Nothing Special   »   [go: up one dir, main page]

JPH06147061A - Fuel injection system of internal combustion engine - Google Patents

Fuel injection system of internal combustion engine

Info

Publication number
JPH06147061A
JPH06147061A JP30092492A JP30092492A JPH06147061A JP H06147061 A JPH06147061 A JP H06147061A JP 30092492 A JP30092492 A JP 30092492A JP 30092492 A JP30092492 A JP 30092492A JP H06147061 A JPH06147061 A JP H06147061A
Authority
JP
Japan
Prior art keywords
fuel injection
valve
air
intake
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30092492A
Other languages
Japanese (ja)
Inventor
Hiroatsu Yamada
博淳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP30092492A priority Critical patent/JPH06147061A/en
Publication of JPH06147061A publication Critical patent/JPH06147061A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To prevent a deposit from sticking to a fuel injection valve due to the spitting of gas to the side of an inlet apssage after combustion to be caused at the time of valve overlapping. CONSTITUTION:An air control valve 28 installed in an air mixture pipeline 27 is opened synchronously with the fuel injection of a fuel injection valve 26 by means of control of an electronic control unit 4 and thereby a part of intake air is sprayed to a nozzle part of the fuel injection valve 26, through which fuel is atomized. In addition, the air control valve 28 is opened by the electronic control unit 4 synchronously with a valve overlapping period when both intake and exhaust valves 10 and 19 of this engine are opened, whereby a part of intake air is sprayed to a nozzle part of the fuel injection valve 26, so any possible sticking of deposits is prevented from occurring.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の燃料噴射装
置に関するもので、特に、燃料噴射にほぼ同期した時間
に、スロットルバルブの上流側の吸入空気の一部を燃料
噴射弁の噴孔部近傍に供給することで、噴射燃料の微粒
化を促進して、排ガス中の有害成分を低減するようにし
た燃料噴射装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection device for an internal combustion engine, and more particularly, to a portion of intake air upstream of a throttle valve for injection holes of the fuel injection valve at a time substantially synchronized with fuel injection. The present invention relates to a fuel injection device configured to supply atomized fuel in the vicinity of a portion to promote atomization of injected fuel and reduce harmful components in exhaust gas.

【0002】[0002]

【従来の技術】従来から内燃機関の吸気系に燃料噴射弁
から燃料を噴射して、その運転状態を制御する燃料噴射
装置が広く実施されており、このような燃料噴射装置で
は、内燃機関の燃焼状態の悪化によって排ガス中の有害
成分が増加するのを防止するために、噴射された燃料の
微粒化をより促進する技術が強く要望されている。そこ
で、この要望に応じて、例えば、特公昭57−5462
4号公報、或いは実開昭58−162262号公報に記
載の燃料噴射装置が提案されている。
2. Description of the Related Art Conventionally, there has been widely used a fuel injection device for injecting fuel into an intake system of an internal combustion engine from a fuel injection valve to control its operating state. There is a strong demand for a technique that further promotes atomization of the injected fuel in order to prevent the harmful components in the exhaust gas from increasing due to the deterioration of the combustion state. Therefore, in response to this request, for example, Japanese Patent Publication No. 57-5462.
The fuel injection device described in Japanese Patent No. 4 or Japanese Utility Model Laid-Open No. 58-162262 has been proposed.

【0003】これらの燃料噴射装置は、内燃機関の吸気
系において、スロットルバルブの上流側と燃料噴射弁の
噴孔部近傍とをエア管路で連結するとともに、このエア
管路にエア制御弁を設け、例えば、内燃機関のアイドル
運転時等のように、燃料噴射弁から噴射される燃料の十
分な微粒化が期待できないときには、燃料噴射にほぼ同
期して前記エア制御弁を開閉制御するように構成されて
いる。したがって、このアイドル運転時等では、エア制
御弁の開閉に伴い、スロットルバルブの上流側の大気圧
に近い吸入空気の一部が、燃料噴射にほぼ同期した時間
にエア管路を経て噴孔部近傍に供給され、噴射された燃
料に衝突してその微粒化を促進する。そして、このよう
に、吸入空気の供給を燃料噴射の時間に限定しているこ
とから、連続して吸入空気を供給した場合に比較して、
アイドル回転数の上昇を抑制した上で、多量の吸入空気
により噴射燃料が十分に微粒化される。以上のようにこ
れらの技術は、燃料噴射の時期に略同期して燃料噴射弁
の噴孔部近傍へ吸入空気を供給することを特徴としてい
る。
In these fuel injection systems, in the intake system of an internal combustion engine, the upstream side of the throttle valve and the vicinity of the injection hole of the fuel injection valve are connected by an air pipe, and an air control valve is connected to this air pipe. Provided so that when the fuel injected from the fuel injection valve cannot be expected to be sufficiently atomized, for example, during idle operation of the internal combustion engine, the air control valve is controlled to open and close almost in synchronization with the fuel injection. It is configured. Therefore, at the time of this idle operation or the like, as the air control valve is opened / closed, a part of the intake air near the atmospheric pressure on the upstream side of the throttle valve passes through the air pipe line at a time substantially in synchronism with the fuel injection, and the injection hole portion. It is supplied to the vicinity and collides with the injected fuel to promote its atomization. In this way, since the supply of intake air is limited to the time of fuel injection, as compared with the case where intake air is continuously supplied,
The injected fuel is sufficiently atomized by a large amount of intake air while suppressing the increase of the idle speed. As described above, these techniques are characterized in that the intake air is supplied to the vicinity of the injection hole portion of the fuel injection valve substantially in synchronization with the timing of fuel injection.

【0004】[0004]

【発明が解決しようとする課題】ここで、燃料噴射弁の
信頼性について考えてみると、燃料噴射弁には経時とと
もに噴孔部にカーボン等のデポジットが付着し、噴射量
が低下するという問題が潜在的にある。そしてこのデポ
ジットの原因の一つが、内燃機関の吸気弁と排気弁が共
に開弁する時期、いわゆるバルブオーバーラップ期間中
の燃焼後のガスの吸気通路側への吹き返しである。この
問題の対策として市場では燃料中に洗浄剤を混入し、噴
孔部のデポジットを洗浄するという方法がとられてい
る。
Here, considering the reliability of the fuel injection valve, the problem that a deposit such as carbon adheres to the injection hole portion of the fuel injection valve with the passage of time and the injection amount decreases. There is a potential. One of the causes of this deposit is the time when the intake valve and the exhaust valve of the internal combustion engine are both open, that is, the gas is blown back to the intake passage side after combustion during the so-called valve overlap period. As a measure against this problem, a method of cleaning the deposit in the injection hole portion by mixing a cleaning agent into the fuel has been adopted in the market.

