Nothing Special   »   [go: up one dir, main page]

JPH06128895A - Base paper for laminated board - Google Patents

Base paper for laminated board

Info

Publication number
JPH06128895A
JPH06128895A JP28281892A JP28281892A JPH06128895A JP H06128895 A JPH06128895 A JP H06128895A JP 28281892 A JP28281892 A JP 28281892A JP 28281892 A JP28281892 A JP 28281892A JP H06128895 A JPH06128895 A JP H06128895A
Authority
JP
Japan
Prior art keywords
pulp
base paper
laminated board
wood
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28281892A
Other languages
Japanese (ja)
Inventor
Takehito Okuya
岳人 奥谷
Isao Odaka
功 小高
Makoto Aoki
誠 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
New Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Oji Paper Co Ltd filed Critical New Oji Paper Co Ltd
Priority to JP28281892A priority Critical patent/JPH06128895A/en
Publication of JPH06128895A publication Critical patent/JPH06128895A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

PURPOSE:To provide a base paper for laminated board suitable for producing a laminated board having excellent dimensional and shape stability in the processing step of a printed circuit board. CONSTITUTION:The base paper for laminated board contains >=10wt.% of bleached kraft pulp fiber produced from a hardwood having the cross-sectional area of the fiber of $200m<2> in the wood.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プリント配線板用のよ
うな積層板を製造するために用いられる積層板原紙に関
する。
FIELD OF THE INVENTION The present invention relates to a laminated board base paper used for producing a laminated board such as a printed wiring board.

【0002】[0002]

【従来の技術】通常の積層板、特にプリント配線板用積
層板は、積層板原紙にフェノール樹脂、エポキシ樹脂等
の熱硬化性樹脂を含浸し、これを加熱乾燥して半硬化樹
脂の状態にし(これをプリプレグという)、このプリプ
レグを複数枚積層し、金属箔と共に熱圧成形することに
より製造される。このような積層板は比較的安価で、通
常の電気或いは電子機器に使用するための性能をほぼ満
足しているため家庭電気製品を中心に多く使用されてい
る。
2. Description of the Related Art Conventional laminates, especially laminates for printed wiring boards, are obtained by impregnating a laminate base paper with a thermosetting resin such as a phenol resin or an epoxy resin, and heating and drying it to a semi-cured resin state. (This is referred to as a prepreg), and a plurality of the prepregs are laminated and manufactured by thermocompression molding together with a metal foil. Such a laminated board is relatively inexpensive and almost satisfies the performance required for use in ordinary electric or electronic devices, and is therefore mainly used for household electric appliances.

【0003】しかしながら、近年の電気製品の軽薄短小
化により、IC、コンデンサー、抵抗等の電気部品の装
着密度が高くなり、プリント配線の導体パターンの細線
化が進んで来ている。このため、積層板にも電気的性能
は勿論のこと、プリント配線板の加工工程における寸法
変化や、そり・ねじれ等の変形防止に関する要求が益々
厳しくなって来ている。
However, due to the recent lighter, thinner, shorter and smaller electric products, the mounting density of electric parts such as ICs, capacitors and resistors has increased, and the conductor patterns of printed wirings have become finer. Therefore, not only the electrical performance of the laminated board but also the dimensional change in the process of processing the printed wiring board and the prevention of deformation such as warpage and twisting are becoming more and more strict.

【0004】即ち、プリント配線板の加工工程は、各種
レジストインキの印刷乾燥工程、水洗乾燥工程及び打ち
抜き前の加熱工程等のようなプリント配線板を加熱する
工程を多く含み、また銀スルーホールの形成及び最終的
には電気部品を接続するために半田処理の工程を経なけ
ればならない。
That is, the printed wiring board processing step includes many steps of heating the printed wiring board, such as a printing and drying step of various resist inks, a washing and drying step, a heating step before punching, and the like. A soldering process must be performed to form and ultimately connect the electrical components.

【0005】このような各種加熱工程の前後において、
プリント配線板に大きな寸法変化やそり・ねじれなどの
変形が生じた場合、工程上のトラブルが発生し、かつ製
品が実用に供し得なくなる可能性もある。
Before and after such various heating steps,
If the printed wiring board undergoes a large dimensional change or deformation such as warpage or twisting, it may cause process troubles and render the product unusable.

