Nothing Special   »   [go: up one dir, main page]

JPH0612350B2 - Distribution type ion sensor body - Google Patents

Distribution type ion sensor body

Info

Publication number
JPH0612350B2
JPH0612350B2 JP60137939A JP13793985A JPH0612350B2 JP H0612350 B2 JPH0612350 B2 JP H0612350B2 JP 60137939 A JP60137939 A JP 60137939A JP 13793985 A JP13793985 A JP 13793985A JP H0612350 B2 JPH0612350 B2 JP H0612350B2
Authority
JP
Japan
Prior art keywords
ion
electrode
measured
sensor body
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60137939A
Other languages
Japanese (ja)
Other versions
JPS62852A (en
Inventor
憲一 菅野
哲哉 潟山
昌夫 小山
淳次 肥塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60137939A priority Critical patent/JPH0612350B2/en
Publication of JPS62852A publication Critical patent/JPS62852A/en
Publication of JPH0612350B2 publication Critical patent/JPH0612350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は被測定試液中のイオン濃度の測定を行なうイオ
ンセンサ体に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to an ion sensor body for measuring an ion concentration in a sample solution to be measured.

[発明の技術的背景とその問題点] 従来より液中の特定のイオンの濃度を選択的に定量でき
るイオン選択性電極が特定イオンのモニターや水質分析
等の広い分野で用いられている。イオン選択性電極はこ
の電極から発生する電位と同じ測定系に配置された参照
電極から得られる基準電位との間に生ずる電位差ΔEが
特定イオンの濃度の対数と直線関係にあることを用いる
ものであり、これより測定したΔEの値からイオン濃度
が容易に求められる。このようなイオン選択性電極を利
用して、近年では特に血液中のNa,K,C1-等の各
種イオンの定量などがさかんに行なわれている。そして
その構造も最近では内部に電解質液を持たず、金属等の
導電部材に直接イオン感応膜を形成したイオン選択性電
極が用いられ、さらにはこれらのイオン選択性電極を参
照電極とともに被測定液の流通路に並設して一体化し、
複数の種類のイオンの濃度を測定するフローセル方式の
イオンセンサ体等が考案されている。このようなイオン
選択性電極及び参照電極を組み合わせてなるイオンセン
サ体は近年ますます小型化されて、多くの種類のイオン
の定量分析が少量の被測定液で行なえるようになってき
ている。
[Technical background of the invention and its problems] Conventionally, an ion-selective electrode capable of selectively quantifying the concentration of a specific ion in a liquid has been used in a wide range of fields such as specific ion monitoring and water quality analysis. The ion-selective electrode uses that the potential difference ΔE generated between the potential generated from this electrode and the reference potential obtained from the reference electrode arranged in the same measurement system has a linear relationship with the logarithm of the concentration of the specific ion. Therefore, the ion concentration can be easily obtained from the value of ΔE measured from this. In recent years, in particular, quantification of various ions such as Na + , K + , C1 − in blood has been vigorously carried out using such an ion-selective electrode. Recently, ion-selective electrodes, which have no electrolyte solution inside and have an ion-sensitive membrane directly formed on a conductive member such as metal, have been used as the structure. Are installed side by side in the flow passage of
A flow cell type ion sensor body for measuring the concentrations of a plurality of types of ions has been devised. In recent years, the ion sensor body comprising such an ion-selective electrode and a reference electrode has been further miniaturized, and it has become possible to quantitatively analyze many kinds of ions with a small amount of the liquid to be measured.