【0005】前記従来技術は燃料微粒化という観点のみ
の考案であるが、本発明では燃料の微粒化に加えて上述
の燃料噴射弁の潜在的問題点を改善することを目的とし
ている。
Although the above-mentioned prior art is devised only from the viewpoint of atomizing the fuel, the present invention aims to improve the above-mentioned potential problems of the fuel injection valve in addition to atomizing the fuel.

【0006】[0006]

【課題を解決するための手段】請求項1の発明にかかる
内燃機関の燃料噴射装置は、図1に示すように、内燃機
関M1の運転状態を検出する運転状態検出手段M2と、
前記内燃機関M1の吸気系に設けられ、前記運転状態検
出手段M2にて検出された内燃機関M1の運転状態に応
じて、所定量の燃料を吸気系に噴射する燃料噴射手段M
3と、前記吸気系を流れる吸入空気の一部を、スロット
ルバルブを迂回して前記燃料噴射手段M3の噴射箇所近
傍に供給するエア管路M4と、前記エア管路M4に設け
られて、エア管路M4を連通または遮断する開閉手段M
5と、前記燃料噴射手段M3の燃料噴射にほぼ同期した
期間中、および前記燃料噴射手段M3による燃料噴射が
行われておらず、かつ前記内燃機関M1の負荷が中負荷
以下の時吸気弁と排気弁とが共に開弁しているバルブオ
ーバーラップ期間にほぼ同期した期間中に前記開閉手段
M5を開放状態に保持する開閉制御手段M6とを具備す
るものである。
As shown in FIG. 1, an internal combustion engine fuel injection system according to a first aspect of the present invention includes an operating state detecting means M2 for detecting an operating state of the internal combustion engine M1.
Fuel injection means M provided in the intake system of the internal combustion engine M1 and injecting a predetermined amount of fuel into the intake system according to the operating state of the internal combustion engine M1 detected by the operating state detecting means M2.
3, an air pipe M4 for supplying a portion of intake air flowing through the intake system to the vicinity of the injection point of the fuel injection means M3 by bypassing a throttle valve, and an air pipe M4 provided to the air pipe M4. Opening / closing means M for connecting or disconnecting the pipeline M4
5, during a period substantially in synchronization with the fuel injection of the fuel injection means M3, and when the fuel injection by the fuel injection means M3 is not performed and the load of the internal combustion engine M1 is equal to or less than the medium load, An opening / closing control means M6 for holding the opening / closing means M5 in an open state during a period substantially in synchronization with a valve overlap period in which the exhaust valve and the exhaust valve are both open.

【0007】請求項2の発明にかかる内燃機関の燃料噴
射装置は、前記請求項1に記載の内燃機関の燃料噴射装
置において、スロットルバルブを迂回して前記開閉手段
M5に至るエア管路M4中に該エア管路M4中の吸入空
気を加圧する加圧手段を配設し、高負荷時もバルブオー
バーラップ期間にほぼ同期した期間中に開閉手段5を開
放状態に保持するものである。
A fuel injection device for an internal combustion engine according to a second aspect of the present invention is the fuel injection device for an internal combustion engine according to the first aspect, wherein an air pipe M4 that bypasses a throttle valve and reaches the opening / closing means M5. Is provided with a pressurizing means for pressurizing the intake air in the air conduit M4, and the opening / closing means 5 is held in an open state during a period substantially synchronized with the valve overlap period even under a high load.

【0008】[0008]

【作用】請求項1の発明においては、運転状態検出手段
M2に検出された内燃機関M1の運転状態に応じて、内
燃機関M1の吸気系には燃料噴射手段M3から燃料が噴
射されて、その燃料により内燃機関M1の運転が継続さ
れ、その燃料噴射にほぼ同期した期間中に、開閉制御手
段M6により開閉手段M5が開放されるため、吸入空気
の一部がエア管路M4を経て燃料噴射手段M3の噴射箇
所近傍に供給されて、噴射燃料の微粒化が促進され、ま
た、運転状態検出手段M2の検出に基づいて、内燃機関
M1の負荷が中負荷以下でかつバルブオーバーラップ期
間中に燃料噴射手段M3による燃料の噴射が行われてい
ない場合は、バルブオーバラップ期間にほぼ同期した期
間も吸入空気の一部がエア管路M4を経て燃料噴射手段
M3の噴射箇所近傍に供給されて、バルブオーバーラッ
プ期間中の燃焼後のガスの吸気通路側へ吹き返しによる
燃料噴射手段M3の噴射箇所へのカーボン等デポジット
の付着を防止する。
According to the first aspect of the invention, fuel is injected from the fuel injection means M3 into the intake system of the internal combustion engine M1 in accordance with the operating state of the internal combustion engine M1 detected by the operating state detection means M2, and the The operation of the internal combustion engine M1 is continued by the fuel, and the opening / closing means M5 is opened by the opening / closing control means M6 during a period substantially synchronized with the fuel injection, so that a part of the intake air is injected through the air pipeline M4. The fuel is supplied to the vicinity of the injection point of the means M3 to promote atomization of the injected fuel, and based on the detection of the operating state detection means M2, the load of the internal combustion engine M1 is equal to or less than the medium load and during the valve overlap period. When the fuel injection means M3 is not injecting fuel, part of the intake air passes through the air conduit M4 and is close to the injection point of the fuel injection means M3 even during the period substantially synchronized with the valve overlap period. It is supplied to, to prevent adhesion of carbon or the like deposits on the injection portion of the fuel injection means M3 by blowback to the intake passage side of the gas after combustion during the valve overlap period.

【0009】請求項2の発明においては、エア管路M4
に加圧手段を配設することにより高負荷時(例えばスロ
ットルバルブ全開時)にも燃料噴射手段M3の噴射箇所
近傍へのエア供給が可能となり、中負荷以下のみならず
高負荷時でかつバルブオーバーラップ期間中も噴射箇所
へのデポジット付着防止の為のエア供給ができる。
In the invention of claim 2, the air pipe M4
By arranging the pressurizing means in the valve, it becomes possible to supply air to the vicinity of the injection point of the fuel injection means M3 even when the load is high (for example, when the throttle valve is fully opened). Even during the overlap period, air can be supplied to prevent deposits from adhering to the injection points.

【0010】[0010]

【実施例】以下、本発明の内燃機関の燃料噴射装置をエ
ンジンの燃料噴射装置に具体化した一実施例を説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the fuel injection device for an internal combustion engine of the present invention is embodied as a fuel injection device for an engine will be described below.