【0006】一方、従来から積層板原紙に使われるパル
プは、国内産(特に、北海道産)広葉樹木材からの未叩
解晒クラフトパルプ(LBKP)が用いられるのが一般
的であるが、用途によっては積層板原紙の強度を高める
ために針葉樹クラフトパルプを配合したり、コスト低減
を目的に未晒パルプを使用したり、又、高白色度化のた
めにサルファイトパルプ(SP)を用いたりする場合が
ある。このようなパルプは公知の抄紙機で抄紙され、得
られる積層板原紙の密度は0.45〜0.55g/cm
3という低い水準のものである。
On the other hand, as the pulp conventionally used for laminated board base paper, unbeaten bleached kraft pulp (LBKP) from domestic (especially Hokkaido) hardwood is generally used, but depending on the application. When blending softwood kraft pulp to increase the strength of laminated board base paper, using unbleached pulp for cost reduction, or using sulfite pulp (SP) for high whiteness There is. Such pulp is paper-made by a known paper machine, and the density of the obtained laminated base paper is 0.45 to 0.55 g / cm.
It is as low as 3 .

【0007】プリント配線板の加工工程中における寸法
変化や、そり・ねじれなどの形状変化を可及的に防止す
るために、原紙に要求される特性としては、パルプ繊維
及びファイバーネットワークが加工工程中における熱硬
化性樹脂の寸法変化を抑える効果が大きいことが挙げら
れる。
[0007] In order to prevent the dimensional change and the shape change such as warpage and twist during the processing step of the printed wiring board as much as possible, the characteristics required for the base paper are pulp fiber and fiber network during the processing step. It can be mentioned that the effect of suppressing the dimensional change of the thermosetting resin is large.

【0008】かかる諸問題を解決するために、従来から
種々の提案がなされている。例えば、抄紙機のワイヤー
パートで繊維配向性を調整し、縦/横の引張り強度を適
性にする方法(特開昭57-176788号公報)、或いは特定
範囲の配向角に維持する方法(特開昭59-49959号公報)
が知られているが、寸法安定性の向上は十分ではない。
又、ガラス繊維を混抄する方法(特開昭59-16653号公
報、特開昭59-201855号公報、特開昭60-179244号公報)
が提案されているが、ガラス繊維の配合及び損紙の回収
性の悪化によるコストアップが大きく採用が難しい。
To solve these problems, various proposals have been made in the past. For example, a method of adjusting the fiber orientation with a wire part of a paper machine to make the longitudinal / transverse tensile strength suitable (JP-A-57-176788), or a method of maintaining an orientation angle in a specific range (JP-A-57-176788). (Sho 59-49959 publication)
However, the improvement in dimensional stability is not sufficient.
Further, a method of mixing glass fibers (JP-A-59-16653, JP-A-59-201855, JP-A-60-179244)
However, it is difficult to adopt because of the large cost increase due to the deterioration of the glass fiber composition and the recovery of broke.

【0009】一方、積層板原紙の動的弾性率を高くし、
更には積層板の寸法安定性を向上する方法として、マン
グローブのように細胞壁が厚くルンケル比の大きなパル
プ繊維を使用する方法(特開平1-184126号公報、特願平
1-284104号)が提案されているが、ルンケル比の大きな
マングローブ材からのパルプは積層板の寸法安定性を良
好にするが、繊維の太さが大きいため繊維結合点の減少
に伴い積層板原紙の強度が低下し、含浸工程での断紙の
原因となり作業性が低下する欠点があった。
On the other hand, by increasing the dynamic elastic modulus of the laminated base paper,
Further, as a method of improving the dimensional stability of the laminated plate, a method of using pulp fibers having a thick cell wall and a large Runkel ratio, such as mangrove (JP-A-1-184126, Japanese Patent Application No.
No. 1-284104) has been proposed, but pulp from mangrove wood with a large Runkel ratio improves the dimensional stability of the laminated board, but since the fiber thickness is large, the laminated board decreases as the fiber bonding point decreases. There is a drawback that the strength of the base paper is lowered, which causes a paper break in the impregnation step and the workability is lowered.

