JPH06122519A - Hydrated amorphous ferric oxide particle powder and its production - Google Patents
Hydrated amorphous ferric oxide particle powder and its productionInfo
- Publication number
- JPH06122519A JPH06122519A JP15246191A JP15246191A JPH06122519A JP H06122519 A JPH06122519 A JP H06122519A JP 15246191 A JP15246191 A JP 15246191A JP 15246191 A JP15246191 A JP 15246191A JP H06122519 A JPH06122519 A JP H06122519A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- jarosite
- aqueous solution
- produced
- hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 138
- 239000000843 powder Substances 0.000 title claims abstract description 37
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 title claims abstract description 30
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title description 12
- 229910052935 jarosite Inorganic materials 0.000 claims abstract description 80
- 239000007864 aqueous solution Substances 0.000 claims abstract description 56
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 27
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 26
- 235000003891 ferrous sulphate Nutrition 0.000 claims abstract description 24
- 239000011790 ferrous sulphate Substances 0.000 claims abstract description 24
- 239000007789 gas Substances 0.000 claims abstract description 24
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims abstract description 24
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims abstract description 24
- 229910001854 alkali hydroxide Inorganic materials 0.000 claims abstract description 18
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims abstract description 18
- 238000001914 filtration Methods 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 9
- 239000007900 aqueous suspension Substances 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims description 29
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 claims description 24
- 229960004887 ferric hydroxide Drugs 0.000 claims description 21
- 239000000706 filtrate Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 21
- 239000011259 mixed solution Substances 0.000 claims description 20
- 238000007254 oxidation reaction Methods 0.000 claims description 19
- 238000009835 boiling Methods 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 15
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 12
- 229910052783 alkali metal Inorganic materials 0.000 claims description 12
- 150000001340 alkali metals Chemical class 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 6
- 239000000725 suspension Substances 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract description 24
- 239000003463 adsorbent Substances 0.000 abstract description 9
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 abstract description 7
- 239000002781 deodorant agent Substances 0.000 abstract description 7
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 abstract description 7
- 229910000037 hydrogen sulfide Inorganic materials 0.000 abstract description 6
- 229910052815 sulfur oxide Inorganic materials 0.000 abstract description 6
- 239000003054 catalyst Substances 0.000 abstract description 5
- 230000003301 hydrolyzing effect Effects 0.000 abstract description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 abstract description 2
- 235000011130 ammonium sulphate Nutrition 0.000 abstract description 2
- 229910052936 alkali metal sulfate Inorganic materials 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 12
- 239000002244 precipitate Substances 0.000 description 11
- 238000001179 sorption measurement Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000003513 alkali Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 229910052598 goethite Inorganic materials 0.000 description 4
- 229910052595 hematite Inorganic materials 0.000 description 4
- 239000011019 hematite Substances 0.000 description 4
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 4
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 238000002076 thermal analysis method Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 239000006249 magnetic particle Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 238000005273 aeration Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- -1 etc. Chemical compound 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000010406 interfacial reaction Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical group [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910006540 α-FeOOH Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/06—Ferric oxide [Fe2O3]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/02—Amorphous compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/88—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Iron (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、非晶質含水酸化第二鉄
粒子粉末及びその製造法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to amorphous ferric oxide hydroxide particles and a method for producing the same.
【0002】本発明に係る非晶質含水酸化第二鉄粒子粉
末の主な用途は、大気やガス中の硫黄酸化物、硫化水素
等や窒素酸化物等の吸着剤、脱臭剤及び触媒等である。The main uses of the amorphous ferric oxide hydroxide powder according to the present invention are adsorbents such as sulfur oxides, hydrogen sulfide and nitrogen oxides in the air and gases, deodorants and catalysts. is there.
【0003】また、塗料、印刷インク、化粧料、ゴム・
プラスチック用着色顔料、フェライト及び磁気記録用磁
性粒子粉末等の原料として用いることもできる。Further, paints, printing inks, cosmetics, rubbers,
It can also be used as a raw material for color pigments for plastics, ferrite, magnetic particle powder for magnetic recording, and the like.
【0004】[0004]
【従来の技術】大気やガス中の硫黄酸化物、硫化水素等
や、窒素酸化物等は大気汚染の元凶であるが、近年、産
業の発達に伴う燃焼炉の増大や自動車の普及により大量
の排ガスが排出されたおり、種々の対策が採られてはい
るが未だ不十分であるのが現状であり、ガス中の硫黄酸
化物、硫化水素等や窒素酸化物等の吸着能に優れた吸着
剤、脱臭剤の開発が強く要望されている。2. Description of the Related Art Sulfur oxides, hydrogen sulfide, etc. in the atmosphere and gases, nitrogen oxides, etc. are the main causes of air pollution. Exhaust gas has been discharged, and although various measures have been taken, it is still inadequate, and it has excellent adsorption capacity for sulfur oxides, hydrogen sulfide, nitrogen oxides, etc. in gas. There is a strong demand for the development of agents and deodorants.
【0005】この事実は、例えば、日本化学会発行「日
本化学会誌」(1985年)第2315頁の「都市にお
ける大気中の窒素酸化物濃度は、種々の対策が実施され
てもいまだ低下しないばかりでなく漸増の傾向さえ見
え、窒素酸化物除去の努力がますます重要である。」な
る記載の通りである。[0005] This fact is, for example, that the concentration of nitrogen oxides in the atmosphere in cities does not decrease even if various measures are taken, "Chemical Society of Japan" (1985), page 2315, published by The Chemical Society of Japan. Not only that, but also an increasing trend is seen, and efforts to remove nitrogen oxides are becoming more and more important. ”
【0006】従来、一般に吸着剤として活性炭、シリカ
ゲル、ゼオライト等がよく知られている。Conventionally, activated carbon, silica gel, zeolite and the like are generally well known as adsorbents.
【0007】[0007]
【発明が解決しようとする課題】硫黄酸化物、硫化水素
等や窒素酸化物等の吸着能に優れた吸着剤は現在最も要
求されているところであるが、上述した通りの公知の吸
着剤は、硫黄酸化物、硫化水素等や窒素酸化物等の吸着
剤としては未だ不十分であることが指摘されている。Although an adsorbent having excellent adsorption ability for sulfur oxide, hydrogen sulfide, etc., nitrogen oxide, etc. is currently most demanded, the known adsorbents as mentioned above are It has been pointed out that it is still insufficient as an adsorbent for sulfur oxides, hydrogen sulfide and nitrogen oxides.
【0008】この事実は、例えば、日本化学会発行「日
本化学会誌」(1978年)第665頁の「二酸化硫黄
を吸着除去するために、活性炭をはじめ各種の金属酸化
物などの無機化合物が研究されてきたが、吸着能力、選
択性、再生法などになお問題があり、新しい吸着剤の開
発が望まれている。」なる記載及び前出の日本化学会発
行「日本化学会誌」(1985年)第2315頁の「一
般的吸着剤である活性炭、シリカゲルおよびゼオライト
はNO2 には有効ではあるが、NOを吸着する能力は十
分ではない。このため、NOに対する吸着能の高い物質
の開発ん望まれている。」なる記載の通りである。This fact is explained, for example, by "Inorganic compounds such as activated carbon and various metal oxides in order to adsorb and remove sulfur dioxide," pp. 665, "Chemical Society of Japan", published by The Chemical Society of Japan (1978). However, there are still problems with the adsorption capacity, selectivity, regeneration method, etc., and the development of new adsorbents is desired. ”And the above-mentioned“ Chemical Society of Japan ”(1985). ) On page 2315, “general adsorbents such as activated carbon, silica gel and zeolite are effective for NO 2 , but their ability to adsorb NO is not sufficient. It is desired. ”
【0009】また、含水酸化鉄粒子粉末が、硫黄酸化物
等の硫黄化合物に対する吸着能が優れていることが知ら
れている。It is also known that iron oxide hydroxide particles are excellent in adsorption ability for sulfur compounds such as sulfur oxides.
【0010】この事実は、例えば、日本化学会発行「日
本化学会誌」(1980年)第681頁の「‥‥含水酸
化鉄がSO2 を化学吸着する能力が高いことを見い出し
て以来、SO2 化学吸着材料としての可能性を検討する
目的で、燃焼炉排ガス組成に近い混合気体からのSO2
吸着実験を行ない、SO2 吸着能は共存するH2 Oの影
響をほとんどうけないことを知り、‥‥」なる記載の通
りである。This fact is due to, for example, the fact that since the finding that the iron oxide hydroxide has a high ability to chemisorb SO 2 on page 681 of the Journal of the Chemical Society of Japan (1980) published by the Chemical Society of Japan, SO 2 For the purpose of studying its potential as a chemical adsorption material, SO 2 from a mixed gas close to the combustion furnace exhaust gas composition
As a result of conducting an adsorption experiment, it was found that the SO 2 adsorption capacity was hardly influenced by the coexisting H 2 O, and the like.
【0011】ところで、脱臭剤は、悪臭物質の硫黄化合
物や窒素化合物等を脱臭剤の表面に吸着させるものであ
るから、脱臭剤の比表面積が大きくなる程吸着能が増す
ので、脱臭剤は出来るだけ比表面積が大きいことが要求
される。By the way, the deodorant adsorbs malodorous substances such as sulfur compounds and nitrogen compounds on the surface of the deodorant. Therefore, the larger the specific surface area of the deodorant is, the higher the adsorption capacity is. Only a large specific surface area is required.