【0011】図2は本発明の一実施例であるエンジンの
燃料噴射装置のシステム構成図である。図2に示すよう
に、エンジンの燃料噴射装置1は、エンジン2、エアミ
クスチャ装置3、及びこれらをマイクロコンピュータ等
でプログラム制御する電子制御装置(以下、単に「EC
U」という)4から構成されている。エンジン2は、シ
リンダ5、ピストン6、及びシリンダヘッド7から燃焼
室8を形成し、この燃焼室8には点火プラグ9が配設さ
れている。エンジン2の吸気系は、前記燃焼室8に対し
吸気バルブ10を介して連通する吸気ポート11と吸気
管12、吸入空気の脈動を吸収するサージタンク13、
吸入空気量を調整するスロットルバルブ14、及びエア
クリーナ15から構成される。前記エンジン2の排気系
は、前記燃焼室8に対し排気バルブ18を介して連通す
る排気ポート19と排気管20、及び触媒コンバータ2
1から構成されている。
FIG. 2 is a system configuration diagram of an engine fuel injection apparatus according to an embodiment of the present invention. As shown in FIG. 2, an engine fuel injection device 1 includes an engine 2, an air mixing device 3, and an electronic control device (hereinafter, simply referred to as “EC
U ”). The engine 2 forms a combustion chamber 8 from a cylinder 5, a piston 6 and a cylinder head 7, and an ignition plug 9 is arranged in the combustion chamber 8. The intake system of the engine 2 includes an intake port 11 and an intake pipe 12 that communicate with the combustion chamber 8 through an intake valve 10, a surge tank 13 that absorbs pulsation of intake air,
It is composed of a throttle valve 14 for adjusting the intake air amount and an air cleaner 15. The exhaust system of the engine 2 includes an exhaust port 19 communicating with the combustion chamber 8 via an exhaust valve 18, an exhaust pipe 20, and a catalytic converter 2.
It is composed of 1.

【0012】前記エンジン2の点火系は、点火に必要な
高電圧を出力するイグナイタ22、及び図示しないクラ
ンク軸に連動して前記イグナイタ22で発生した高電圧
を点火プラグに分配供給するディストリビュータ23よ
り構成されている。
The ignition system of the engine 2 includes an igniter 22 that outputs a high voltage required for ignition, and a distributor 23 that supplies the high voltage generated by the igniter 22 to an ignition plug in conjunction with a crankshaft (not shown). It is configured.

【0013】前記エンジン2の燃料系は、燃料を貯蔵す
るフューエルタンク24、その燃料を圧送するフューエ
ルポンプ25、圧送された燃料を前記吸気ポート11に
噴射する電磁式の燃料噴射弁(フューエルインジェク
タ)26から構成されている。
The fuel system of the engine 2 includes a fuel tank 24 for storing fuel, a fuel pump 25 for pumping the fuel, and an electromagnetic fuel injection valve (fuel injector) for injecting the pumped fuel to the intake port 11. It is composed of 26.

【0014】前記エアミクスチャ装置3は、前記吸気管
12のスロットルバルブ14の上流側から吸入空気の一
部を導入して、燃料の微粒化を促進すべく、燃料噴射弁
26の燃料噴孔部近傍に送給するエアミクスチャ管路2
7、及びエアミクスチャ管路27に設けられ、前記EC
U4の制御にしたがって開閉し、このエアミクスチャ管
路27を連通・遮断する2ポート2位置電磁弁であるエ
ア制御弁28から構成されている。
The air mixing device 3 introduces a part of the intake air from the upstream side of the throttle valve 14 of the intake pipe 12 to promote atomization of the fuel, and the fuel injection hole portion of the fuel injection valve 26. Air mixture pipeline 2 to be fed nearby
7 and the air mixing conduit 27, the EC
The air control valve 28 is a two-port two-position solenoid valve that opens and closes according to the control of U4 and connects and disconnects the air mixing conduit 27.

【0015】エンジン2の燃料噴射装置1は検出器とし
て、前記吸気管12のスロットルバルブ14の上流側に
設けられて、吸入空気量を計測するエアフローメータ3
1、エアフローメータ31の内部に設けられて、吸入空
気温度を測定する吸気温センサ32、前記スロットルバ
ルブ14の開度を検出するスロットルポジションセンサ
33、スロットルバルブ14の全閉状態を検出するアイ
ドルスイッチ34、シリンダブロック5aの冷却系統に
配設されて、冷却水温を検出する水温センサ35、排気
管20内に設けられて、排気中の残存酸素濃度に応じた
空燃比信号を出力する酸素濃度センサ36、前記ディス
トリビュータ23のカムシャフトの1/12回転毎及び
1/1回転毎に、即ち、クランク角で60度毎及び72
0度毎に回転角信号を出力する回転数センサを兼ねた回
転角センサ37を備えている。ここで、60℃A毎の信
号をN信号、720℃A毎の信号をG信号とし、このN
信号によりエンジンの回転数Neを検出するとともに、
G信号とN信号によりクランク角度を検出する。
The fuel injection device 1 of the engine 2 is provided as a detector on the upstream side of the throttle valve 14 of the intake pipe 12 to measure the intake air amount.
1. An intake air temperature sensor 32 for measuring the intake air temperature, a throttle position sensor 33 for detecting the opening of the throttle valve 14, and an idle switch for detecting the fully closed state of the throttle valve 14 provided inside the air flow meter 31. 34, a water temperature sensor 35 that is arranged in the cooling system of the cylinder block 5a to detect the cooling water temperature, and an oxygen concentration sensor that is provided in the exhaust pipe 20 and outputs an air-fuel ratio signal according to the residual oxygen concentration in the exhaust gas. 36, every 1/12 rotation and every 1/1 rotation of the camshaft of the distributor 23, that is, every 60 degrees in crank angle and 72
A rotation angle sensor 37 that also functions as a rotation speed sensor that outputs a rotation angle signal every 0 degrees is provided. Here, the signal at every 60 ° C. A is the N signal, and the signal at every 720 ° C. A is the G signal.
The signal detects the engine speed Ne, and
The crank angle is detected by the G signal and the N signal.

【0016】前記各センサ及びスイッチの検出信号はE
CU4に入力され、ECU4はエンジン2及びエアミク
スチャ装置3を制御する。ECU4は、CPU4a、R
OM4b、RAM4cを中心に論理演算回路を構成し、
コモンバス4dを介して入出力部4eに接続されて、外
部との入出力を行う。
The detection signal of each sensor and switch is E
Input to the CU 4, the ECU 4 controls the engine 2 and the air mixing device 3. ECU4 is CPU4a, R
A logical operation circuit is configured around the OM 4b and the RAM 4c,
It is connected to the input / output unit 4e via the common bus 4d to perform input / output with the outside.