【0010】他方、含浸する熱硬化性樹脂の改質によ
り、寸法安定性を改良する工夫がなされているが、原紙
の本質的特性に依存する部分が強く、更なる原紙の改良
が必要とされている。
On the other hand, although improvements have been made to improve the dimensional stability by modifying the impregnated thermosetting resin, there is a strong dependence on the essential characteristics of the base paper, and further improvement of the base paper is required. ing.

【0011】従来から積層板原紙に使われるパルプの木
材原料としては、ミズナラ、シナノキ、イタヤカエデ、
ハリギリ、カツラ、ハルニレ、シラカンバ等の国内産
(特に、北海道産)広葉樹材が用いられるのが一般的で
あり、このような木材は、一般的に繊維断面積が200
μm2より大きいので動的弾性率が低く、積層板の寸法
安定性は十分でない。又、赤松、杉、米松、米杉、スプ
ルース等の針葉樹材の繊維断面積は前記広葉樹材より更
に大きいのが一般的であり、積層板の寸法安定性は十分
でない。
Wood raw materials for pulp, which have been conventionally used for laminated board base paper, include Japanese oak, linden, Japanese maple,
It is common to use domestically produced (especially Hokkaido) hardwood such as Harigi, wig, Harunire, and birch, and such wood generally has a fiber cross-sectional area of 200.
Since it is larger than μm 2 , the dynamic elastic modulus is low and the dimensional stability of the laminate is not sufficient. Further, the fiber cross-sectional area of softwood such as Akamatsu, Japanese cedar, Yonematsu, rice cedar, and spruce is generally larger than that of the hardwood, and the dimensional stability of the laminate is not sufficient.

【0012】このため、このような基材からなる従来の
積層板は、部品の装着密度のより高い電気機器用のプリ
ント配線板や高精度を必要とするコンピュータ等の電子
機器用のプリント配線板用としての使用には適していな
かった。
Therefore, the conventional laminated board made of such a base material is a printed wiring board for electric equipment having a higher mounting density of components or a printed wiring board for electronic equipment such as a computer requiring high accuracy. It was not suitable for commercial use.

【0013】[0013]

【発明が解決しようとする課題】本発明者等は、かかる
現状に鑑みプリント配線板の加工工程中における寸法変
化やそり・ねじれ等の形状変化を可及的に防止するため
に積層板の寸法変化と原紙物性の関係について種々検討
し、更に、種々のパルプ材の繊維形態と原紙物性との関
係を検討した結果、特定の繊維断面積を有する木材から
製造したパルプ繊維を含む積層板原紙を用いて得られる
積層板が各種の加熱操作を含む工程において寸法及び形
状の安定性において極めて優れていることを見出し、本
発明を完成させるに至った。
SUMMARY OF THE INVENTION In view of the above situation, the inventors of the present invention have taken into consideration the present situation so that the dimensions of a laminated board may be changed in order to prevent a dimensional change and a shape change such as warpage and twist during a process of processing a printed wiring board. Various studies were conducted on the relationship between the change and the physical properties of the base paper, and as a result of the relationship between the fiber morphology of various pulp materials and the physical properties of the base paper, a laminated board base paper containing pulp fibers produced from wood having a specific fiber cross-sectional area was obtained. The inventors have found that the laminated sheet obtained by using it is extremely excellent in stability of size and shape in the process including various heating operations, and completed the present invention.

【0014】本発明の目的は、プリント配線板の加工工
程において寸法及び形状の安定性が良好な積層板を製造
するに適した積層板原紙を提供することにある。
An object of the present invention is to provide a laminated board base paper suitable for producing a laminated board having good stability in size and shape in the process of processing a printed wiring board.