しかしながら、このように小型化されたイオンセンサ体
においても原理的に基準電位を生じる参照電極が必要で
あるが、従来の参照電極では、他のイオン選択性電極と
ともに小型化一体化するためには次のような問題点を有
していた。すなわち従来の参照電極の構成は、内部電
解質液及び前記内部電解質液と被測定液との間の導通を
とるため微量の液が流通する程度の大きさの孔すなわち
液絡部とを有した飽和甘コウ電極や、KCl等の飽和溶
液中に銀/塩化銀電極材を浸してなる電極等が用いられ
ていたり、あるいは銀/塩化銀電極材をKCl含有P
VC膜で被覆し、そらにその上をシリコーン系ポリマー
膜等の保護膜で被覆した参照電極が用いられていた。し
かしながらの内部電解質液及び液絡部を有した構成か
らなる参照電極では、その液絡部の流通状態によって電
極内の内部電解質液が被測定液で汚染されやすく、また
小型化されているので内部電解質液が少量しか入らない
ため短寿命であり、参照電極としての電位が変動しやす
かった。そしてこのような構成を有した小型の参照電極
を作成する場合、液絡部の形成や内部電解質液を保持す
る構造の形成等が難かしく、液絡部のわずかな形状、大
きさ等のちがいによって出力される基準電位が大きく左
右され、参照電極としての充分な信頼性が得難かった。
一方の銀/塩化銀電極材をKCl含有PCV幕で被覆
した構成からなる参照電極では、測定を行なうに従って
前記PCV膜からKClが溶出し、その結果参照電極と
しての基準電位が早期に不安定になり、電極の寿命も短
い等の問題点を有していた。
However, even in such a miniaturized ion sensor body, a reference electrode for generating a reference potential is required in principle, but in the conventional reference electrode, in order to miniaturize and integrate with other ion selective electrodes, It had the following problems. That is, the structure of the conventional reference electrode is saturated with an internal electrolyte solution and a hole or liquid junction that is sized to allow a small amount of solution to flow in order to establish conduction between the internal electrolyte solution and the solution to be measured. Amakou electrode, an electrode obtained by immersing a silver / silver chloride electrode material in a saturated solution such as KCl, or a silver / silver chloride electrode material containing KCl-containing P
A reference electrode has been used which is covered with a VC film and then covered with a protective film such as a silicone polymer film. However, in the reference electrode composed of a structure having an internal electrolyte solution and a liquid junction, the internal electrolyte solution in the electrode is easily contaminated by the liquid to be measured due to the flow state of the liquid junction, and the internal size is small. Since only a small amount of the electrolyte solution entered, the life was short and the potential as the reference electrode was likely to fluctuate. And when creating a small-sized reference electrode having such a configuration, it is difficult to form a liquid junction or a structure for holding an internal electrolyte solution, and the liquid junction has a slight shape or size. It was difficult to obtain sufficient reliability as a reference electrode because the reference potential output by the output was greatly influenced.
On the other hand, in a reference electrode composed of a silver / silver chloride electrode material coated with a KCl-containing PCV curtain, KCl was eluted from the PCV film as the measurement was performed, and as a result, the reference potential as the reference electrode became unstable early. In addition, there is a problem that the life of the electrode is short.

さらに、前記問題点を解消するものとして直接測定に関
係ない項目に対するイオン選択性電極を設け、これを疑
似参照電極として組み込んだ流通型イオンセンサ体があ
る。前記流通型イオンセンサ体では前記疑似参照電極と
して使われるイオン選択性電極が一般にインピーダンス
の高いイオン感応膜を有している。したがって、前記疑
似参照電極を基準にしてイオン濃度を測定しようとする
と、通常のイオン選択性電極もまた、高インピーダンス
のイオン感応膜を必要とするため実際のイオン濃度測定
の際に、ノイズの混入の発生がありこれが大きな問題と
なる。高インピーダンスのイオン感応膜を介して被測定
液のイオン濃度を測定しているためと考えられ、高イン
ピーダンスのイオン感応膜での実施は困難である。
Further, as a solution to the above problems, there is a flow-through type ion sensor body in which an ion-selective electrode for an item not directly related to measurement is provided and incorporated as a pseudo reference electrode. In the flow-through type ion sensor body, the ion selective electrode used as the pseudo reference electrode generally has an ion sensitive membrane having high impedance. Therefore, if the ion concentration is to be measured with the pseudo reference electrode as a reference, a normal ion-selective electrode also requires a high-impedance ion-sensitive membrane, so that noise may be mixed during actual ion concentration measurement. Occurs and this becomes a big problem. It is considered that this is because the ion concentration of the liquid to be measured is measured through the high-impedance ion-sensitive film, and it is difficult to carry out with the high-impedance ion-sensitive film.

[発明の目的] 本発明は上記欠点を解決するためのもので、擬似参照電
極を用いてしかもノイズの発生が極めて少ない流通型イ
オンセンサ体を提供する。
[Object of the Invention] The present invention is intended to solve the above-mentioned drawbacks, and provides a flow-through type ion sensor body using a pseudo reference electrode and generating very little noise.