【0017】次に、前記エアミクスチャ装置3中の燃料
噴射弁26の燃料噴孔部近傍の構造を説明する。図3は
本発明の一実施例であるエンジンの燃料噴射装置の燃料
噴射弁の燃料噴孔部近傍の構造を示す部分拡大断面図で
ある。
Next, the structure in the vicinity of the fuel injection hole portion of the fuel injection valve 26 in the air mixing device 3 will be described. FIG. 3 is a partially enlarged cross-sectional view showing the structure in the vicinity of the fuel injection hole portion of the fuel injection valve of the engine fuel injection device according to the embodiment of the present invention.

【0018】図に示すように、燃料噴射弁26の燃料噴
孔部近傍は、燃料噴射弁26、エアミクスチャ管路2
7、及びエアミクスチャソケット41から構成されてい
る。エアミクスチャソケット41には、複数のエア噴孔
部42、及び燃料噴孔部43が穿設されている。また、
エアミクスチャ管路27とエア制御弁28の通路断面積
は、エア噴孔部42の通路断面積の合計より大きい面積
に設定され、その結果、エア噴孔部42が最小絞りとな
っている。
As shown in the drawing, in the vicinity of the fuel injection hole portion of the fuel injection valve 26, the fuel injection valve 26 and the air mixing conduit 2 are provided.
7 and an air mixing socket 41. A plurality of air injection holes 42 and a fuel injection hole 43 are formed in the air socket 41. Also,
The passage cross-sectional area of the air duct 27 and the air control valve 28 is set to an area larger than the total of the passage cross-sectional areas of the air injection hole portions 42, and as a result, the air injection hole portion 42 has the smallest restriction.

【0019】そして、エンジン2の運転中において、吸
気ポート11内は負圧となり、一方、スロットルバルブ
14の上流側は大気圧に近い圧力に保持される。したが
って、その差圧により、エア制御弁28の開弁時には、
吸気管12内のスロットルバルブ14の上流側の吸入空
気の一部が、エアミクスチャ管路27からエアミクスチ
ャソケット41の内部に流下し(以下、このときの吸入
空気を単に「ミキシングエア」という)、エアミクスチ
ャソケット41の各エア噴孔部42から噴出し、燃料噴
射弁26の燃料噴孔部43から噴射された燃料液滴に衝
突して微粒化する。前述したように、エアミクスチャ管
路27やエア制御弁28に対してエア噴孔部42が最小
絞りとなっているため、この箇所でミキシングエアの流
速が最大に高められて、その運動エネルギが燃料の微粒
化のために有効に用いられる。その後、微粒化された燃
料液滴は、燃料噴孔部43から前記吸気ポート11内に
噴流として流出する。
During operation of the engine 2, the inside of the intake port 11 has a negative pressure, while the upstream side of the throttle valve 14 is maintained at a pressure close to atmospheric pressure. Therefore, due to the differential pressure, when the air control valve 28 is opened,
A part of the intake air upstream of the throttle valve 14 in the intake pipe 12 flows down from the air mixing conduit 27 into the air mixing socket 41 (hereinafter, the intake air at this time is simply referred to as “mixing air”). , Atomizes from each of the air injection holes 42 of the air mixture socket 41 and collides with the fuel droplets injected from the fuel injection holes 43 of the fuel injection valve 26. As described above, since the air injection hole portion 42 has the smallest restriction with respect to the air mixing conduit 27 and the air control valve 28, the flow velocity of the mixing air is maximized at this portion, and the kinetic energy is increased. It is effectively used for atomizing fuel. After that, the atomized fuel droplets flow out from the fuel injection hole portion 43 into the intake port 11 as a jet flow.

【0020】次に、前記ECU4が実行する燃料噴射弁
26とエア制御弁28の制御ルーチンを説明する。図4
は本発明の一実施例であるエンジンの燃料噴射装置のE
CU4が実行する燃料噴射弁26とエア制御弁28の制
御ルーチンを示すフローチャートである。
Next, a control routine of the fuel injection valve 26 and the air control valve 28 executed by the ECU 4 will be described. Figure 4
Is a fuel injection device E for an engine according to an embodiment of the present invention.
It is a flowchart which shows the control routine of the fuel injection valve 26 and the air control valve 28 which CU4 performs.

【0021】図4に示すルーチンにおいて、まず、EC
U4は、ステップS100で燃料噴射量に相当する燃料
噴射弁26の開弁時間を算出する。即ち、周知のよう
に、ECU4は前記エアフローメータ31にて測定され
た吸入空気量Qを、前記回転角センサ37にて検出され
たエンジン2の回転数Neで割って基本噴射量Q/Ne
を算出し、その基本噴射量Q/Neに、前記水温センサ
35にて検出された冷却水温、吸気温センサ32にて測
定された吸入空気温度、及び酸素濃度センサ36から出
力された空燃比信号等に対応する各種補正係数を乗じ
て、燃料噴射弁26の開弁時間TAUを算出する。更
に、予め、バッテリ電圧に応じてマップ化された無効噴
射時間TAUVを加算して、燃料噴射弁26の励磁時間
である開弁時間TAU+TAUVとする。
In the routine shown in FIG. 4, first, the EC
U4 calculates the valve opening time of the fuel injection valve 26 corresponding to the fuel injection amount in step S100. That is, as is well known, the ECU 4 divides the intake air amount Q measured by the air flow meter 31 by the rotation speed Ne of the engine 2 detected by the rotation angle sensor 37 to obtain the basic injection amount Q / Ne.
Is calculated, and the basic injection amount Q / Ne is calculated based on the cooling water temperature detected by the water temperature sensor 35, the intake air temperature measured by the intake air temperature sensor 32, and the air-fuel ratio signal output from the oxygen concentration sensor 36. The valve opening time TAU of the fuel injection valve 26 is calculated by multiplying by various correction factors corresponding to the above. Further, the invalid injection time TAUV mapped in advance according to the battery voltage is added to obtain the valve opening time TAU + TAUV which is the excitation time of the fuel injection valve 26.

【0022】次いで、ステップS200でエア制御弁2
8の開閉タイミングの算出処理を実行する。詳細は後述
するが、このエア制御弁28の開弁は燃料噴射弁26の
開弁タイミングあるいは吸気弁の開弁タイミング(例え
ば吸気上死点前8℃A)に対して、T1時間先行して行
われる。また閉弁は燃料噴射弁26の閉弁タイミングあ
るいは排気弁の閉弁タイミング(例えば吸気上死点後1
0℃A)に対してT2時間遅延させて行われる。
Next, in step S200, the air control valve 2
The opening / closing timing calculation process 8 is executed. Although details will be described later, the opening timing of the air control valve 28 precedes the opening timing of the fuel injection valve 26 or the opening timing of the intake valve (for example, 8 ° C. before intake top dead center) by T1 time. Done. Further, the valve closing timing is the closing timing of the fuel injection valve 26 or the closing timing of the exhaust valve (for example, 1 after intake top dead center).
It is performed with a T2 time delay with respect to 0 ° C A).