【0015】[0015]

【課題を解決するための手段】本発明は、木材からのパ
ルプを原料として抄紙された積層板原紙において、木材
中における繊維断面積が200μm2以下である木材か
ら製造されたパルプ繊維を10重量%以上含有している
ことを特徴とする積層板原紙である。
According to the present invention, in a laminated board base paper made from pulp from wood as a raw material, 10 parts by weight of pulp fiber produced from wood having a fiber cross-sectional area in the wood of 200 μm 2 or less is used. It is a laminated board base paper characterized by containing at least%.

【0016】本発明では、積層板原紙の原料パルプとし
て、木材中の繊維断面積が200μm2 以下の木材から
製造されたパルプ繊維を積層板原紙の原料として使用す
ることを必須要件とする。繊維断面積が小さいというこ
とは、繊維が細いことを意味し、断面積が小さいパルプ
繊維を使用することにより、次に述べるように積層板原
紙の動的弾性率が向上し、更には積層板の寸法安定性が
向上する。
In the present invention, as a raw material pulp for laminated board base paper, it is essential to use pulp fibers manufactured from wood having a fiber cross-sectional area of 200 μm 2 or less in wood as a raw material for laminated board base paper. The fact that the fiber cross-sectional area is small means that the fiber is thin, and the use of pulp fiber having a small cross-sectional area improves the dynamic elastic modulus of the laminated board base paper as described below, and further the laminated board. The dimensional stability of is improved.

【0017】この理由としては、断面積の小さいパルプ
繊維を使用することにより、同じ坪量で比較すると、積
層板原紙中のパルプ繊維の総本数が増え、これにより繊
維結合点が増えるため一本一本の繊維が負荷される荷重
を伝播し易くなり、前記の荷重がより多くの繊維及び繊
維結合点に分散して負担されるため動的弾性率が向上す
るものと考えられる。即ち、断面積の小さいパルプ繊維
を使用して積層板原紙の動的弾性率を向上せることによ
り、積層板の加熱冷却工程における熱硬化性樹脂の膨張
と収縮を抑制する効果を大きくすることができる。
The reason for this is that, by using pulp fibers having a small cross-sectional area, the total number of pulp fibers in the laminated base paper is increased when the same basis weight is used for comparison, which increases the fiber bonding points. It is considered that the load applied to one fiber is easily propagated, and the load is dispersed and applied to more fibers and fiber connection points, so that the dynamic elastic modulus is improved. That is, it is possible to increase the effect of suppressing expansion and contraction of the thermosetting resin in the heating / cooling step of the laminate by improving the dynamic elastic modulus of the laminate base paper by using pulp fibers having a small cross-sectional area. it can.

【0018】本発明に好適に使用される木材の材種とし
ては、ユーカリ、アカシア等を挙げることができるが、
木材中の繊維断面積が200μm2以下であれば勿論こ
れらの材種に特に限定はされない。これらのユーカリ、
アカシア等は同一材種でも気象条件、土地等に関連する
生育条件、生育適性等の差により繊維断面積が200μ
2以 上となったり、200μm2以下となるので本発
明のためにはユーカリエグザータ、ユーカリデリガテン
シス、ユ−カリシトリオドラ、ユーカリライチョウNo.
1、アカシアメランシー等のように200μm2以下の樹
種を適宜選択して使用する必要が ある。
Examples of wood materials preferably used in the present invention include eucalyptus and acacia.
As long as the fiber cross-sectional area in wood is 200 μm 2 or less, there is no particular limitation to these materials. These eucalyptus,
Acacia has a fiber cross-sectional area of 200μ due to differences in weather conditions, growth conditions related to land, etc.
Since it is more than m 2 or less than 200 μm 2 , for the purpose of the present invention, Eucalyptus exata, Eucalyptus deri gatensis, eucalyptus triodora, Eucalyptus grouse No.
1. It is necessary to properly select and use a tree species of 200 μm 2 or less such as acacia melancy.