[発明の概要] 本発明は絶縁材料からなる基本に穿設された貫通孔の内
面の少なくとも一部に配設された導電部材と前記貫通孔
の内周面を形成する導電部材表面を被覆するイオン感応
膜とからなり被測定液中に含まれた測定対象物質に感応
する第1のイオン選択性電極と、絶縁材料からなる基体
に穿設された貫通孔の内周面の少なくとも一部を形成す
るように配設された導電部材と、前記貫通孔の内周面を
形成する導電部材を被覆するイオン感応膜とからなり被
測定液中に含まれた測定対象物質に感応しない第2のイ
オン選択性電極よりなる参照電極とが、導電部材同志の
電気絶縁性を保って連結され、かつ前記第1のイオン選
択性電極及び第2のイオン選択性電極の貫通孔が連結さ
れて前記被測定試料の流通路を形成するように一体化さ
れているイオンセンサ体において、さらに、前記被測定
試料の流通路内で、前記被測定試料に接触するようにイ
ンピーダンスが200KΩ以下さらに好ましくは1KΩ
以下であるところの電極が具備されていることを特徴と
する流通型イオンセンサ体である。
SUMMARY OF THE INVENTION The present invention covers a conductive member provided on at least a part of the inner surface of a through hole formed in a base made of an insulating material and a surface of a conductive member forming an inner peripheral surface of the through hole. A first ion-selective electrode, which is made of an ion-sensitive film and is sensitive to the substance to be measured contained in the liquid to be measured, and at least a part of the inner peripheral surface of the through hole formed in the base made of an insulating material. A second conductive member arranged so as to be formed and an ion-sensitive film covering the conductive member forming the inner peripheral surface of the through hole, which is not sensitive to the substance to be measured contained in the liquid to be measured. A reference electrode composed of an ion-selective electrode is connected while maintaining the electrical insulation of the conductive members, and the through holes of the first ion-selective electrode and the second ion-selective electrode are connected to form the target electrode. Integrated to form a flow path for the sample to be measured In the ion sensor body, the impedance is 200 KΩ or less, and more preferably 1 KΩ so as to come into contact with the sample to be measured in the flow path of the sample to be measured.
The flow-through type ion sensor body is characterized in that the following electrodes are provided.

ところで、実際に前記流通型イオンセンサ体を用いて分
析を行なうためにはたとえば第1図のような測定回路を
用いればよい。図中(1)は本発明の流通型イオンセンサ
体でNa,K,C1センサとの電位差の測定結果か
ら、それぞれのイオン濃度が算出できるが、直接参照電
極とイオンセンサとの電位差を測定すると、参照電極で
あるCa2+イオン選択性電極が高インピーダンスのイオ
ン選択膜を有していることと、Na,Kセンサ等を高
インピーダンスのイオン選択膜を有しているため、砒測
定液は高インピーダンスの膜を介してプリアンプ等を含
む測定系と電気的に接続されることになる。その結果、
大きなノイズが混入することになるので、本発明の流通
型イオンセンサ体内に備えたインピーダンスの低い電極
を用い前記インピーダンスの低い電極と参照電極、前記
インピーダンスの低い電極とイオン選択性電極とのそれ
ぞれの電位差を求め、前記両者の電位差の差を求めれば
よい。このようにすることで被測定液はアースされノイ
ズは減少する。
By the way, in order to actually perform analysis using the flow-through type ion sensor body, for example, a measuring circuit as shown in FIG. 1 may be used. Na +, K + in Figure (1) is a flow type ion sensor of the present invention, C1 - potential difference from the measurement result of the potential difference between the sensor, but each ion concentration can be calculated, and direct reference electrode and the ion sensor The Ca 2+ ion-selective electrode, which is the reference electrode, has a high-impedance ion-selective membrane, and the Na + , K + sensors, etc., have a high-impedance ion-selective membrane. The arsenic measurement liquid is electrically connected to a measurement system including a preamplifier and the like via a high impedance film. as a result,
Since a large amount of noise will be mixed in, the low impedance electrode and the reference electrode, the low impedance electrode and the ion selective electrode of the low impedance electrode provided in the flow-through type ion sensor body of the present invention are used. The potential difference may be determined, and the difference between the potential differences between the two may be determined. By doing so, the liquid to be measured is grounded and noise is reduced.

なお、(9),(10)はそれぞれ演算増幅器、(11)は電位差
計である。
In addition, (9) and (10) are operational amplifiers, respectively, and (11) is a potentiometer.

[発明の効果] 本発明に係る流通型イオンセンサ体は参照電極が高イン
ピーダンスにも拘らず無視できる測定方式が適用でき
る。また、前記インピーダンスの低い電極も容易に組み
込めるため本発明の工業的価値は大である。
[Advantages of the Invention] The flow-through type ion sensor body according to the present invention can employ a measurement method in which the reference electrode can be ignored despite the high impedance. Further, since the electrode with low impedance can be easily incorporated, the industrial value of the present invention is great.

[発明の実施例] 以下、本発明を実施例にもとづきさらに詳しく説明す
る。
EXAMPLES OF THE INVENTION Hereinafter, the present invention will be described in more detail based on examples.