【0023】その後、ECU4はステップS300でエ
ア制御弁28が開弁タイミングか否かを判定し、否の場
合にはステップS400に移行して、燃料噴射弁26の
開弁タイミング(例えばクランク角で吸気BTDC18
0度CA)に達したか否かを判定する。前述したよう
に、燃料噴射弁26は常にエア制御弁28より遅れて開
弁するため、この時点では、未だ燃料噴射弁26の開弁
タイミングに達していないとして、ステップS500に
移行する。次いで、ステップS500でエア制御弁28
が閉弁タイミングか否かを判定し、エア制御弁28は未
だ開弁していないため、閉弁タイミングでないとしてス
テップS600に移行する。更に、ステップS600で
燃料噴射弁26の閉弁タイミングに達したか否かを判定
し、この燃料噴射弁26も未だ開弁していないため、閉
弁タイミングに達していないとしてステップS700に
移行し、エア制御弁28と燃料噴射弁26の開閉動作が
終了したか否かを判定し、終了していないため前記ステ
ップS300に戻り、このステップS300〜ステップ
S700の処理を繰り返す。
Thereafter, the ECU 4 determines in step S300 whether or not the air control valve 28 is at the opening timing, and if not, the process proceeds to step S400 and the opening timing of the fuel injection valve 26 (for example, at the crank angle). Intake BTDC18
0 degree CA) is determined. As described above, since the fuel injection valve 26 always opens later than the air control valve 28, it is assumed that the opening timing of the fuel injection valve 26 has not yet been reached at this point, and the process proceeds to step S500. Next, in step S500, the air control valve 28
Is determined to be the valve closing timing. Since the air control valve 28 has not been opened yet, it is determined that it is not the valve closing timing, and the process proceeds to step S600. Further, in step S600, it is determined whether or not the closing timing of the fuel injection valve 26 has been reached. Since this fuel injection valve 26 has not yet been opened, it is determined that the closing timing has not been reached and the process proceeds to step S700. Then, it is determined whether the opening / closing operations of the air control valve 28 and the fuel injection valve 26 have been completed. Since they have not been completed, the process returns to the step S300, and the processes of steps S300 to S700 are repeated.

【0024】そして、ステップS300でエア制御弁2
8が開弁タイミングと判定すると、図4に示すように、
ステップS800でエア制御弁28への制御信号を立上
げて開弁させた後、再びステップS300〜ステップS
700の処理を繰り返す。次いで、T1(ms)が経過
して、ステップS400で燃料噴射弁26の開弁タイミ
ングに達したと判定すると、ステップS900で燃料噴
射弁26への制御信号を立上げて開弁させ、更に、燃料
噴射弁26が開弁してから開弁時間TAU+TAUVが
経過して、ステップS600で燃料噴射弁26の閉弁タ
イミングに達したと判定すると、ステップS1100で
燃料噴射弁26への制御信号を立下げて閉弁させる。そ
の後、ステップS500でエア制御弁28が閉弁タイミ
ングと判定すると、ステップS1000でエア制御弁2
8への制御弁28への制御信号を立下げて閉弁させ、ス
テップS700でエア制御弁28と燃料噴射弁26の開
閉動作が終了したと判定して、このルーチンを終了す
る。
Then, in step S300, the air control valve 2
When it is determined that 8 is the valve opening timing, as shown in FIG.
After the control signal to the air control valve 28 is raised and opened in step S800, the steps are repeated from step S300 to step S300.
The processing of 700 is repeated. Next, when T1 (ms) has elapsed and it is determined in step S400 that the opening timing of the fuel injection valve 26 has been reached, in step S900 a control signal to the fuel injection valve 26 is raised to open the valve, and When it is determined in step S600 that the valve opening time TAU + TAUV has elapsed since the fuel injection valve 26 was opened and the closing timing of the fuel injection valve 26 has been reached, the control signal to the fuel injection valve 26 is set in step S1100. Lower and close the valve. After that, if it is determined in step S500 that the air control valve 28 closes, the air control valve 2 is determined in step S1000.
The control signal for the control valve 28 to 8 is closed and closed, and it is determined in step S700 that the opening / closing operation of the air control valve 28 and the fuel injection valve 26 is completed, and this routine is completed.

【0025】次に、ステップS200でECU4にて実
行されるエア制御弁28の開・閉弁タイミングの算出処
理ルーチンを説明する。図5はそのルーチンのフローチ
ャート,図6はエンジンのクランク角度に対する燃料噴
射弁とエア制御弁の制御信号を示すタイムチャートであ
る。図5に示すようにECU4はステップS201で前
記回転角センサ37にて検出されたエンジン2の回転数
Neが2000rpm以上であるか否かを判定し、20
00rpm以上の時は、ステップS202でエア制御弁
28を開タイミングとする。即ちこの処理により200
0rpm以上は常時開弁状態になる。
Next, the routine for calculating the opening / closing timing of the air control valve 28 executed by the ECU 4 in step S200 will be described. FIG. 5 is a flowchart of the routine, and FIG. 6 is a time chart showing control signals of the fuel injection valve and the air control valve with respect to the crank angle of the engine. As shown in FIG. 5, the ECU 4 determines in step S201 whether or not the rotation speed Ne of the engine 2 detected by the rotation angle sensor 37 is 2000 rpm or more.
When the speed is 00 rpm or more, the air control valve 28 is opened at step S202. That is, 200
At 0 rpm or more, the valve is always open.

【0026】このようなステップS201エンジン2の
回転数Neが2000rpm以上であるか否かを判定
し、2000rpm以上の時にはステップS202でエ
ア制御弁28を常時開弁状態に保持しているのは前記ス
テップS300〜ステップS1100の処理では、燃料
噴射弁26と共にエア制御弁28をエンジン2の回転に
同期して開閉制御しているため、エンジン2の回転数が
上昇すると、エア制御弁28の応答性の問題でその開閉
動作に遅れが生じるためである。また、このときにはス
ロットルバルブ14の開度に応じて燃焼室8内に多量の
吸入空気が導入されて、その回転数を制御されているた
め、アイドル運転時等のように、エア制御弁28を開閉
動作させてエアミクスチャ管路27からのミキシングエ
アの供給量を調整する必要はないためでもある。
In step S201, it is determined whether or not the rotation speed Ne of the engine 2 is 2000 rpm or more, and when it is 2000 rpm or more, the air control valve 28 is always kept open in step S202. In the processes of steps S300 to S1100, the air control valve 28 is controlled to open and close in synchronization with the rotation of the engine 2 together with the fuel injection valve 26, so that the responsiveness of the air control valve 28 increases when the rotation speed of the engine 2 increases. This is because the opening / closing operation is delayed due to the above problem. Further, at this time, since a large amount of intake air is introduced into the combustion chamber 8 according to the opening degree of the throttle valve 14 and the rotation speed thereof is controlled, the air control valve 28 is set as in the idle operation. This is also because it is not necessary to adjust the amount of mixing air supplied from the air mixing conduit 27 by opening and closing.