【0019】本発明の積層板原紙においては木材中の繊
維断面積が200μm2を越えるパルプ 繊維を使用する
と、前記した如く積層板原紙の動的弾性率が低くなり、
積層板の加熱操作を含む工程における寸法及び形状の安
定性が悪くなるので適さない。これに対して、木材中の
繊維断面積が200μm2以下の材種は前記寸法及び形
状の安 定性に対して極めて優れた効果を有するが、樹
種が比較的限られる。又天然に存在する材の木材中の繊
維断面積の下限値は約90μm2と考えられる。
In the laminated base paper of the present invention, when pulp fibers having a fiber cross-sectional area of more than 200 μm 2 in wood are used, the dynamic elastic modulus of the laminated base paper becomes low as described above.
It is not suitable because the stability of the size and shape in the process including the heating operation of the laminated plate deteriorates. On the other hand, the wood species having a fiber cross-sectional area of 200 μm 2 or less in wood has an extremely excellent effect on the stability of the size and shape, but the wood species is relatively limited. Further, the lower limit value of the fiber cross-sectional area in wood of naturally existing wood is considered to be about 90 μm 2 .

【0020】本発明では木材中の繊維断面積が200μ
2以下のパルプ繊維であれば、使用に 際して特に注意
を払う必要はなく、前記繊維断面積が200μm2以下
のパルプ繊維 の使用比率も多い方が前記寸法及び形状
の安定性はよい。しかしながら、前記繊維断面積が20
0μm2以下のパルプ繊維が絶乾パルプ当り10重量%
以上含有率され ておれば、繊維断面積が200μm2
越えるパルプ繊維と混合して一緒に使用して も前記寸
法及び形状の安定性は実用的に十分確保できる。前記含
有率が10重量%未満では前記寸法及び形状の安定性が
確保できないので不適である。
In the present invention, the fiber cross-sectional area in wood is 200 μm.
If the pulp fiber is m 2 or less, it is not necessary to pay particular attention to its use, and the larger the proportion of pulp fibers having the fiber cross-sectional area of 200 μm 2 or less, the better the stability of the size and shape. . However, the fiber cross section is 20
Pulp fiber of 0 μm 2 or less is 10% by weight per absolutely dry pulp.
With the above content, the above-mentioned size and shape stability can be practically sufficiently ensured even when used together with pulp fibers having a fiber cross-sectional area of more than 200 μm 2 . If the content is less than 10% by weight, the stability of the size and shape cannot be ensured, which is not suitable.

【0021】パルプ繊維の混合の方法は、木材チップの
段階で繊維断面積が200μm2以下の木材チップが1
0重量%以上となるように混合して公知のクラフト蒸解
を施し、得られたパルプを漂白する方法でも良く、或い
は樹種毎に単独で公知のクラフト蒸解を施し漂白の前或
いは後に所定のパルプ含有率となるように混合する方法
でも良い。
The method for mixing pulp fibers is as follows: 1 wood chip having a fiber cross-sectional area of 200 μm 2 or less at the wood chip stage.
It may be a method of bleaching the obtained pulp by mixing it so as to be 0% by weight or more and performing a known kraft cooking, or a known kraft cooking alone for each tree species and containing a predetermined pulp before or after bleaching. A method of mixing so as to obtain a ratio may be used.

【0022】一方、ルンケル比の大きなマングローブ材
のように厚膜細胞を有するパルプ繊維も積層板原紙の動
的弾性率を高くし、積層板の寸法安定性を向上させるこ
とが知られているが、本発明の積層板原紙は繊維断面積
の小さいパルプ繊維を用いる場合繊維断面積の小さいこ
との方がルンケル比より優先して前記安定性に影響を与
える。しかしながら、繊維断面積が200μm2以下の
パルプ繊維でもルンケル比の大きいもの程前記安定性に
寄与するので好適であり、ルンケル比は0.4未満のも
のは好ましくない。
On the other hand, it is known that pulp fibers having thick film cells such as mangrove materials having a large Runkel ratio also increase the dynamic elastic modulus of the laminated base paper and improve the dimensional stability of the laminated board. In the laminated board base paper of the present invention, when pulp fibers having a small fiber cross-sectional area are used, the fact that the fiber cross-sectional area is small has a priority over the Runkel ratio and affects the stability. However, even a pulp fiber having a fiber cross-sectional area of 200 μm 2 or less is preferable because a larger Runkel ratio contributes to the stability, and a Runkel ratio of less than 0.4 is not preferable.