【0012】この事実は、例えば、前出の日本化学会発
行「日本化学会誌」(1980年)第681頁の「固体
表面の気体分子吸着の研究においては、表面積の大きい
粉体を用いることが多い。‥‥」なる記載の通りであ
る。[0012] This fact is because, for example, in the study of gas molecule adsorption on a solid surface, "Powder with a large surface area" is used in "Journal of the Chemical Society of Japan" (1980), p. There are many ... ".
【0013】比表面積を大きくするには一般に粒子の大
きさを微細化すればよい。また、触媒として使用する場
合においても、比表面積の大きいもの程触媒活性が高
い。In order to increase the specific surface area, it is generally sufficient to reduce the size of particles. Also, when used as a catalyst, the larger the specific surface area, the higher the catalytic activity.
【0014】しかしながら、前出、含水酸化鉄粒子粉末
の比表面積は、粒子が微細になる程粒子の凝集が起こる
ので実用上100m2 /g程度以下であるから吸着能は
まだ不充分である。また、カサ密度も0.5g/ml程
度以下とカサ高く、粉塵も発生し易いため、取り扱いな
ど作業性の悪いものである。However, the specific surface area of the iron oxide hydroxide particles as described above is not more than about 100 m 2 / g in practice because the particles agglomerate as the particles become finer, so the adsorption capacity is still insufficient. In addition, the bulk density is as high as about 0.5 g / ml or less, and dust is easily generated, so that workability such as handling is poor.
【0015】そこで、吸着剤、脱臭剤及び触媒として
は、活性度の高い非晶質体で比表面積が大きく、しか
も、カサ密度が大きく作業性に優れたものが強く要求さ
れており、本発明はこの要求に応えることを技術的課題
とするものである。Therefore, as the adsorbent, the deodorant and the catalyst, an amorphous substance having a high activity and a large specific surface area and a large bulk density and excellent workability are strongly demanded. Is a technical subject to meet this demand.
【0016】尚、非晶質酸化鉄粒子粉末を得る方法とし
て、特公昭59−27608号公報、特開昭64−83
522号公報及び「メタラジカル トランザクションズ
B(METALLURGICAL TRANSACT
IONS B)」第10B巻(1979年)の第439
〜446頁に記載の各技術手段が知られている。As a method for obtaining amorphous iron oxide particles, Japanese Patent Publication No. 59-27608 and Japanese Unexamined Patent Publication No. 64-83.
522 and "Metaradical Transactions B (METALLURGICAL TRANSACT
IONS B) "Vol. 10B (1979) No. 439
Each of the technical means described on page 446 is known.
【0016】特公昭59−27608号公報に開示され
たゲーサイトを加熱して結晶水を除去して得られる非晶
質の活性酸化鉄とする技術手段においては、ゲーサイト
を加熱脱水して得られたヘマタイトである。また、特開
昭64−83522号公報に開示された技術手段は、硝
酸鉄水溶液と有機溶媒とからなるW/O型エマルション
と炭酸水素ナトリウム水溶液とから界面反応法による水
和酸化鉄壁マイクロカプセルである。また、前掲「メタ
ラジカル トランザクションズ B」に記載されたジャ
ロサイトを加水分解させる技術手段においては、X線回
折の結果、ヘマタイトの結晶となっていることが記載さ
れている。In the technical means disclosed in Japanese Patent Publication No. 59-27608, in which amorphous iron oxide is obtained by heating the goethite to remove the water of crystallization, the goethite is obtained by heating and dehydrating the goethite. It is the hematite that was made. Further, the technical means disclosed in Japanese Patent Laid-Open No. 64-83522 is a hydrated iron oxide wall microcapsule obtained by an interfacial reaction method from a W / O type emulsion composed of an aqueous iron nitrate solution and an organic solvent and an aqueous sodium hydrogen carbonate solution. is there. Further, in the technical means for hydrolyzing jarosite described in the above-mentioned “Metaradical Transactions B”, it is described that hematite crystals are formed as a result of X-ray diffraction.
【0018】[0018]
【課題を解決する為の手段】前記技術的課題は、次の通
りの本発明によって達成できる。The above technical problems can be achieved by the present invention as follows.
【0019】即ち、本発明は、球状を呈した平均径が3
〜30μm、BET比表面積が150〜300m2 /g
でカサ密度が0.7〜1.1g/mlである非晶質含水
酸化第二鉄粒子粉末、That is, in the present invention, the spherical particles have an average diameter of 3
-30 μm, BET specific surface area 150-300 m 2 / g
And amorphous ferric oxide hydroxide powder having a bulk density of 0.7 to 1.1 g / ml,
【0020】硫酸第一鉄水溶液とアルカリ金属又はアン
モニウムイオンの硫酸塩水溶液と硫酸水溶液との混合溶
液に、酸素含有ガスを通気して45℃を越え沸点以下の
温度範囲で酸化反応を行なうことにより、ジャロサイト
粒子を生成させ、生成したジャロサイト粒子を洗浄した
後、水中に分散して水性懸濁液とし該懸濁液に水酸化ア
ルカリ水溶液又はアンモニア水溶液を加えて加熱攪拌す
ることにより、非晶質含水酸化第二鉄粒子を生成させ、
生成した非晶質含水酸化第二鉄粒子を濾別、洗浄、乾燥
して球状を呈した平均径が3〜30μm、BET比表面
積が150〜300m2 /gでカサ密度が0.7〜1.
1g/mlである非晶質含水酸化第二鉄粒子粉末を得る
ことを特徴とする非晶質含水酸化第二鉄粒子粉末の製造
法、An oxygen-containing gas is passed through a mixed solution of an aqueous solution of ferrous sulfate, an aqueous solution of a sulfate of an alkali metal or ammonium ion, and an aqueous solution of sulfuric acid to carry out an oxidation reaction in the temperature range above 45 ° C. and below the boiling point. , By generating jarosite particles, washing the generated jarosite particles, and then dispersing in water to form an aqueous suspension, and by adding an aqueous alkali hydroxide solution or an aqueous ammonia solution to the suspension and stirring with heating, Generate crystalline ferric hydroxide particles,
The produced amorphous ferric hydroxide particles were filtered, washed and dried to form a spherical shape having an average diameter of 3 to 30 μm, a BET specific surface area of 150 to 300 m 2 / g and a bulk density of 0.7 to 1. .
A method for producing amorphous ferric hydroxide oxide particles, characterized in that amorphous ferric hydroxide oxide powder particles of 1 g / ml are obtained;
【0021】硫酸第一鉄水溶液とアルカリ金属又はアン
モニウムイオンの硫酸塩水溶液と硫酸水溶液との混合溶
液に、酸素含有ガスを通気して45℃を越え沸点以下の
温度範囲で酸化反応を行なうことにより、ジャロサイト
粒子を生成させ、生成したジャロサイト粒子を濾別して
濾液を回収する第1の工程と、次いで、第1の工程で回
収した濾液に新たに硫酸第一鉄と水酸化アルカリ又はア
ンモニアとを加えた新たな混合溶液に、酸素含有ガスを
通気して45℃を越え沸点以下の温度範囲で酸化反応を
行なうことにより、ジャロサイト粒子を生成させる第2
の工程と、続いて、第2の工程で生成したジャロサイト
粒子を濾別して回収した濾液を用いて第2の工程の反応
を繰り返すことによって、ジャロサイト粒子を生成さ
せ、生成したジャロサイト粒子を濾別する第3の工程と
前記第1〜3の各工程で得られたジャロサイト粒子を洗
浄した後に水中に分散して水性懸濁液とし該懸濁液に水
酸化アルカリ水溶液又はアンモニア水溶液を加えて加熱
攪拌することにより、非晶質含水酸化第二鉄粒子を生成
させ、生成した非晶質含水酸化第二鉄粒子を濾別、洗
浄、乾燥して球状を呈した平均径が3〜30μm、BE
T比表面積が150〜300m2 /gでカサ密度が0.
7〜1.1g/mlである非晶質含水酸化第二鉄粒子粉
末を得る第4の工程とからなることを特徴とする非晶質
含水酸化第二鉄粒子粉末の製造法及びAn oxygen-containing gas is passed through a mixed solution of an aqueous solution of ferrous sulfate, an aqueous solution of a sulfate of an alkali metal or ammonium ion, and an aqueous solution of sulfuric acid to carry out an oxidation reaction in the temperature range above 45 ° C. and below the boiling point. A first step of producing jarosite particles, filtering the produced jarosite particles to recover a filtrate, and then adding a new ferrous sulfate and an alkali hydroxide or ammonia to the filtrate recovered in the first step. A jarosite particle is generated by aerating an oxygen-containing gas into a new mixed solution containing the above-mentioned compound to carry out an oxidation reaction in the temperature range above 45 ° C. and below the boiling point.