第2図は本発明の一実施例としての流通型イオンセンサ
体である。図中(4)はナトリウムイオン選択性電極、
(5)はカリウムイオン選択電極、(6)は塩素イオン選択
性電極、(7)は基準電極としてのカルシウムイオン選択
性電極であり、これらの各イオン選択性電極は絶縁部材
(3)を介することにより互いに電気絶縁性を保ってセル
ボディ−(1)a内に連結一体化して配設されている。そし
て各々の電極には信号を取り出すリード線(4)a、(5)a、
(6)a、(7)a、がそれぞれ接続されている。この電極は絶
縁材料からなる基体に穿設された貫通孔の内周面にイオ
ン感応部(10)が設けられており、これらの電極の貫通孔
が連絡して流通路(2) を形成している。また、これらの
電極のイオン感応部(10)は、前記貫通孔の内周面の少な
くとも一部を形成するように配設された導電部材を被覆
したイオン感応膜からなっており、このイオン感応膜は
例えばイオン選択性物質を分散された高分子膜や導電部
材として用いた銀の上に形成した塩化銀よりなる感応層
よりなっている。更に(8) は本発明の流通型イオンセン
サ体の特徴的に設けられた低インピーダンスの白金電極
であり、(8)aは前記白金電極からのリード線である。
FIG. 2 shows a flow type ion sensor body as one embodiment of the present invention. In the figure, (4) is a sodium ion selective electrode,
(5) is a potassium ion selective electrode, (6) is a chloride ion selective electrode, (7) is a calcium ion selective electrode as a reference electrode, and each of these ion selective electrodes is an insulating member.
The cell body (1) a is disposed integrally and connected to the cell body (1) a while maintaining electrical insulation from each other by way of (3). And lead wires (4) a, (5) a for extracting signals to each electrode,
(6) a and (7) a are connected, respectively. This electrode is provided with an ion sensitive part (10) on the inner peripheral surface of a through hole formed in a base made of an insulating material, and the through hole of these electrodes communicate with each other to form a flow passage (2). ing. Further, the ion sensitive part (10) of these electrodes is composed of an ion sensitive film covering a conductive member arranged so as to form at least a part of the inner peripheral surface of the through hole. The film comprises, for example, a polymer film in which an ion-selective substance is dispersed or a sensitive layer made of silver chloride formed on silver used as a conductive member. Further, (8) is a low-impedance platinum electrode provided characteristically in the flow-through type ion sensor body of the present invention, and (8) a is a lead wire from the platinum electrode.

