3), as well as Represents a group selected from the group consisting of

(6)、(4)及び(5)の単量体の混合物。A mixture of the monomers (6), (4) and (5).

単量体Maとして上記(1)〜(3)、単量体Mbとして(4)(6)の
いずれも組み合わせることができる。
Any of the above (1) to (3) as the monomer Ma and any of (4) and (6) as the monomer Mb can be combined.

また、上記透明ゲル物体のゲル化状態を調節するには、
(3)項に挙げたように架橋性単量体Maに不飽和基を一つ
有する単量体を添加する方法及びCBr4,CCl4、メルカブ
タン類等の連鎖移動剤を添加する方法、または両者を併
用する方法が有効である。
Further, in order to adjust the gelling state of the transparent gel object,
(3) A method of adding a monomer having one unsaturated group to the crosslinkable monomer Ma and a method of adding a chain transfer agent such as CB r4 , CCl 4 , and mercaptans, or A method of using both is effective.

〔試験例〕[Test example]

次に本発明に係る合成樹脂光伝送体の製造における有機
母材の線径の制御方法による、有機母材の制御実施例に
つき説明する。
Next, an example of controlling the organic base material by the method of controlling the wire diameter of the organic base material in the production of the synthetic resin optical transmission body according to the present invention will be described.

3.0重量%の過酸化ベンゾイル(BPO)を溶解させた
ジエチレングリコールビスアリルカーボネート(CR-3
9)を75℃で65分間加温して、予備重合させることに
よりプレポリマー流体を作製した。このプレポリマー流
体は、粘度が約1000cps(20℃)で(4)式におけるn
の値がn=1.20の粘性流体である。このプレポリマー流
体をシリンダ(1)に入れ、成形具(3)を貫通している直径
4mm、長さ200mmのポリテトラフルオロエチレン製チ
ューブ(13)中に、 6.3×10-2ml/minの一定流量で連続的に送り込んだ。
Diethylene glycol bisallyl carbonate (CR-3 in which 3.0% by weight of benzoyl peroxide (BPO) was dissolved
9) was heated at 75 ° C. for 65 minutes and prepolymerized to prepare a prepolymer fluid. This prepolymer fluid has a viscosity of about 1000 cps (20 ° C) and n
Is a viscous fluid with a value of n = 1.20. This prepolymer fluid was placed in the cylinder (1) and placed in a polytetrafluoroethylene tube (13) having a diameter of 4 mm and a length of 200 mm which penetrated the molding tool (3) at 6.3 × 10 -2 ml / min. It was continuously fed at a constant flow rate.

上記成形具(12)の上部ジャケット管(11)には78℃
の温水が、また下部ジャケット管(10)には58℃の温
水がそれぞれ流あれていて、成形具(12)の下部から上
部に向かって次第に温度が高くなる温度勾配がつけられ
ている。上記テフロンチューブ(13)中を40分間かけ
て通過する間に、上記プレポリマー流体はゲル化され直
径約4mmの有機母材に成形された。
78 ° C for the upper jacket pipe (11) of the molding tool (12)
Warm water of 58 ° C. flows into the lower jacket pipe (10), and a temperature gradient is gradually increased from the lower part to the upper part of the molding tool (12). While passing through the Teflon tube (13) for 40 minutes, the prepolymer fluid was gelled and formed into an organic matrix with a diameter of about 4 mm.

この有機母材は、アセトン不溶な成分(網状構造重合
体)25重量%、アセトン可溶、メタノール不溶の成分
(線形重合体)5重量%、アセトン可溶、メタノール可
溶の成分(単量体・数量体)70重量%から成っていた。
This organic matrix is composed of 25% by weight of acetone insoluble component (reticulated polymer), 5% by weight of acetone soluble and methanol insoluble component (linear polymer), acetone soluble and methanol soluble component (monomer).・ Quantity) 70% by weight.

この有機母材を引き上げ用ローラー(16)、(17)によ
って0.52cm/minの一定速度で拡散管(18)中に引き
上げた。
The organic base material was pulled up into the diffusion tube (18) by the pulling up rollers (16) and (17) at a constant rate of 0.52 cm / min.