【0027】そして、このようにエア制御弁28が開状
態に保持されることで、スロットルバルブ14の上流側
の吸入空気が、エアミクスチャ管路27を経てエア噴孔
部42から吸気ポート11内にミキシングエアとして連
続的に供給され、燃料噴孔部43から噴射された燃料を
微粒化する役割を果たす。
Since the air control valve 28 is held in the open state in this way, the intake air upstream of the throttle valve 14 passes through the air mixing conduit 27 and enters the intake port 11 from the air injection hole 42. Is continuously supplied as mixing air, and plays a role of atomizing the fuel injected from the fuel injection hole portion 43.

【0028】次にステップS201で2000rpm未
満の場合はステップS203に進み燃料噴射弁26の開
弁開始時期に対しT1(ms)以内の時間だけ先行して
いるタイミングが否かを判定し、ステップS204では
燃料噴射弁26が開弁中か否か、即ち燃料噴射中か否か
を判定し、またステップS205では燃料噴射弁26が
閉弁後、即ち燃料噴射終了後T2(ms)以内か否かを
判定する。
Next, when the speed is less than 2000 rpm in step S201, the process proceeds to step S203, and it is determined whether or not there is a timing that precedes the valve opening start timing of the fuel injection valve 26 by a time within T1 (ms), and then in step S204. Then, it is determined whether or not the fuel injection valve 26 is open, that is, whether or not fuel injection is in progress. In step S205, it is determined whether or not the fuel injection valve 26 is closed, that is, within T2 (ms) after the end of fuel injection. To judge.

【0029】そしてステップS203〜S205の判定
において、いずれか一つでもYESの場合は前記ステッ
プ202に分岐しエア制御弁28を開タイミングとし、
ステップS203〜S205の全ての判定においてNO
であればステップS206に進む。このステップS20
3〜S205の処理により図6に示すように燃料噴射開
始前T1(ms)の時期から燃料噴射終了後T2(m
s)までの期間、エア制御弁28は開タイミングとされ
る。
If any one of the determinations in steps S203 to S205 is YES, the process branches to step 202 and the air control valve 28 is opened,
NO in all determinations in steps S203 to S205
If so, the process proceeds to step S206. This step S20
As shown in FIG. 6, by the processing of 3 to S205, from the time T1 (ms) before the start of fuel injection to the time T2 (m
During the period up to s), the air control valve 28 is opened.

【0030】次にエンジンが2000rpm未満でかつ
上記開タイミングでない場合はステッブS206に進む
わけであるが、このステップでエンジンの負荷に相当す
る前述のQ/Neが所定値以上か否かを判定し、所定値
以上の場合、即ち高負荷の場合はステップS210に分
岐し、エア制御弁28を閉タイミングとしてこのルーチ
ンを終了する。
Next, if the engine speed is less than 2000 rpm and the opening timing is not reached, the process proceeds to step S206. In this step, it is determined whether or not the above-mentioned Q / Ne corresponding to the engine load is a predetermined value or more. If it is equal to or higher than the predetermined value, that is, if the load is high, the process branches to step S210, and the air control valve 28 is closed to end this routine.

【0031】また、ステップS206でQ/Neが所定
値未満の場合、即ち中負荷以下の場合は、続くステップ
S207〜S209に進み、バルブオーバーラップ期間
か否かを判定する。即ち、ステップS207では吸気弁
開弁開始前T1(ms)以内のタイミングであるか否か
を判定し、ステップS208ではバルブオーバーラッブ
期間中であるか否かを判定し、またステップS209で
は排気弁閉弁後T2(ms)以内か否かを判定する。
If Q / Ne is less than the predetermined value in step S206, that is, if the load is equal to or less than the medium load, the process proceeds to subsequent steps S207 to S209, and it is determined whether the valve overlap period or not. That is, in step S207, it is determined whether the timing is within T1 (ms) before the start of the intake valve opening, in step S208 it is determined whether the valve overlap period is in progress, and in step S209, the exhaust valve is opened. It is determined whether it is within T2 (ms) after closing the valve.

【0032】これらステップS207〜S209の判定
において、いずれか一つでもYESの場合は前述のステ
ップS202に分岐し、エア制御弁28を開タイミング
とし、また全ての判定がNOの場合は、ステップS21
0に進み、エア制御弁28を閉タイミングとしてこのル
ーチンを終了する。このS207〜S209の処理によ
り図6に示すように燃料噴射中以外の期間においても、
吸気弁開弁開始前T1(ms)の時期から排気弁閉弁後
T2(ms)の期間はエア制御弁28は開タイミングと
される。
If any one of the determinations in steps S207 to S209 is YES, the process branches to step S202 described above to set the air control valve 28 at the opening timing, and if all determinations are NO, step S21.
The routine proceeds to 0 and the air control valve 28 is set to the closing timing to end this routine. By the processing of S207 to S209, as shown in FIG. 6, even during a period other than during fuel injection,
From the time T1 (ms) before the start of the intake valve opening to the time T2 (ms) after the exhaust valve is closed, the air control valve 28 is opened.

【0033】以上のように、本実施例の燃料噴射装置
は、燃料噴射開始前T1(ms)の時期から燃料噴射終
了後T2(ms)までの期間エア制御弁28を開弁させ
てミキシングエアにより燃料の微粒化を促進させるだけ
でなく、エンジンの吸気弁開弁開始前T1(ms)の時
期から排気弁閉弁後T2(ms)の期間も開弁させて噴
孔部へエアを供給することにより、バルブオーバーラッ
プ時に吸気通路側へ吹き返す燃焼後のガス中のカーボン
が燃料噴射弁26の噴孔部へ付着するのを防止してい
る。
As described above, in the fuel injection device of this embodiment, the air control valve 28 is opened for a period from the time T1 (ms) before the start of fuel injection to the time T2 (ms) after the end of fuel injection to mix air. This not only promotes atomization of fuel, but also opens the valve from the time T1 (ms) before the start of the intake valve opening of the engine to the time T2 (ms) after the exhaust valve is closed to supply air to the injection hole. By doing so, it is possible to prevent carbon in the gas after combustion that blows back to the intake passage side from adhering to the injection hole portion of the fuel injection valve 26 when the valves overlap.