Of the jarosite particles produced in the second step by repeating the reaction of the second step by using the filtrate collected by filtering the jarosite particles produced in the second step to produce jarosite particles, The jarosite particles obtained in the third step of filtering and the first to third steps are washed and then dispersed in water to obtain an aqueous suspension, and the suspension is treated with an aqueous alkali hydroxide solution or an aqueous ammonia solution. In addition, by heating and stirring, amorphous ferric hydroxide-containing ferric oxide particles are produced, and the produced amorphous ferric hydroxide-containing ferric oxide particles are separated by filtration, washed, and dried to have a spherical average diameter of 3 to 10. 30 μm, BE
The T specific surface area is 150 to 300 m 2 / g and the bulk density is 0.
A fourth step of obtaining an amorphous ferric hydroxide oxide hydroxide particle powder of 7 to 1.1 g / ml, and a method for producing an amorphous ferric hydroxide oxide powder powder,
【0022】硫酸第一鉄水溶液とアルカリ金属又はアン
モニウムイオンの硫酸塩水溶液と硫酸水溶液との混合溶
液に、酸素含有ガスを通気して45℃を越え沸点以下の
温度範囲で酸化反応を行なうことにより、ジャロサイト
粒子を生成させ、生成したジャロサイト粒子を洗浄して
得られたスラリー又は、硫酸第一鉄水溶液とアルカリ金
属又はアンモニウムイオンの硫酸塩水溶液と硫酸水溶液
との混合溶液に、酸素含有ガスを通気して45℃を越え
沸点以下の温度範囲で酸化反応を行なうことにより、ジ
ャロサイト粒子を生成させ、生成したジャロサイト粒子
を濾別して濾液を回収する第1の工程と、次いで、第1
の工程で回収した濾液に新たに硫酸第一鉄と水酸化アル
カリ又はアンモニアとを加えた新たな混合溶液に、酸素
含有ガスを通気して45℃を越え沸点以下の温度範囲で
酸化反応を行なうことにより、ジャロサイト粒子を生成
させる第2の工程と、続いて、第2の工程で生成したジ
ャロサイト粒子を濾別して回収した濾液を用いて第2の
工程の反応を繰り返すことによって、ジャロサイト粒子
を生成させ、生成したジャロサイト粒子を濾別する第3
の工程とからなる前記第1〜3の各工程で得られたジャ
ロサイト粒子を洗浄して得られたスラリーを水中に分散
してジャロサイトとして100〜1000g/lの範囲
の水性懸濁液とした後、水酸化アルカリ水溶液又はアン
モニア水溶液を加えてジャロサイト中のSO4 に対して
アルカリ添加比を当量以上とし、30〜90℃の温度範
囲で5〜60分間の範囲で加熱攪拌することにより、非
晶質含水酸化第二鉄粒子を生成させ、生成した非晶質含
水酸化第二鉄粒子を濾別、洗浄、乾燥して球状を呈した
平均径が3〜30μm、BET比表面積が150〜30
0m2 /gでカサ密度が0.7〜1.1g/mlである
非晶質含水酸化第二鉄粒子粉末を得ることを特徴とする
非晶質含水酸化第二鉄粒子粉末の製造法である。An oxygen-containing gas is passed through a mixed solution of an aqueous solution of ferrous sulfate, an aqueous solution of a sulfate of an alkali metal or ammonium ion, and an aqueous solution of sulfuric acid to carry out an oxidation reaction in the temperature range above 45 ° C. and below the boiling point. , A jarosite particle is produced, and a slurry obtained by washing the produced jarosite particle, or a mixed solution of an aqueous solution of ferrous sulfate and a sulfate aqueous solution of an alkali metal or ammonium ion, and an aqueous solution of sulfuric acid, an oxygen-containing gas is added. A jarosite particles by performing an oxidation reaction in the temperature range of more than 45 ° C. and not more than the boiling point by aeration, and the generated jarosite particles are filtered off to recover the filtrate, and then the first step is performed.
An oxygen-containing gas is passed through a new mixed solution prepared by newly adding ferrous sulfate and alkali hydroxide or ammonia to the filtrate recovered in the step of, and the oxidation reaction is performed in the temperature range above 45 ° C. and below the boiling point. Thus, by repeating the reaction of the second step with the second step of producing the jarosite particles, and subsequently using the filtrate recovered by filtering the jarosite particles produced in the second step, Particles are formed and the formed jarosite particles are filtered off.
And the slurry obtained by washing the jarosite particles obtained in each of the first to third steps consisting of the above step is dispersed in water to prepare an aqueous suspension in the range of 100 to 1000 g / l as jarosite. After that, an alkali hydroxide aqueous solution or an ammonia aqueous solution is added to make the alkali addition ratio equal to or more than SO 4 in jarosite, and the mixture is heated and stirred at a temperature range of 30 to 90 ° C. for 5 to 60 minutes. Amorphous ferric hydroxide oxide particles are produced, and the produced amorphous ferric hydroxide particles are filtered, washed, and dried to have a spherical shape, an average diameter of 3 to 30 μm, and a BET specific surface area of 150. ~ 30
A method for producing amorphous ferric oxide hydroxide particles, characterized by obtaining amorphous ferric hydroxide oxide powder particles having a bulk density of 0.7 to 1.1 g / ml at 0 m 2 / g. is there.
【0023】次に、本発明実施にあたっての諸条件につ
いて述べる。Next, various conditions for carrying out the present invention will be described.
【0024】本発明における反応溶液の濃度はFeとし
て0.1〜2.0mol/lである。より好ましくは
0.2〜1.0mol/lである。0.1mol/l未
満の場合には、生産性が悪くなり経済的ではなく、2.
0mol/lを越える場合には、反応槽内等においてジ
ャロサイト粒子以外の芒硝等の結晶が析出したりするの
でハンドリングが困難となる。The concentration of the reaction solution in the present invention is 0.1 to 2.0 mol / l as Fe. More preferably, it is 0.2 to 1.0 mol / l. When it is less than 0.1 mol / l, productivity is deteriorated and it is not economical.
If it exceeds 0 mol / l, crystals such as sodium sulfate and the like other than jarosite particles may be precipitated in the reaction tank or the like, which makes handling difficult.
【0025】本発明において使用されるアルカリ金属又
はアンモニウムイオンの硫酸塩水溶液としては、硫酸ナ
トリウム、硫酸カリウム、硫酸アンモニウムなどの水溶
液を使用することができる。As the alkali metal or ammonium ion sulfate aqueous solution used in the present invention, an aqueous solution of sodium sulfate, potassium sulfate, ammonium sulfate or the like can be used.
【0026】本発明における上記硫酸塩水溶液は、硫酸
第一鉄水溶液のFeに対して5〜200mol%であ
る。5mol%未満の場合には、ジャロサイト粒子が生
成し難く、200mol%を越える場合には、反応速度
が遅くなり経済的ではない。The above-mentioned sulfate aqueous solution in the present invention is 5 to 200 mol% with respect to Fe in the ferrous sulfate aqueous solution. If it is less than 5 mol%, it is difficult to form jarosite particles, and if it exceeds 200 mol%, the reaction rate becomes slow, which is not economical.
【0027】本発明において使用される硫酸水溶液は、
0.02〜0.1mol/lである。0.02mol/
l未満の場合には、α−FeOOHが混入するため好ま
しくなく、0.1mol/lを越える場合には、反応速
度が遅くなり好ましくない。The sulfuric acid aqueous solution used in the present invention is
It is 0.02-0.1 mol / l. 0.02 mol /
When it is less than 1, it is not preferable because α-FeOOH is mixed, and when it exceeds 0.1 mol / l, the reaction rate becomes slow, which is not preferable.
【0028】本発明における第2の工程において使用さ
れる水酸化アルカリとしては、水酸化ナトリウム、水酸
化カリウムなどの結晶か、又はアンモニアガスを用いる
ことができる。水酸化アルカリ又はアンモニアは、第2
の工程において使用する硫酸第一鉄に対して等モルであ
る。As the alkali hydroxide used in the second step of the present invention, crystals of sodium hydroxide, potassium hydroxide or the like, or ammonia gas can be used. Alkali hydroxide or ammonia is the second
It is equimolar to the ferrous sulfate used in the step.
【0029】尚、本発明における第2の工程で使用する
水酸化アルカリ又はアンモニアは、第1の工程で用いた
アルカリ金属又はアンモニウムイオンの硫酸塩水溶液と
同一のものを使用する。同一のものを使用しない場合に
もジヤロサイト粒子は生成するが、アルカリによって組
成が異なるため、異なった組成のジャロサイト粒子が混
ざってしまう。The alkali hydroxide or ammonia used in the second step of the present invention is the same as the alkali metal or ammonium ion sulfate aqueous solution used in the first step. Even if the same particles are not used, jarocite particles are produced, but since the composition differs depending on the alkali, jarosite particles having different compositions are mixed.
【0030】本発明における反応温度は45℃を越え沸
点以下の温度範囲である。より好ましくは60〜80℃
である。45℃未満の場合には、反応速度が非常に遅く
なり、沸点を越える場合には、特別の設備を要するなど
好ましくない。The reaction temperature in the present invention is in the temperature range above 45 ° C. and below the boiling point. More preferably 60-80 ° C
Is. If it is lower than 45 ° C., the reaction rate becomes very slow, and if it exceeds the boiling point, special equipment is required, which is not preferable.