この有機母材に円管(19)の窓(14)、(15)を通して
レーザ発光部から、出力1mWのHe−Neレーザを音又に
よって走査させて、その受光量変化を受光量で捕えると
線径が測定される。
When a He-Ne laser with an output of 1 mW is scanned by a sound emission from the laser emission part through the windows (14) and (15) of the circular tube (19) through this organic base material, the change in the amount of received light can be detected by the amount of received light. The wire diameter is measured.

線径測定器から、この有機母材の線径測定値と設定値の
偏差に比例して偏差出力が発生される。この偏差出力は
線径コントローラ(5)に送り込まれ、PID制御演算を行な
い、押出しモータ(4)へ送る駆動電圧を決定する。この
場合、P,I,Dの各係数は30%,7分,0.1分とした。
From the wire diameter measuring device, a deviation output is generated in proportion to the deviation between the measured wire diameter of the organic base material and the set value. This deviation output is sent to the wire diameter controller (5), PID control calculation is performed, and the drive voltage sent to the extrusion motor (4) is determined. In this case, the P, I, and D coefficients were 30%, 7 minutes, and 0.1 minutes.

上記のフィードバック制御操作を行なう事により、有機
母材の線径の偏差は測定値4.00mmに対して±60μmか
ら±5μmに改善された。更に重合が完結し、製品とな
って引上げローラ(16),(17)から出て着た合成樹脂光
伝送体の直径の偏差も±80μmから±15μmに改善され
た。
By performing the above feedback control operation, the deviation of the wire diameter of the organic base material was improved from ± 60 μm to ± 5 μm with respect to the measured value of 4.00 mm. Further, the polymerization was completed, and the deviation of the diameter of the synthetic resin optical transmission body that came out from the pull-up rollers (16) and (17) as a product and was improved from ± 80 μm to ± 15 μm.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明に係る合成樹脂光伝送体の製造
における有機母材の線径の制御方法によれば、線径の整
った有機母材を連続的に製造することができ、ひいては
直径及び光学性能が均一な合成樹脂伝送体を安定的に連
続製造することができる。
As described above, according to the method for controlling the wire diameter of the organic base material in the production of the synthetic resin optical transmission body according to the present invention, it is possible to continuously produce the organic base material having a regular wire diameter, and thus the diameter. Further, it is possible to stably and continuously manufacture a synthetic resin transmission body having uniform optical performance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を実施する装置の一例を示す縦断面図、
第2図は第1図の装置の要部拡大図である。 なお、図面に用いた符号において、 (1)……シリンダ、(2)……ピストン (3)……貫通孔、(4)……押出しモータ (5)……線径コントローラ、(6)……レーザ受光部 (7)……レーザ発光部、(8)……レーザ光 (9)……供給管、(10),(11)……温水ジャケット管 (12)……成形具、(13)……成形管 (14)……線径測定用窓、(15)……線径測定用窓 (16)……引き上げ用モータ、(17)……引き上げ用モータ (18)……拡散管、(19)……窓つき円管 (20)……熱処理管、(21)……送りネジ である。
FIG. 1 is a vertical sectional view showing an example of an apparatus for carrying out the present invention,
FIG. 2 is an enlarged view of a main part of the apparatus shown in FIG. In the reference numerals used in the drawings, (1) ... cylinder, (2) ... piston (3) ... through hole, (4) ... extrusion motor (5) ... wire diameter controller, (6) ... Laser receiver (7) Laser emitter (8) Laser light (9) Supply tube (10), (11) Hot water jacket tube (12) Molding tool (13 ) …… Molded tube (14) …… Wire diameter measurement window, (15) …… Wire diameter measurement window (16) …… Pulling motor, (17) …… Pulling motor (18) …… Diffusion tube , (19) …… Circular tube with window (20) …… Heat treatment tube, (21) …… Feed screw.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】プレポリマー流体を成形手段に圧送し、形
状を保持し且つその内部に添加剤を拡散させ得る状態に
ある有機母材を上記成形手段から連続的に押し出し、こ
の連続的に押し出される有機母材に拡散手段と加熱手段
とを連続的に通過させ、この際上記拡散手段によって上
記有機母材中に添加剤を拡散させると共に、上記加熱手
段によって上記有機母材を加熱して上記有機母材中の上
記添加剤の分布を固定させるようにした合成樹脂光伝送
体の製造方法において、上記成形手段から連続的に押し
出された有機母材の径を成形手段の出口付近で測定し、
該測定値に基づいて前記成形手段へのプロポリマー送給
量を調整することにより上記有機母材の径を制御するこ
とを特徴とする合成樹脂光伝送体を製造する方法。
1. A prepolymer fluid is pressure-fed to a molding means to continuously extrude from the molding means an organic base material which is in a state of retaining a shape and allowing an additive to diffuse therein. The organic base material is continuously passed through a diffusing means and a heating means, and at this time, the additive is diffused in the organic base material by the diffusing means, and the organic base material is heated by the heating means. In the method for producing a synthetic resin optical transmission medium in which the distribution of the additive in the organic base material is fixed, the diameter of the organic base material continuously extruded from the forming means is measured near the outlet of the forming means. ,
A method for producing a synthetic resin light transmission body, characterized in that the diameter of the organic base material is controlled by adjusting the amount of the propolymer fed to the molding means based on the measured value.
JP59068594A 1983-07-02 1984-04-06 Method for manufacturing synthetic resin optical transmitter Expired - Lifetime JPH0614126B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59068594A JPH0614126B2 (en) 1984-04-06 1984-04-06 Method for manufacturing synthetic resin optical transmitter
DE8484304531T DE3466660D1 (en) 1983-07-02 1984-07-02 Method and apparatus for producing light transmitting article of synthetic resin
EP84304531A EP0130838B1 (en) 1983-07-02 1984-07-02 Method and apparatus for producing light transmitting article of synthetic resin
US06/626,697 US4587065A (en) 1983-07-02 1984-07-02 Method for producing light transmitting article of synthetic resin
US06/827,468 US4689000A (en) 1983-07-02 1986-02-10 Apparatus for producing light transmitting article of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59068594A JPH0614126B2 (en) 1984-04-06 1984-04-06 Method for manufacturing synthetic resin optical transmitter