【0034】なお、本実施例では、内燃機関M1として
エンジン2が、運転状態検出手段M2として吸入空気量
の決定に用いられるエアフローメータ31、回転角セン
サ37とがそれぞれ機能し、また、燃料噴射手段M3と
して燃料噴射弁26が、エア管路M4としてエアミクス
チャ管路27が、開閉手段M5としてエア制御弁28が
それぞれ機能し、更に、開閉制御手段としてステップS
201〜ステップS210、ステップS300、ステッ
プS500、ステップS800及びステップS1000
の処理を実行するときのECU4がそれぞれ機能する。
In this embodiment, the engine 2 functions as the internal combustion engine M1, the air flow meter 31 and the rotation angle sensor 37 used for determining the intake air amount function as the operating state detecting means M2, and the fuel injection is performed. The fuel injection valve 26 functions as the means M3, the air mixture conduit 27 functions as the air conduit M4, and the air control valve 28 functions as the opening / closing means M5.
201 to step S210, step S300, step S500, step S800 and step S1000.
Each of the ECUs 4 functions when executing the processing of.

【0035】次に、請求項2の発明の実施例に相当する
ものを図7,8に示す。本実施例は図7に示す如く、図
2の装置に対し、エアミクスチャ管路27に、吸入空気
を加圧する加圧手段をなすエアポンプ38を配設したも
のである。エアポンプ38によってエアミクスチャ管路
27内の吸入空気は大気圧以上に加圧され、エンジンが
高負荷時(例えばスロットルバルブ全開時)においても
燃料噴射弁26の噴射箇所近傍へのエア供給が可能とな
る。
Next, FIGS. 7 and 8 show an embodiment corresponding to the second embodiment of the invention. In this embodiment, as shown in FIG. 7, an air pump 38, which is a pressurizing means for pressurizing intake air, is arranged in the air mixing conduit 27 in the apparatus of FIG. The intake air in the air mixture pipe 27 is pressurized by the air pump 38 to the atmospheric pressure or higher, and the air can be supplied to the vicinity of the injection point of the fuel injection valve 26 even when the engine is under a heavy load (for example, when the throttle valve is fully opened). Become.

【0036】本実施例における制御フロチャートを図8
に示す。上述の如く本実施例では高負荷においてもミキ
シングエアの供給が可能なことから、図8に示すフロー
チャートは、図5のフローチャートの中から負荷判定の
為のステップS206を削除したものと実質同一であ
る。これにより全負荷域において噴射燃料の微粒化の為
のエア供給および燃料噴射弁28の噴孔部へのデポジッ
ト付着防止の為のバルブオーバーラップ期間中のエア供
給が可能となる。
FIG. 8 shows a control flow chart in this embodiment.
Shown in. As described above, in the present embodiment, the mixing air can be supplied even under a high load. Therefore, the flowchart shown in FIG. 8 is substantially the same as the flowchart of FIG. 5 in which step S206 for load determination is deleted. is there. As a result, it becomes possible to supply air for atomizing the injected fuel and for supplying air during the valve overlap period for preventing deposits from adhering to the injection hole portion of the fuel injection valve 28 in the full load range.

【0037】[0037]

【発明の効果】以上のように、請求項1の発明の内燃機
関の燃料噴射装置は、燃料噴射手段の燃料噴射にほぼ同
期した期間中に、エア管路に設けた開閉手段を開放状態
に保持するとともに、運転状態検出手段の検出に基づ
き、内燃機関の負荷が中負荷以下でかつ内燃機関の吸気
弁と排気弁が共に開弁しているバルブオーバーラップ期
間中に、前記燃料噴射が行われていない場合には、バル
ブオーバーラップ期間にほぼ同期した期間中にも前記開
閉手段を開放状態に保持する開閉制御手段を具備してい
る為、燃料噴射中に吸入空気により燃料の微粒化を促進
するだけでなく、バルブオーバーラップ中の燃焼後ガス
の吸気通路側への吹き返しによって生じる燃料噴射弁の
噴孔部へのカーボン等のデポジット付着を防止でき、信
頼性の向上が得られる。
As described above, in the fuel injection device for an internal combustion engine according to the first aspect of the invention, the opening / closing means provided in the air pipeline is opened during the period substantially synchronized with the fuel injection of the fuel injection means. The fuel injection is performed during the valve overlap period in which the load of the internal combustion engine is equal to or lower than the medium load and both the intake valve and the exhaust valve of the internal combustion engine are open based on the detection of the operating state detection means. If not, since the opening / closing control means for holding the opening / closing means in the open state is provided even during the period substantially synchronized with the valve overlap period, the atomization of the fuel by the intake air during the fuel injection is performed. Not only is it promoted, but it is possible to prevent carbon and other deposits from adhering to the injection hole of the fuel injection valve, which is caused by blowback of post-combustion gas to the intake passage side during valve overlap, thus improving reliability. .

【0038】また、請求項2の発明の内燃機関の燃料噴
射装置は、請求項1に記載の装置において、スロットル
バルブを迂回して開閉手段に至るエア管路中にエア管路
内の吸入空気を加圧する加圧手段を配設するように構成
したことにより中負荷以下のみならず高負荷時において
も燃料噴射箇所近傍へ吸入空気を供給することができ、
燃料の微粒化および燃料噴射の噴孔部へのデポジット付
着防止が可能となる。
The fuel injection device for an internal combustion engine according to a second aspect of the present invention is the fuel injection device according to the first aspect, wherein the intake air in the air pipeline is bypassed to the opening / closing means by bypassing the throttle valve. By arranging the pressurizing means for pressurizing the intake air, it is possible to supply the intake air to the vicinity of the fuel injection point not only under a medium load but also under a high load,
It is possible to atomize the fuel and prevent deposits from adhering to the injection hole portion of the fuel injection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の内容を概念的に示したクレ
ーム対応図である。
FIG. 1 is a claim correspondence diagram conceptually showing the content of one embodiment of the present invention.

【図2】本発明の一実施例であるエンジンの燃料噴射装
置のシステム構成図である。
FIG. 2 is a system configuration diagram of a fuel injection device for an engine that is an embodiment of the present invention.

【図3】本発明の一実施例であるエンジンの燃料噴射装
置の燃料噴射弁の燃料噴孔部近傍の構成を示す部分拡大
断面図である。
FIG. 3 is a partially enlarged cross-sectional view showing a configuration in the vicinity of a fuel injection hole portion of a fuel injection valve of a fuel injection device for an engine according to an embodiment of the present invention.

【図4】本発明の一実施例であるエンジンの燃料噴射装
置のECUが実行する燃料噴射弁とエア制御弁の制御ル
ーチンを示すフローチャートである。
FIG. 4 is a flowchart showing a control routine of a fuel injection valve and an air control valve executed by an ECU of a fuel injection device for an engine which is an embodiment of the present invention.