【0031】本発明における酸化手段は、酸素含有ガス
(例えば、空気)を溶液中に通気することにより行な
い、また、当該通気ガスや機械的操作により攪拌しなが
ら行なう。The oxidizing means in the present invention is carried out by aerating an oxygen-containing gas (for example, air) in the solution, and also by agitating the aerated gas or mechanical operation.
【0032】本発明は、実施例に示した回分式を繰り返
す方法に限らず、反応液を連続的に抜き出し、ジャロサ
イト粒子と濾液を濾別し、濾液を反応槽に戻すと共に硫
酸第一鉄とアルカリとを連続的に反応槽に供給する方法
で行なうこともできる。The present invention is not limited to the method of repeating the batch method shown in the examples, but the reaction solution is continuously withdrawn, the jarosite particles and the filtrate are separated by filtration, and the filtrate is returned to the reaction tank and ferrous sulfate is added. It can also be carried out by a method of continuously supplying and alkali to the reaction tank.
【0033】本発明においては、ジャロサイト粒子粉末
の使用目的により、ジャロサイト粒子の生成に際し、A
l、Si、P、Mn、Co、Ni、Cu、Zn、Mg、
Ca、Ti、Cr、Sn、Pb等の異種元素を添加する
こともできる。In the present invention, when the jarosite particles are produced, A
l, Si, P, Mn, Co, Ni, Cu, Zn, Mg,
Different elements such as Ca, Ti, Cr, Sn and Pb can also be added.
【0034】本発明における非晶質含水酸化第二鉄粒子
を生成する際の前記ジャロサイト粒子は、洗浄した後に
水酸化アルカリ水溶液又はアンモニア水溶液を加えて加
熱攪拌する。洗浄した後のジャロサイト粒子とするの
は、ジャロサイト粒子に鉄分等が付着残留している場合
には、前記アルカリを加えた時にコロイド状沈澱が生
じ、粒子の凝集や濾布の目づまりなどの支障を起こすか
らである。The jarosite particles used in the production of the amorphous ferric oxide hydroxide particles according to the present invention are washed and then added with an aqueous alkali hydroxide solution or an aqueous ammonia solution and heated and stirred. The washed jarosite particles mean that when iron etc. remain on the jarosite particles, colloidal precipitation occurs when the alkali is added, resulting in agglomeration of particles or clogging of filter cloth. This is because it causes problems.
【0035】本発明における非晶質含水酸化第二鉄粒子
を生成させる水性懸濁液の濃度は、ジャロサイトとして
100〜1000g/lである。100g/l未満の場
合には、経済的ではなく、1000g/lを越える場合
には、攪拌能力にもよるが攪拌が不充分となり反応が均
一に行なわれにくい。The concentration of the aqueous suspension for producing amorphous ferric oxide hydroxide particles in the present invention is 100 to 1000 g / l as jarosite. When it is less than 100 g / l, it is not economical, and when it exceeds 1000 g / l, the stirring is insufficient but the reaction is difficult to be uniformly carried out depending on the stirring ability.
【0036】また、前記非晶質含水酸化第二鉄粒子の生
成における水酸化アルカリ水溶液又はアンモニア水溶液
は、前記水酸化アルカリ又はアンモニアと同じものでよ
い。添加するアルカリ量はジャロサイト中のSO4 に対
し当量以上である。当量未満の場合には、未反応のジャ
ロサイトが残ることがあるので好ましくない。アルカリ
濃度は高くてもよいが、経済的には1.1当量以下が好
ましい。The aqueous alkali hydroxide solution or aqueous ammonia solution used to form the amorphous ferric hydroxide-containing particles may be the same as the alkaline hydroxide or ammonia. The amount of alkali added is equivalent to or more than SO 4 in jarosite. If the amount is less than the equivalent, unreacted jarosite may remain, which is not preferable. The alkali concentration may be high, but economically 1.1 equivalent or less is preferable.
【0037】尚、この場合は、ジャロサイト粒子を生成
した時と同一のアルカリ水溶液でもよいし、また、異な
るアルカリ水溶液であってもよい。In this case, the same alkaline aqueous solution as when the jarosite particles were produced may be used, or a different alkaline aqueous solution may be used.
【0038】加熱攪拌する温度は、30〜90℃であ
り、攪拌時間は5〜60分間である。30℃未満の場合
には、冷却などを行なう必要が生じるため好ましくな
く、90℃を越える場合には、結晶化が起こるので好ま
しくない。攪拌時間が5分間未満の場合には、充分に反
応せず未反応物が残り、60分間を越える場合には、結
晶化が起こるので好ましくない。The temperature for heating and stirring is 30 to 90 ° C., and the stirring time is 5 to 60 minutes. If the temperature is lower than 30 ° C, it is necessary to perform cooling or the like, which is not preferable. If the stirring time is less than 5 minutes, unreacted substances remain unreacted, and if it exceeds 60 minutes, crystallization occurs, which is not preferable.
【0039】本発明においては、前記生成条件により得
られた板状、六面体状、八面体状等の粒子が凝集した平
均径3〜30μmの球状を呈したジャロサイト粒子を前
記条件により加水分解することにより球状を呈した平均
径が3〜30μm、BET比表面積が150〜300m
2 /gでカサ密度が0.7〜1.1g/mlである非晶
質含水酸化第二鉄粒子粉末を得ることができる。In the present invention, the jarosite particles in the form of spheres having an average diameter of 3 to 30 μm, which are obtained by aggregating the plate-like, hexahedral, octahedral, etc. particles obtained under the above-mentioned production conditions, are hydrolyzed under the above-mentioned conditions. As a result, a spherical shape having an average diameter of 3 to 30 μm and a BET specific surface area of 150 to 300 m
Amorphous ferric oxide hydroxide particles having a bulk density of 0.7 to 1.1 g / ml at 2 / g can be obtained.
【0040】[0040]
【作 用】硫酸第一鉄水溶液とアルカリ金属又はアン
モニウムイオンの硫酸塩水溶液と硫酸水溶液との混合溶
液に、酸素含有ガスを通気して45℃を越え沸点以下の
温度範囲で酸化反応を行なうことにより、板状、六面体
状、八面体状等の粒子が凝集した平均径3〜30μmの
球状を呈したジャロサイト粒子のみを生成させることが
出来る。[Operation] Oxygen-containing gas is passed through a mixed solution of an aqueous solution of ferrous sulfate, an aqueous solution of a sulfate of an alkali metal or ammonium ion, and an aqueous solution of sulfuric acid to carry out an oxidation reaction in a temperature range above 45 ° C and below the boiling point. This makes it possible to generate only jarosite particles in the form of spheres having an average diameter of 3 to 30 μm in which tabular, hexahedral, octahedral, etc. particles are aggregated.
【0041】又は、第1の工程においては、硫酸第一鉄
水溶液とアルカリ金属又はアンモニウムイオンの硫酸塩
水溶液と硫酸水溶液との混合溶液に、酸素含有ガスを通
気して45℃を越え沸点以下の温度範囲で酸化反応を行
なうことにより、板状、六面体状、八面体状等の粒子が
凝集した平均径3〜30μmの球状を呈したジャロサイ
ト粒子のみを生成させることが出来る。Alternatively, in the first step, an oxygen-containing gas is passed through a mixed solution of an aqueous solution of ferrous sulfate, an aqueous solution of a sulfate of an alkali metal or ammonium ion, and an aqueous solution of sulfuric acid, and the temperature is higher than 45 ° C. and not higher than the boiling point. By carrying out the oxidation reaction in the temperature range, it is possible to generate only jarosite particles having a spherical shape with an average diameter of 3 to 30 μm, in which tabular, hexahedral, octahedral, etc. particles are aggregated.
【0042】次いで、第2の工程においては、第1の工
程で得られたジャロサイト粒子を濾別して回収した濾液
に、反応溶液の総容量が増加しないように、下記反応式
1に基づいて、第1の工程で生成したジャロサイト粒子
の収量に相当する量の硫酸第一鉄の結晶と水酸化アルカ
リの結晶又はアンモニアガスを補給して新たな混合溶液
とする。得られた新たな混合溶液を用いて、第1の工程
と同条件による酸化反応を行なうことにより第1の工程
と同等のジャロサイト粒子のみを生成させることが出来
る。Next, in the second step, based on the following reaction formula 1, to prevent the total volume of the reaction solution from increasing in the filtrate recovered by filtering the jarosite particles obtained in the first step, A new mixed solution is prepared by supplementing ferrous sulfate crystals and alkali hydroxide crystals or ammonia gas in an amount corresponding to the yield of jarosite particles produced in the first step. By using the obtained new mixed solution and performing an oxidation reaction under the same conditions as in the first step, only jarosite particles equivalent to those in the first step can be produced.
【0043】本発明者は、第2の工程の反応式1は、 3FeSO4 +3ROH→RFe3 (SO4 )2 (OH)6 +R2 SO4 (但し、R=K+ 、Na+ 、NH+ などである。) と考えている。The inventor has found that the reaction formula 1 of the second step is as follows: 3FeSO 4 + 3ROH → RFe 3 (SO 4 ) 2 (OH) 6 + R 2 SO 4 (where R = K + , Na + , NH + And so on.)