Publications (2)

Publication Number Publication Date
JPS60212707A JPS60212707A (en) 1985-10-25
JPH0614126B2 true JPH0614126B2 (en) 1994-02-23

Family

ID=13378269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59068594A Expired - Lifetime JPH0614126B2 (en) 1983-07-02 1984-04-06 Method for manufacturing synthetic resin optical transmitter

Country Status (1)

Country Link
JP (1) JPH0614126B2 (en)

Also Published As

Publication number Publication date
JPS60212707A (en) 1985-10-25

Similar Documents

Publication Publication Date Title
US4587065A (en) Method for producing light transmitting article of synthetic resin
CN100403073C (en) Plastic optical fiber and method for manufacturing the same
US5827611A (en) Multilayered thermoplastic article with special properties
KR860009311A (en) Index distribution type optical transmission medium and method for manufacturing same
JPH08510763A (en) Molded articles with progressive refractive index and low dispersibility
JPH0614126B2 (en) Method for manufacturing synthetic resin optical transmitter
KR20070004018A (en) Method and apparatus for manufacturing plastic optical fiber
CN100356211C (en) Plastic optical fibers and processes for producing them
CN100572030C (en) Plastic optical product, plastic optical fiber, be used to make the equipment of plastic optical members and the method for making plastic optical members and plastic optical product
EP0863416A2 (en) Method of manufacturing a graded index-type plastic-optical fiber and device therefor
JPS62215204A (en) Production of plastic optical transmission body
JPH0629885B2 (en) Method for manufacturing synthetic resin optical transmitter
US20090238525A1 (en) Production method of preform of plastic optical member and plastic optical fiber
KR20010067464A (en) Process for the preparation of a plastic optical fiber preform having refractive index grade
JPH0327881B2 (en)
JPH0259961B2 (en)
JPH0614125B2 (en) Method for manufacturing synthetic resin optical transmitter
US5863993A (en) Preparation method of polymeric rod and gradient-index rod lens using free radical bulk polymerization with temperature gradient
JPH0579962B2 (en)
JPH0546522B2 (en)
CN1717314A (en) Preform for producing plastic optical components, method of fabricating the preform, and plastic optical fiber
JPH06186441A (en) Production of distributed refractive index plastic light transmission body
JPH09178959A (en) Production of preform for distributed refractive index plastic optical fiber
JP2003329857A (en) Method and device for manufacturing optical transmission body
JP2003329856A (en) Method for manufacturing optical transmission body