第3図は本発明の流通型イオンセンサ体を実際に使って
Naセンサの電位を追跡した場合を曲線(a) で示し、従
来の流通型イオンセンサ体を使ってNaセンサの電位を
追跡した場合の曲線を(b)で現わしてあり測定電位差の
変化の差異は顕著である。図から明らかなように、本発
明の流通型イオンセンサ体を用いて、液アースをとる測
定法をとった場合に表らかにノイズが減少していること
が判り本発明は所期の目的を十分に達成することが出来
た。
FIG. 3 shows the actual use of the flow-through type ion sensor body of the present invention.
The case where the tracking potential of Na + sensor shown by curve (a), a curve in the case of tracking the potential of Na + sensor using a conventional flow type ion sensor body (b) in the measurement potential Yes and manifested The difference in changes is significant. As is clear from the figure, it was found that the noise was visibly reduced when the measurement method in which the liquid earth was used was adopted using the flow-through type ion sensor body of the present invention. Was able to be fully achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の流通型イオンセンサ体で用いるイオン
濃度測定回路の一例を示した模式図。 第2図は本発明の流体型イオンセンサ体断面図。 第3図は本発明流通片イオンセンサ体と公知のセンサ体
とをそのノイズの発生状態を説明する説明図である。 (4),(5),(6),(7)……イオン選択性電極 (8)……白金電極
FIG. 1 is a schematic diagram showing an example of an ion concentration measuring circuit used in the flow-through type ion sensor body of the present invention. FIG. 2 is a sectional view of the fluid type ion sensor body of the present invention. FIG. 3 is an explanatory view for explaining the noise generation state of the circulating ion sensor body of the present invention and a known sensor body. (4), (5), (6), (7) …… ion selective electrode (8) …… platinum electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁材料からなる基本に穿設された貫通孔
の内周面の少なくとも一部を形成するように配設された
導電部材と、前期貫通孔の内周面を形成する導電部材表
面を被覆するイオン感応膜とからなり被測定液中に含ま
れた測定対象物質に感応する第1のイオン選択性電極
と、絶縁材料からなる基体に穿説された貫通孔の内周面
の少なくとも一部を形成するように配設された導電部材
と、前期貫通孔の内周面を形成する導電部材表面を被覆
する膜抵抗が10KΩ以上のイオン感応膜とからなり被
測定液中に含まれた測定対象物質に感応しない第2のイ
オン選択性電極よりなる参照電極とが、導電部材同志の
電気絶縁性を保って連結され、かつ前記第1のイオン選
択性電極及び第2のイオン選択性電極の貫通孔が連結さ
れて前記被測定試料の流通路を形成するように一体化さ
れているイオンセンサ体において、さらに、前記被測定
試料の流通路内で、前記被測定試料に接触するようにイ
ンピーダンスが200KΩ以下であるところの電極が具
備されていることを特徴とする流通型イオンセンサ体。
1. A conductive member arranged to form at least a part of an inner peripheral surface of a through hole basically formed of an insulating material, and a conductive member forming an inner peripheral surface of the previous through hole. A first ion-selective electrode, which is composed of an ion-sensitive film covering the surface and is sensitive to the substance to be measured contained in the liquid to be measured, and an inner peripheral surface of the through hole formed in the substrate made of an insulating material. It is comprised of a conductive member arranged so as to form at least a part, and an ion-sensitive film having a film resistance of 10 KΩ or more that covers the surface of the conductive member forming the inner peripheral surface of the through hole A reference electrode composed of a second ion-selective electrode that is insensitive to the measured substance to be measured, and is electrically connected to each other while maintaining electrical insulation, and the first ion-selective electrode and the second ion-selective electrode The sample to be measured, in which the through-holes of the conductive electrode are connected An ion sensor body integrated so as to form a flow passage, further comprising an electrode having an impedance of 200 KΩ or less so as to come into contact with the measurement sample in the flow passage of the measurement sample. A flow-through type ion sensor body characterized in that
JP60137939A 1985-06-26 1985-06-26 Distribution type ion sensor body Expired - Lifetime JPH0612350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60137939A JPH0612350B2 (en) 1985-06-26 1985-06-26 Distribution type ion sensor body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60137939A JPH0612350B2 (en) 1985-06-26 1985-06-26 Distribution type ion sensor body

Publications (2)

Publication Number Publication Date
JPS62852A JPS62852A (en) 1987-01-06
JPH0612350B2 true JPH0612350B2 (en) 1994-02-16

Family

ID=15210233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60137939A Expired - Lifetime JPH0612350B2 (en) 1985-06-26 1985-06-26 Distribution type ion sensor body

Country Status (1)

Country Link
JP (1) JPH0612350B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008973A1 (en) * 1987-05-15 1988-11-17 Beckman Instruments, Inc. Improved flow cell
DE10353938A1 (en) * 2003-11-18 2005-06-23 Fresenius Medical Care Deutschland Gmbh Sensor card for the determination of analytes in liquid or gas samples and method for producing such a sensor card

Also Published As

Publication number Publication date
JPS62852A (en) 1987-01-06

Similar Documents

Publication Publication Date Title
US4571292A (en) Apparatus for electrochemical measurements
US4454007A (en) Ion-selective layered sensor and methods of making and using the same
US4874500A (en) Microelectrochemical sensor and sensor array
US4900405A (en) Surface type microelectronic gas and vapor sensor
CA2072885C (en) Polarographic chemical sensor with external reference electrode
US4758325A (en) Ion selective electrode and flow type ion sensor using the same
US4256561A (en) Electrochemical measuring electrode
US5645710A (en) Glucose sensor and assay method
Forster et al. Nonlinear calibration of ion-selective electrode arrays for flow injection analysis
US4377446A (en) Carbon dioxide measurement
EP0385964A2 (en) Biosensor array
US5755939A (en) Polyion sensor with molecular weight differentiation
JP3700878B2 (en) Planar bicarbonate sensor and method for making and using the same
EP0868662B1 (en) Micromachined ion permeable composite membranes for amperometric ion detection
WO1990015323A1 (en) Surface type microelectronic gas and vapor sensor
CA2466994C (en) Potentiometric, ion-selective electrode
JPH0612350B2 (en) Distribution type ion sensor body
Lewenstam Design and pitfalls of ion selective electrodes
JPS61176846A (en) Ion sensor body
JPH0718835B2 (en) Ion concentration measurement method
Matysik et al. Convection independent detection with voltammetric single microdisk electrodes
US3824169A (en) Ion selective electrode comprising gold
EP0155068A1 (en) Ambient sensing devices
CA2313795A1 (en) Sensor devices and analytical method
JPS6355662B2 (en)