【0044】尚、本発明の第1の工程で回収した濾液及
び第2の工程で回収した濾液の組成は、ほぼ同等であり
以下の通りである。 Fe2+= 5〜 40g/l Fe3+= 5〜 15g/l R =0.5〜 30g/l SO4 2-= 70〜150g/l (但し、R=K+ 、Na+ 、NH+ などである。)The compositions of the filtrate recovered in the first step and the filtrate recovered in the second step of the present invention are almost the same and are as follows. Fe 2+ = 5 to 40 g / l Fe 3+ = 5 to 15 g / l R = 0.5 to 30 g / l SO 4 2- = 70 to 150 g / l (however, R = K + , Na + , NH + Etc.)
【0045】従って、第2の工程で回収した濾液を用い
て、第2の工程と同様の反応を繰り返すことによってジ
ャロサイト粒子のみを生成させることが出来るのであ
る。Therefore, by using the filtrate recovered in the second step and repeating the same reaction as in the second step, only jarosite particles can be produced.
【0046】本発明において、前記ジャロサイト粒子粉
末を用いて水酸化アルカリ又はアンモニアによって加水
分解を行なうことにより非晶質含水酸化第二鉄粒子を生
成させる。In the present invention, the powdery jarosite particles are used for hydrolysis with alkali hydroxide or ammonia to produce amorphous ferric oxide hydroxide particles.
【0047】非晶質であることは、X線回折の結果、図
4に示す通り、明確なピークが認められなかったことか
ら説明でき、また、含水物であることは、図5に示す通
り、熱分析(SSC5000型熱分析システム、セイコ
ー電子工業(株)製)により、150℃未満の温度で付
着水を除去した後に約200℃をピークとする強く化学
吸着した水が除去されていることから明らかである。The fact that the substance is amorphous can be explained by the fact that no clear peak was observed as shown in FIG. 4 as a result of X-ray diffraction, and the substance was hydrated as shown in FIG. By thermal analysis (SSC5000 thermal analysis system, Seiko Denshi Kogyo Co., Ltd.), strongly adsorbed water having a peak of about 200 ° C. is removed after removing adhered water at a temperature of less than 150 ° C. Is clear from.
【0048】前掲の「メタラジカル トランザクション
ズ B」記載のジャロサイト粒子を加水分解する技術手
段においては、ヘマタイトの結晶となっているが、前述
した水性懸濁液の濃度、アルカリ濃度、加熱温度及び攪
拌時間を制御していないため後出比較例らに示すように
ヘマタイトの結晶が生起したものと思われる。In the technical means for hydrolyzing jarosite particles described in the above-mentioned "Metaradical Transactions B", hematite crystals are formed, but the concentration of the aqueous suspension, the alkali concentration, the heating temperature and Since the stirring time was not controlled, it is considered that hematite crystals were generated as shown in Comparative Examples below.
【0049】また、前述したように、これまで得られて
いるジャロサイト粒子は出発原料が硫酸第二鉄であるた
め、本発明の硫酸第一鉄から得られたジャロサイト粒子
との生成履歴の違いにより加水分解の条件も相違してい
るのではないかと考えている。Further, as described above, since the starting material of the jarosite particles obtained thus far is ferric sulfate, the production history of the jarosite particles obtained from the ferrous sulfate of the present invention is different. I think that the hydrolysis conditions may differ due to the difference.
【0050】[0050]
【実施例】次に、実施例並びに比較例により、本発明を
説明する。The present invention will be described below with reference to Examples and Comparative Examples.
【0051】尚、以下の実施例並びに比較例における粒
子の平均粒子径は、電子顕微鏡写真から測定した数値の
平均値で示した。カサ密度は、100mlのメスシリン
ダーに粉末を100mlになるまで加え、その時の重量
を秤量して求めた。The average particle size of the particles in the following examples and comparative examples is shown by the average value of the numerical values measured from electron micrographs. The bulk density was obtained by adding powder to a 100 ml measuring cylinder until the volume reached 100 ml and weighing the weight at that time.
【0052】<ジャロサイト粒子粉末の製造> 実施例1〜7 比較例1〜2;<Production of Jarosite Particle Powder> Examples 1 to 7 Comparative Examples 1 and 2;
【0053】実施例1 1.8mol/lのFeSO4 水溶液2500mlと、
0.45mol/lのNa2 SO4 水溶液1000ml
(FeSO4 水溶液中のFeに対し10mol%に該当
する。)及び0.23mol/lのH2 SO4 1000
ml(全反応溶液中で0.05mol/lに該当す
る。)を反応容器に投入して混合溶液とし、空気150
00ml/minの割合で吹き込んで攪拌しながら、温
度70℃において24時間酸化反応を行なって、沈澱物
を生成させた。Example 1 2500 ml of a 1.8 mol / l FeSO 4 aqueous solution,
1000 ml of 0.45 mol / l Na 2 SO 4 aqueous solution
(Corresponds to 10 mol% with respect to Fe in the FeSO 4 aqueous solution) and 0.23 mol / l H 2 SO 4 1000
ml (corresponding to 0.05 mol / l in all reaction solutions) was charged into a reaction vessel to prepare a mixed solution, and air was added to
The mixture was blown at a rate of 00 ml / min with stirring to carry out an oxidation reaction at a temperature of 70 ° C. for 24 hours to form a precipitate.
【0054】生成した沈澱物を常法により、濾別、洗
浄、乾燥して209gの粒子粉末を得た。The formed precipitate was filtered, washed and dried by a conventional method to obtain 209 g of particle powder.
【0055】得られた粒子粉末は、X線回折の結果、ジ
ャロサイトであり、22μmの六面体状の凝集した球状
を呈した粒子であった。As a result of X-ray diffraction, the obtained particle powder was jarosite, and was a particle having a 22 μm hexahedral agglomerated spherical shape.
【0056】実施例2 第1の工程として、1.8mol/lのFeSO4 水溶
液2500mlと、0.45mol/lのNa2 SO4
水溶液1000ml(FeSO4 水溶液中のFeに対し
10mol%に該当する。)及び0.23mol/lの
H2 SO4 1000ml(全反応溶液中で0.05mo
l/lに該当する。)を反応容器に投入して混合溶液と
し、空気15000ml/minの割合で吹き込んで攪
拌しながら、温度70℃において24時間酸化反応を行
なって、第1の工程の沈澱物を生成させ、これを濾別し
て濾液を回収した。Example 2 In the first step, 2500 ml of a 1.8 mol / l FeSO 4 aqueous solution and 0.45 mol / l Na 2 SO 4 were used.
1000 ml of the aqueous solution (corresponding to 10 mol% with respect to Fe in the FeSO 4 aqueous solution) and 1000 ml of 0.23 mol / l H 2 SO 4 (0.05 mo in all reaction solutions)
It corresponds to 1 / l. ) Is charged into a reaction vessel to prepare a mixed solution, air is blown at a rate of 15000 ml / min, and the mixture is stirred to carry out an oxidation reaction at a temperature of 70 ° C. for 24 hours to form a precipitate of the first step. The filtrate was collected by filtration.
【0057】次に、第2の工程の反応として、第1の工
程の沈澱物を濾別して回収した濾液4300mlに、F
eSO4 ・7H2 O結晶359gとNaOH結晶52g
(FeSO4 ・7H2 Oに対して等モルに該当する。)
を溶解して混合溶液とし、反応容器に投入した。混合溶
液に空気15000ml/minの割合で吹き込んで攪
拌しながら、温度70℃において24時間酸化反応を行
なって、第2の工程の沈澱物を生成させた。Next, in the reaction of the second step, F was added to 4300 ml of the filtrate recovered by filtering off the precipitate of the first step.
eSO 4 · 7H 2 O crystals 359g of NaOH crystals 52g
(Corresponding to a equimolar to FeSO 4 · 7H 2 O.)
Was dissolved into a mixed solution and charged into a reaction vessel. Air was blown into the mixed solution at a rate of 15000 ml / min and the mixture was stirred, and an oxidation reaction was carried out at a temperature of 70 ° C. for 24 hours to form a precipitate in the second step.
【0058】続いて、第2の工程の沈澱物を濾別、回収
した濾液4300mlを用いて、第2の工程の反応と同
一条件で酸化反応を行なって、第3の工程の沈澱物を生
成させ、これを濾別した。Subsequently, the precipitate of the second step was filtered and recovered, and 4300 ml of the recovered filtrate was used to carry out an oxidation reaction under the same conditions as the reaction of the second step to produce the precipitate of the third step. And filtered off.
【0059】得られた、第1〜3の工程のそれぞれの沈
澱物を常法により、洗浄、乾燥して209g、205
g、212gの粒子粉末を得た。The precipitates obtained in the first to third steps were washed and dried by a conventional method to give 209 g, 205
g, 212 g of particle powder was obtained.
【0060】得られた、それぞれの粒子粉末は、X線回
折の結果、ジャロサイトであり、図1〜図3に示す走査
型電子顕微鏡写真(×2000)の通り、それぞれ22
μm、22μm、21μm六面体状の凝集した球状を呈
した粒子であった。As a result of X-ray diffraction, each of the obtained particle powders was jarosite. As shown in the scanning electron micrographs (× 2000) shown in FIGS.