【図5】本発明の一実施例であるエンジンの燃料噴射装
置のECUが実行するエア制御弁の開・閉弁タイミング
の算出ルーチンを示すフローチャートである。
FIG. 5 is a flowchart showing a routine for calculating the opening / closing timing of the air control valve, which is executed by the ECU of the fuel injection system for the engine according to the embodiment of the present invention.

【図6】本発明の一実施例であるエンジンの燃料噴射装
置のクランク角に対する燃料噴射弁とエア制御弁の制御
信号を示すタイムチャートである。
FIG. 6 is a time chart showing control signals of the fuel injection valve and the air control valve with respect to the crank angle of the fuel injection device for the engine according to the embodiment of the present invention.

【図7】本発明の他の実施例であるエンジンの燃料噴射
装置のシステム構成図である。
FIG. 7 is a system configuration diagram of a fuel injection device for an engine which is another embodiment of the present invention.

【図8】本発明の他の実施例であるエンジンの燃料噴射
装置のECUが実行するエア制御弁の開・閉弁タイミン
グの算出ルーチンを示すフローチャートである。
FIG. 8 is a flowchart showing a routine for calculating the opening / closing timing of the air control valve, which is executed by the ECU of the fuel injection system for an engine according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 エンジン 4 電子制御装置(ECU) 26 燃料噴射弁 27 エアミクスチャ管路 28 エア制御弁 31 エアフローメータ 37 回転角センサ 38 エアポンプ 2 Engine 4 Electronic Control Unit (ECU) 26 Fuel Injection Valve 27 Air Mixing Pipeline 28 Air Control Valve 31 Air Flow Meter 37 Rotation Angle Sensor 38 Air Pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の運転状態を検出する運転状態
検出手段と、 前記内燃機関の吸気系に設けられ、前記運転状態検出手
段にて検出された内燃機関の運転状態に応じて、所定量
の燃料を吸気系に噴射する燃料噴射手段と、 前記吸気系を流れる吸入空気の一部を、スロットルバル
ブを迂回して前記燃料噴射手段の噴射箇所近傍に供給す
るエア管路と、 前記エア管路に設けられて、前記エア管路を連通または
遮断する開閉手段と、 前記燃料噴射手段による燃料噴射にほぼ同期した期間
中、および前記燃料噴射手段による燃料噴射が行われて
おらず、かつ前記内燃機関の負荷が中負荷以下の時で吸
気弁と排気弁とが共に開弁しているバルブオーバーラッ
プ期間にほぼ同期した期間中に前記開閉手段を開放状態
に保持する開閉制御手段とを具備することを特徴とする
内燃機関の燃料噴射装置。
1. A driving state detecting means for detecting a driving state of an internal combustion engine, and a predetermined amount according to a driving state of the internal combustion engine, which is provided in an intake system of the internal combustion engine and detected by the driving state detecting means. Fuel injection means for injecting the above fuel into the intake system, an air pipeline for supplying a part of the intake air flowing through the intake system to the vicinity of the injection point of the fuel injection means bypassing the throttle valve, and the air pipe An opening / closing means that is provided in the passage and connects or disconnects the air pipeline, a period that is substantially synchronized with the fuel injection by the fuel injection means, and fuel injection by the fuel injection means is not performed, and And an opening / closing control means for holding the opening / closing means in an open state during a period substantially synchronized with a valve overlap period in which both the intake valve and the exhaust valve are opened when the load of the internal combustion engine is equal to or less than a medium load. The fuel injection system for an internal combustion engine characterized by Rukoto.
【請求項2】 前記スロットルバルブを迂回して前記開
閉手段に至る前記エア管路中に、該エア管路中の吸入空
気を加圧する加圧手段を配設し、前記開閉制御手段は、
高負荷時もバルブオーバーラップ期間にほぼ同期した期
間中に前記開閉手段を開放状態に保持することを特徴と
する請求項1に記載の内燃機関の燃料噴射装置。
2. A pressurizing means for pressurizing intake air in the air pipeline is disposed in the air pipeline that bypasses the throttle valve and reaches the open / close means, and the open / close control means comprises:
2. The fuel injection device for an internal combustion engine according to claim 1, wherein the opening / closing means is held in an open state during a period substantially synchronized with the valve overlap period even under a high load.
JP30092492A 1992-11-11 1992-11-11 Fuel injection system of internal combustion engine Withdrawn JPH06147061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30092492A JPH06147061A (en) 1992-11-11 1992-11-11 Fuel injection system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30092492A JPH06147061A (en) 1992-11-11 1992-11-11 Fuel injection system of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06147061A true JPH06147061A (en) 1994-05-27

Family

ID=17890770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30092492A Withdrawn JPH06147061A (en) 1992-11-11 1992-11-11 Fuel injection system of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06147061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226163A (en) * 2005-02-16 2006-08-31 Toyota Motor Corp Control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226163A (en) * 2005-02-16 2006-08-31 Toyota Motor Corp Control device for internal combustion engine
JP4591107B2 (en) * 2005-02-16 2010-12-01 トヨタ自動車株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US6814050B2 (en) Fuel cut control device for internal combustion engine
JP2829891B2 (en) Fuel injection timing control device for internal combustion engine
US5915362A (en) Intake control apparatus and method for engine
US5826564A (en) Fuel injection control apparatus and method for engine
JPH06147061A (en) Fuel injection system of internal combustion engine
WO2004027244A1 (en) Method for controlling an engine with an egr system
JPH06147062A (en) Fuel injection system of internal combustion engine
JP2699122B2 (en) Control device for internal combustion engine having assist air supply device
JP2987675B2 (en) Intake control device for internal combustion engine
JPH09242577A (en) Fuel injection controller for direct spark ignition type internal combustion engine
JP2762014B2 (en) Self-diagnosis device for assist air device of internal combustion engine
JP2574089Y2 (en) Assist air system for supercharged internal combustion engine
JPH06146961A (en) Fuel supply controlling device of internal combustion engine
JPH0666226A (en) Fuel injector for internal combustion engine
JPH05288095A (en) Fuel injection timing controller of internal combustion engine
JP3044077B2 (en) Fuel supply system for turbocharged engine
JP2932141B2 (en) Intake control device for internal combustion engine
JP2529417Y2 (en) Fuel supply device for internal combustion engine
JPH05306658A (en) Fuel transpiration preventing device
JPH07286538A (en) Fuel injection control device of internal combustion engine
JPH06173825A (en) Fuel injection device for internal combustion engine
JPH06173824A (en) Fuel injection device for internal combution engine
JPH077560Y2 (en) Engine fuel injection amount control device
JPH06173827A (en) Fuel injection device for internal combustion engine
JPH04224247A (en) Control device of internal combustion engine having assist-air supply device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201