The particles were in the form of agglomerated spheres having a size of μm, 22 μm, and 21 μm.
【0061】実施例3〜7、比較例1〜2 実施例2の第1の工程における硫酸第一鉄水溶液の濃度
及び使用量、アルカリ金属の硫酸塩水溶液の種類、濃
度、使用量及びFeに対する割合、硫酸水溶液の濃度、
使用量及び全反応溶液に対する濃度並びに反応温度、第
2、第3の工程においては、それぞれ直前の工程におけ
るジャロサイト粒子粉末の収量に相当する硫酸第一鉄7
水塩の使用量及び同一の水酸化アルカリとその使用量並
びに同一の反応温度を種々変化させた以外は、実施例2
と同様にしてジャロサイト粒子粉末を得た。Examples 3 to 7 and Comparative Examples 1 to 2 Concentration and amount of ferrous sulfate aqueous solution in the first step of Example 2, type, concentration, amount of alkaline metal sulfate aqueous solution and amount of Fe Ratio, concentration of sulfuric acid aqueous solution,
In the second and third steps, the amount used, the concentration with respect to the total reaction solution, and the reaction temperature, ferrous sulfate 7 corresponding to the yield of the jarosite particle powder in the immediately preceding step, respectively.
Example 2 except that the amount of hydrate used, the same amount of alkali hydroxide used, and the same reaction temperature were variously changed.
A jarosite particle powder was obtained in the same manner as in.
【0062】尚、比較例1においてはゲータイト粒子が
混入し、比較例2においてはジャロサイト粒子が生成し
なかった。In Comparative Example 1, goethite particles were mixed, and in Comparative Example 2, jarosite particles were not produced.
【0063】この時の主要製造条件及び諸特性を表1及
び表2に示す。The main manufacturing conditions and various characteristics at this time are shown in Tables 1 and 2.
【0064】[0064]
【表1】 [Table 1]
【0065】[0065]
【表2】 [Table 2]
【0066】<非晶質含水酸化第二鉄粒子粉末の製造> 実施例8〜24 比較例3〜6;<Production of Amorphous Ferric Hydroxide Hydroxide Particle Powder> Examples 8 to 24 Comparative Examples 3 to 6;
【0067】実施例8 実施例2で得られたジャロサイト粒子の沈澱物8600
ml(ジャロサイトとして400gに該当する。)を洗
浄した後、1000mlの水に分散して懸濁液とした。Example 8 Precipitate of jarosite particles obtained in Example 2 8600
After washing ml (corresponding to 400 g as jarosite), it was dispersed in 1000 ml of water to obtain a suspension.
【0068】該懸濁液に18mol/lのNaOH水溶
液193ml(ジャロサイト中のSO4 に対して1.0
5当量に該当する。)を添加し、温度60℃において3
0分間加熱攪拌して茶色の沈澱物を生成させた。193 ml of an 18 mol / l NaOH aqueous solution (1.0 ml based on SO 4 in jarosite) was added to the suspension.
It corresponds to 5 equivalents. ) Is added and the temperature is 60 ° C.
The mixture was heated and stirred for 0 minutes to form a brown precipitate.
【0069】生成した沈澱物を常法により、濾別、洗
浄、乾燥して190gの茶色粒子粉末を得た。The formed precipitate was filtered, washed and dried by a conventional method to obtain 190 g of brown particle powder.
【0070】得られた粒子粉末は、X線回折の結果、図
4に示す通り、明確なピークを示さず、図5に示す通
り、熱分析の結果、強く化学吸着した水が存在し、図6
に示す電子顕微鏡写真(×100)の通り、球状を呈し
ており、平均径18μm、BET比表面積250m2 /
g,カサ密度0.78g/mlの非晶質含水酸化第二鉄
粒子粉末であった。As a result of X-ray diffraction, the obtained particle powder did not show a clear peak as shown in FIG. 4, and as shown in FIG. 5, thermal analysis showed that strongly chemisorbed water was present. 6
As shown in the electron micrograph (× 100), the particles are spherical and have an average diameter of 18 μm and a BET specific surface area of 250 m 2 /
The powder was amorphous ferric oxide hydroxide particles having a bulk density of 0.78 g / ml.
【0071】実施例9〜24、比較例3〜6 ジャロサイト粒子粉末の種類、水性分散液の濃度、アル
カリ水溶液の種類及び使用量、加熱攪拌の温度及び時間
を種々変化させた以外は実施例8と同様にして非晶質含
水酸化第二鉄粒子粉末を得た。Examples 9 to 24, Comparative Examples 3 to 6 Examples except that the type of jarosite particle powder, the concentration of the aqueous dispersion, the type and amount of the alkaline aqueous solution, and the temperature and time of heating and stirring were changed variously. Amorphous ferric oxide hydroxide particles were obtained in the same manner as in 8.
【0072】尚、比較例3〜6で得られた粒子粉末をX
線回折で観察した結果、比較例3及び4は明確なピーク
が認められ、比較例5及び6は反応が不十分でジャロサ
イトが混在していた。The particle powders obtained in Comparative Examples 3 to 6 were X.
As a result of observation by line diffraction, clear peaks were observed in Comparative Examples 3 and 4, and in Comparative Examples 5 and 6, the reaction was insufficient and jarosite was mixed.
【0073】この時の主要製造条件及び諸特性を表3に
示す。Table 3 shows the main manufacturing conditions and various characteristics at this time.
【0074】[0074]
【表3】 [Table 3]
【0075】[0075]
【発明の効果】本発明によれば、安価な硫酸第一鉄を用
いて生成されたジャロサイト粒子を加水分解させて得ら
れた非晶質含水酸化第二鉄粒子粉末あり、球状を呈した
平均径3〜30μmの大きな粒子でBET比表面積が1
50〜300m2 /gと非常に大きく、しかも、カサ密
度が0.7〜1.1g/mlと高い為、発塵性が少なく
作業性に優れているので、活性度の高い吸着剤、脱臭剤
及び触媒として好適である。INDUSTRIAL APPLICABILITY According to the present invention, there is an amorphous ferric oxide hydroxide particle powder obtained by hydrolyzing jarosite particles produced by using inexpensive ferrous sulfate, which has a spherical shape. Large particles with an average diameter of 3 to 30 μm and a BET specific surface area of 1
Very large with 50-300 m 2 / g, and high bulk density of 0.7-1.1 g / ml, which has low dust generation and excellent workability. It is suitable as an agent and a catalyst.
【0076】尚、塗料、印刷インク、化粧料、ゴム・プ
ラスック用の着色顔料、フェライト及び磁気記録用磁性
粒子粉末の原料として用いることもできる。It can be also used as a raw material for paints, printing inks, cosmetics, color pigments for rubber and plastics, ferrite and magnetic particle powder for magnetic recording.
【0077】[0077]
【図1】実施例2の第1の工程で得られたジャロサイト
粒子粉末の粒子構造を示す走査型電子顕微鏡写真(×2
000)である。FIG. 1 is a scanning electron micrograph (× 2) showing a particle structure of a jarosite particle powder obtained in the first step of Example 2.
000).
【図2】実施例2の第2の工程で得られたジャロサイト
粒子粉末の粒子構造を示す走査型電子顕微鏡写真(×2
000)である。FIG. 2 is a scanning electron micrograph (× 2) showing the particle structure of the jarosite particle powder obtained in the second step of Example 2.
000).
【図3】実施例2の第3の工程で得られたジャロサイト
粒子粉末の粒子構造を示す走査型電子顕微鏡写真(×2
000)である。FIG. 3 is a scanning electron micrograph (× 2) showing the particle structure of the jarosite particle powder obtained in the third step of Example 2.
000).
【図4】実施例8で得られた非晶質含水酸化第二鉄粒子
粉末のX線回折図である。FIG. 4 is an X-ray diffraction diagram of the amorphous ferric oxide hydroxide particles powder obtained in Example 8.
【図5】実施例8で得られた非晶質含水酸化第二鉄粒子
粉末の熱分析図である。FIG. 5 is a thermal analysis chart of the amorphous ferric oxide hydroxide particles obtained in Example 8.
【図6】実施例8で得られた非晶質含水酸化第二鉄粒子
粉末の粒子構造を示す走査型電子顕微鏡写真(×10
0)である。FIG. 6 is a scanning electron micrograph (× 10) showing the particle structure of the amorphous ferric hydroxide oxide powder obtained in Example 8.
0).
Claims (4)
ET比表面積が150〜300m2 /gでカサ密度が
0.7〜1.1g/mlである非晶質含水酸化第二鉄粒
子粉末。1. A spherical average particle diameter of 3 to 30 μm, B
Amorphous ferric oxide hydroxide powder having an ET specific surface area of 150 to 300 m 2 / g and a bulk density of 0.7 to 1.1 g / ml.
ンモニウムイオンの硫酸塩水溶液と硫酸水溶液との混合
溶液に、酸素含有ガスを通気して45℃を越え沸点以下
の温度範囲で酸化反応を行なうことにより、ジャロサイ
ト粒子を生成させ、生成したジャロサイト粒子を洗浄し
た後、水中に分散して水性懸濁液とし該懸濁液に水酸化
アルカリ水溶液又はアンモニア水溶液を加えて加熱攪拌
することにより、非晶質含水酸化第二鉄粒子を生成さ
せ、生成した非晶質含水酸化第二鉄粒子を濾別、洗浄、
乾燥して球状を呈した平均径が3〜30μm、BET比
表面積が150〜300m2 /gでカサ密度が0.7〜
1.1g/mlである非晶質含水酸化第二鉄粒子粉末を
得ることを特徴とする非晶質含水酸化第二鉄粒子粉末の
製造法。2. An oxygen-containing gas is passed through a mixed solution of an aqueous solution of ferrous sulfate, an aqueous solution of a sulfate of an alkali metal or ammonium ion, and an aqueous solution of sulfuric acid to carry out an oxidation reaction in the temperature range above 45 ° C. and below the boiling point. Thereby, the jarosite particles are produced, and after the produced jarosite particles are washed, they are dispersed in water to form an aqueous suspension, and an aqueous solution of an alkali hydroxide or an aqueous ammonia solution is added to the suspension and the mixture is heated and stirred. , Producing amorphous ferric oxide hydroxide particles, filtering and washing the produced amorphous ferric hydroxide particles,
When dried, it has a spherical shape with an average diameter of 3 to 30 μm, a BET specific surface area of 150 to 300 m 2 / g, and a bulk density of 0.7 to
A process for producing amorphous ferric oxide hydroxide particles, characterized in that the amorphous ferric hydroxide oxide powder particles of 1.1 g / ml are obtained.
ンモニウムイオンの硫酸塩水溶液と硫酸水溶液との混合
溶液に、酸素含有ガスを通気して45℃を越え沸点以下
の温度範囲で酸化反応を行なうことにより、ジャロサイ
ト粒子を生成させ、生成したジャロサイト粒子を濾別し
て濾液を回収する第1の工程と、次いで、第1の工程で
回収した濾液に新たに硫酸第一鉄と水酸化アルカリ又は
アンモニアとを加えた新たな混合溶液に、酸素含有ガス
を通気して45℃を越え沸点以下の温度範囲で酸化反応
を行なうことにより、ジャロサイト粒子を生成させる第
2の工程と、続いて、第2の工程で生成したジャロサイ
ト粒子を濾別して回収した濾液を用いて第2の工程の反
応を繰り返すことによって、ジャロサイト粒子を生成さ
せ、生成したジャロサイト粒子を濾別する第3の工程と
前記第1〜3の各工程で得られたジャロサイト粒子を洗
浄した後に水中に分散して水性懸濁液とし該懸濁液に水
酸化アルカリ水溶液又はアンモニア水溶液を加えて加熱
攪拌することにより、非晶質含水酸化第二鉄粒子を生成
させ、生成した非晶質含水酸化第二鉄粒子を濾別、洗
浄、乾燥して球状を呈した平均径が3〜30μm、BE
T比表面積が150〜300m2 /gでカサ密度が0.
7〜1.1g/mlである非晶質含水酸化第二鉄粒子粉
末を得る第4の工程とからなることを特徴とする非晶質
含水酸化第二鉄粒子粉末の製造法。3. An oxygen-containing gas is passed through a mixed solution of an aqueous ferrous sulfate solution, an aqueous solution of a sulfate of an alkali metal or ammonium ion, and an aqueous solution of sulfuric acid to carry out an oxidation reaction in the temperature range above 45 ° C. and below the boiling point. Thereby, the first step of producing jarosite particles, filtering the produced jarosite particles to recover the filtrate, and then adding a new ferrous sulfate and an alkali hydroxide to the filtrate recovered in the first step or A second step of producing jarosite particles by aerating an oxygen-containing gas into a new mixed solution containing ammonia and performing an oxidation reaction in the temperature range of higher than 45 ° C. and lower than the boiling point, and subsequently, The jarosite particles produced in the second step are separated by filtration, and the reaction of the second step is repeated using the filtrate recovered to produce jarosite particles. The jarosite particles obtained in the third step of filtering off the site particles and each of the first to third steps are washed and then dispersed in water to obtain an aqueous suspension. Amorphous ferric oxide hydroxide particles are produced by adding an aqueous ammonia solution and stirring with heating, and the produced amorphous ferric hydroxide particles are filtered, washed and dried to give a spherical average diameter. Is 3 to 30 μm, BE
The T specific surface area is 150 to 300 m 2 / g and the bulk density is 0.
A fourth step of obtaining an amorphous ferric hydroxide-containing hydroxide particle powder of 7 to 1.1 g / ml.
ンモニウムイオンの硫酸塩水溶液と硫酸水溶液との混合
溶液に、酸素含有ガスを通気して45℃を越え沸点以下
の温度範囲で酸化反応を行なうことにより、ジャロサイ
ト粒子を生成させ、生成したジャロサイト粒子を洗浄し
て得られたスラリー又は、硫酸第一鉄水溶液とアルカリ
金属又はアンモニウムイオンの硫酸塩水溶液と硫酸水溶
液との混合溶液に、酸素含有ガスを通気して45℃を越
え沸点以下の温度範囲で酸化反応を行なうことにより、
ジャロサイト粒子を生成させ、生成したジャロサイト粒
子を濾別して濾液を回収する第1の工程と、次いで、第
1の工程で回収した濾液に新たに硫酸第一鉄と水酸化ア
ルカリ又はアンモニアとを加えた新たな混合溶液に、酸
素含有ガスを通気して45℃を越え沸点以下の温度範囲
で酸化反応を行なうことにより、ジャロサイト粒子を生
成させる第2の工程と、続いて、第2の工程で生成した
ジャロサイト粒子を濾別して回収した濾液を用いて第2
の工程の反応を繰り返すことによって、ジャロサイト粒
子を生成させ、生成したジャロサイト粒子を濾別する第
3の工程とからなる前記第1〜3の各工程で得られたジ
ャロサイト粒子を洗浄して得られたスラリーを水中に分
散してジャロサイトとして100〜1000g/lの範
囲の水性懸濁液とした後、水酸化アルカリ水溶液又はア
ンモニア水溶液を加えてジャロサイト中のSO4 に対し
てアルカリ添加比を当量以上とし、30〜90℃の温度
範囲で5〜60分間の範囲で加熱攪拌することにより、
非晶質含水酸化第二鉄粒子を生成させ、生成した非晶質
含水酸化第二鉄粒子を濾別、洗浄、乾燥して球状を呈し
た平均径が3〜30μm、BET比表面積が150〜3
00m2 /gでカサ密度が0.7〜1.1g/mlであ
る非晶質含水酸化第二鉄粒子粉末を得ることを特徴とす
る非晶質含水酸化第二鉄粒子粉末の製造法。4. An oxygen-containing gas is passed through a mixed solution of an aqueous solution of ferrous sulfate, an aqueous solution of a sulfate of an alkali metal or ammonium ion, and an aqueous solution of sulfuric acid to carry out an oxidation reaction in the temperature range above 45 ° C. and below the boiling point. Thus, to produce jarosite particles, a slurry obtained by washing the produced jarosite particles, or a mixed solution of a ferrous sulfate aqueous solution and a sulfate aqueous solution of an alkali metal or ammonium ion, and a sulfuric acid aqueous solution, oxygen. By aerating the contained gas and carrying out the oxidation reaction in the temperature range above 45 ° C. and below the boiling point,
The first step of producing jarosite particles, filtering the produced jarosite particles to recover the filtrate, and then adding the ferrous sulfate and alkali hydroxide or ammonia to the filtrate recovered in the first step. A second step of generating jarosite particles by passing an oxygen-containing gas through the newly added mixed solution and performing an oxidation reaction in the temperature range higher than 45 ° C. and lower than the boiling point, and subsequently, a second step Using the filtrate recovered by filtering the jarosite particles produced in the process
By repeating the reaction of the step of, the jarosite particles are produced, and the jarosite particles obtained in each of the first to third steps consisting of the third step of filtering the produced jarosite particles are washed. The obtained slurry is dispersed in water to form jarosite as an aqueous suspension in the range of 100 to 1000 g / l, and then an aqueous alkali hydroxide solution or an aqueous ammonia solution is added to the jarosite to alkalinize SO 4 in jarosite. By making the addition ratio equivalent or more and heating and stirring in the temperature range of 30 to 90 ° C. for 5 to 60 minutes,
Amorphous ferric hydroxide oxide particles are produced, and the produced amorphous ferric hydroxide particles are filtered, washed, and dried to form a spherical average diameter of 3 to 30 μm, and BET specific surface area of 150 to Three
A process for producing amorphous ferric oxide hydroxide particles, which comprises obtaining amorphous ferric hydroxide oxide powder particles having a bulk density of 0.7 to 1.1 g / ml at 00 m 2 / g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15246191A JPH06122519A (en) | 1991-05-27 | 1991-05-27 | Hydrated amorphous ferric oxide particle powder and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15246191A JPH06122519A (en) | 1991-05-27 | 1991-05-27 | Hydrated amorphous ferric oxide particle powder and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06122519A true JPH06122519A (en) | 1994-05-06 |
Family
ID=15541024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15246191A Pending JPH06122519A (en) | 1991-05-27 | 1991-05-27 | Hydrated amorphous ferric oxide particle powder and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06122519A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002078871A1 (en) * | 2001-03-28 | 2002-10-10 | Lion Corporation | Method of purifying contaminated soil |
JP2004509752A (en) * | 2000-09-26 | 2004-04-02 | バイエル アクチェンゲゼルシャフト | Contact and adsorbent particulates |
JP2006192332A (en) * | 2005-01-11 | 2006-07-27 | Toyobo Co Ltd | Organic compound-adsorbing/removing agent and its manufacturing method |
WO2006109847A1 (en) * | 2005-04-08 | 2006-10-19 | Kyowa Chemical Industry Co., Ltd. | Alunite compound particle, process for producing the same and use thereof |
WO2006134828A1 (en) * | 2005-06-09 | 2006-12-21 | Tomotaka Yanagita | Anion adsorbent, agent for purifying water or soil, and method for producing those |
JP2007070213A (en) * | 2005-09-06 | 2007-03-22 | Santoku Corp | Magnetite powder and method for producing the same |
JP2007290877A (en) * | 2006-04-21 | 2007-11-08 | Yusaku Ono | Gypsum-based building material |
WO2008001442A1 (en) * | 2006-06-29 | 2008-01-03 | Createrra Inc. | Anion adsorbent, water or soil cleanup agent and process for producing the same |
JP2008144176A (en) * | 2001-12-21 | 2008-06-26 | Rhodia Electronics & Catalysis | Engine fuel additive containing organic colloidal dispersion of iron particle used for internal combustion engine, method for preparing it and engine fuel containing it used for internal combustion engine |
KR100906421B1 (en) * | 2007-09-06 | 2009-07-09 | 경북대학교 산학협력단 | A Method for Preparing Iron Oxide Particles for Improved Performance of Membrane Separation, and Advanced Water Treatment using the Iron Oxide Particles obtained |
US7629480B2 (en) | 2004-03-05 | 2009-12-08 | Kyowa Chemical Industry Co., Ltd. | Organic acid anion containing aluminum salt hydroxide particles, production method thereof, and use thereof |
CN106185988A (en) * | 2016-07-13 | 2016-12-07 | 北京三聚环保新材料股份有限公司 | A kind of technique preparing high-ratio surface FeOOH co-production ammonium sulfate |
PL423474A1 (en) * | 2017-11-16 | 2019-05-20 | Zachodniopomorski Univ Technologiczny W Szczecinie | Hydrogen sulfide sorbent and method for producing the hydrogen sulfide sorbent |
CN111111615A (en) * | 2019-12-27 | 2020-05-08 | 扬州大学 | Preparation method of coralline-like charcoal/hydrated iron oxide composite arsenic removal agent |
CN114824202A (en) * | 2022-04-12 | 2022-07-29 | 南京师范大学 | FeS with multi-core shell structure 2 Preparation method and application of @ C nanocapsule material |
-
1991
- 1991-05-27 JP JP15246191A patent/JPH06122519A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004509752A (en) * | 2000-09-26 | 2004-04-02 | バイエル アクチェンゲゼルシャフト | Contact and adsorbent particulates |
WO2002078871A1 (en) * | 2001-03-28 | 2002-10-10 | Lion Corporation | Method of purifying contaminated soil |
JP2008144176A (en) * | 2001-12-21 | 2008-06-26 | Rhodia Electronics & Catalysis | Engine fuel additive containing organic colloidal dispersion of iron particle used for internal combustion engine, method for preparing it and engine fuel containing it used for internal combustion engine |
US7459484B2 (en) | 2001-12-21 | 2008-12-02 | Rhodia Electronics And Catalysis | Organic colloidal dispersion of iron particles, method for preparing same and use thereof as fuel additive for internal combustion engines |
US7629480B2 (en) | 2004-03-05 | 2009-12-08 | Kyowa Chemical Industry Co., Ltd. | Organic acid anion containing aluminum salt hydroxide particles, production method thereof, and use thereof |
JP2006192332A (en) * | 2005-01-11 | 2006-07-27 | Toyobo Co Ltd | Organic compound-adsorbing/removing agent and its manufacturing method |
WO2006109847A1 (en) * | 2005-04-08 | 2006-10-19 | Kyowa Chemical Industry Co., Ltd. | Alunite compound particle, process for producing the same and use thereof |
JP5046389B2 (en) * | 2005-04-08 | 2012-10-10 | 協和化学工業株式会社 | Alnite type compound particles, production method thereof and use thereof |
US7678360B2 (en) | 2005-04-08 | 2010-03-16 | Kyowa Chemical Industry Co., Ltd. | Alunite type compound particles, manufacturing process thereof and use thereof |
WO2006134828A1 (en) * | 2005-06-09 | 2006-12-21 | Tomotaka Yanagita | Anion adsorbent, agent for purifying water or soil, and method for producing those |
JP2007070213A (en) * | 2005-09-06 | 2007-03-22 | Santoku Corp | Magnetite powder and method for producing the same |
JP2007290877A (en) * | 2006-04-21 | 2007-11-08 | Yusaku Ono | Gypsum-based building material |
WO2008001442A1 (en) * | 2006-06-29 | 2008-01-03 | Createrra Inc. | Anion adsorbent, water or soil cleanup agent and process for producing the same |
US8231790B2 (en) | 2006-06-29 | 2012-07-31 | Createrra Inc. | Process for producing an anion adsorbent and anion adsorbent produced by said process |
KR100906421B1 (en) * | 2007-09-06 | 2009-07-09 | 경북대학교 산학협력단 | A Method for Preparing Iron Oxide Particles for Improved Performance of Membrane Separation, and Advanced Water Treatment using the Iron Oxide Particles obtained |
CN106185988A (en) * | 2016-07-13 | 2016-12-07 | 北京三聚环保新材料股份有限公司 | A kind of technique preparing high-ratio surface FeOOH co-production ammonium sulfate |
PL423474A1 (en) * | 2017-11-16 | 2019-05-20 | Zachodniopomorski Univ Technologiczny W Szczecinie | Hydrogen sulfide sorbent and method for producing the hydrogen sulfide sorbent |
CN111111615A (en) * | 2019-12-27 | 2020-05-08 | 扬州大学 | Preparation method of coralline-like charcoal/hydrated iron oxide composite arsenic removal agent |
CN114824202A (en) * | 2022-04-12 | 2022-07-29 | 南京师范大学 | FeS with multi-core shell structure 2 Preparation method and application of @ C nanocapsule material |
CN114824202B (en) * | 2022-04-12 | 2023-08-22 | 南京师范大学 | FeS with multi-core shell structure 2 Preparation method and application of @ C nanocapsule material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5102519B2 (en) | Arsenic-containing solid and its production method | |
JPH06122519A (en) | Hydrated amorphous ferric oxide particle powder and its production | |
US3970738A (en) | Process for producing iron oxide products from waste liquids containing ferrous salts | |
JP4018138B2 (en) | Long spherically agglomerated basic cobalt carbonate (II) and long spherically agglomerated cobalt hydroxide (II), their production and use | |
CN107522188B (en) | The preparation method of nanometer spherical iron phosphate and nano ferric phosphate, LiFePO4 and the lithium battery prepared by this method | |
JP2003300732A (en) | Method for producing high purity iron oxide and its use | |
CN110711581B (en) | Copper-based composite metal oxide mesomorphic microsphere and preparation method and application thereof | |
EP0174078B1 (en) | Iron catalyst for ammonia synthesis | |
US8603215B2 (en) | Composition of amorphous iron oxide hydroxide, desulfurizer comprising the same, and methods for preparing and regenerating the desulfurizer | |
CN112607785A (en) | MnFe2O4/C nano composite microsphere and preparation method thereof | |
Lin et al. | A study of the oxidation of ferrous hydroxide in slightly basic solution to produce γ-FeOOH | |
CN112717931B (en) | Iron-based composite desulfurizer, preparation method thereof and application thereof in removing hydrogen sulfide in gas | |
CN113967477B (en) | Monoatomic transition metal catalyst and preparation method and application thereof | |
JP3427856B2 (en) | Granular goethite fine particle powder, method for producing the same, and method for producing granular iron oxide fine particle powder using the fine particle powder | |
US3549321A (en) | Removal of iron from solution | |
Shamsi et al. | Nano spinels of copper-doped cobalt aluminate (CoxCu (1–x) Al2O4) for removal of Cd (II) from aqueous solutions | |
JP3824709B2 (en) | Manufacturing method of high purity iron oxide powder | |
EP0459424B1 (en) | Process for producing the precursor of a precipitated catalyst for the ammonia synthesis | |
Konishi et al. | Preparation and characterization of fine magnetite particles from iron (III) carboxylate dissolved in organic solvent | |
JP3395174B2 (en) | Manufacturing method of lepidocrocite fine particle powder | |
JP3389939B2 (en) | Manufacturing method of granular magnetite fine particle powder | |
CN112093824A (en) | Method for regulating and controlling crystal form of iron oxide, iron-based composite oxide prepared by method and application of iron-based composite oxide | |
CN1276877C (en) | Method for preparing manganomanganic oxide from native manganese ore | |
CN1039921C (en) | Method for prepn. of zinc oxide from zinc containing material | |
JPS6333421B2 (en) |