【0023】本発明の積層板原紙から積層板を製造する
ため、この積層板原紙に熱硬化性樹脂を含浸して乾燥
し、このようにして得られた熱硬化性樹脂含浸プリプレ
グの2枚以上を積層し、この積層前駆体を熱硬化性樹脂
を熱硬化するため所要温度に加熱しながら、必要に応じ
て、所定の成形型内で加圧し、成形一体化することが行
なわれる。
In order to produce a laminated board from the laminated board raw paper of the present invention, two or more of the thermosetting resin impregnated prepregs thus obtained are impregnated with a thermosetting resin and dried. Are laminated, and the lamination precursor is heated to a required temperature for thermosetting the thermosetting resin, and if necessary, pressure is applied in a predetermined molding die to perform integral molding.

【0024】熱硬化性樹脂としては、一般に、レゾール
型フェノール−ホルムアルデヒド樹脂が用いられるが、
これに限定されることなく、その他の、例えば、通常の
フェノール−ホルムアルデヒド樹脂、メラミン−ホルム
アルデヒド樹脂、尿素−ホルムアルデヒド樹脂、エポキ
シ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂等を
挙げることができ、適宜選択して使用される。
As the thermosetting resin, a resol type phenol-formaldehyde resin is generally used.
Other examples include, but are not limited to, ordinary phenol-formaldehyde resin, melamine-formaldehyde resin, urea-formaldehyde resin, epoxy resin, unsaturated polyester resin, polyimide resin, and the like. Used.

【0025】熱硬化させる際の加熱と加圧操作の条件
は、熱硬化性樹脂の種類や量及び積層体の構成、寸法等
により変化するが、一般に150〜180℃の温度、8
0〜120Kg/cm2 の圧力で30〜60分間行なわ
れる。
The conditions of heating and pressurizing operation for thermosetting vary depending on the kind and amount of the thermosetting resin and the structure and size of the laminate, but generally, the temperature is 150 to 180 ° C., 8
It is carried out at a pressure of 0 to 120 Kg / cm 2 for 30 to 60 minutes.

【0026】本発明で用いたパルプ繊維の断面積、パル
プ繊維のルンケル比、動的弾性率並びに積層板の寸法変
化率の測定法は次の通り。 木材中における繊維の断面積測定法 木材チップが乾燥状態のままでは組織が硬過ぎ、繊維形
態を破壊せずに断面を切出すことは困難であるため、木
材チップを水中に入れて徐々に加熱し前処理を行ってか
ら、チップの木口面を、剃刀を用いて繊維方向に対して
直角に切る。含水状態のままでは細胞が膨潤していて観
測に適さないため、エタノール中に放置して脱水した後
に行なう。木口面の繊維断面を走査型電子顕微鏡、レー
ザー顕微鏡等を用いて1000倍の繊維断面像を写真撮
影し、200本以上の繊維の長軸方向及び短軸方向の繊
維幅を測定し、その値から繊維を長方形と仮定してパル
プ繊維の断面積を計算する。木材チップ中の個々の繊維
の断面積は一定でなく、大小入り混じっているため、2
00本以上の繊維について測定し平均値で評価しなけれ
ばな らない。
The methods for measuring the cross-sectional area of the pulp fiber, the Runkel ratio of the pulp fiber, the dynamic elastic modulus and the dimensional change rate of the laminate used in the present invention are as follows. Method for measuring the cross-sectional area of fibers in wood Since the wood chips are too hard to cut the cross-section without destroying the fiber morphology when the wood chips are in a dry state, the wood chips are gradually heated by putting them in water. After pretreatment, the ostium of the chips is cut at right angles to the fiber direction using a razor. Since cells swell in the water-containing state and are not suitable for observation, the cells are left in ethanol for dehydration. The fiber cross section of the wood mouth surface is photographed with a scanning electron microscope, a laser microscope, etc., at a magnification of 1000 times, and the fiber widths of 200 or more fibers in the major axis direction and the minor axis direction are measured. From the above, the cross-sectional area of pulp fiber is calculated assuming that the fiber is rectangular. The cross-sectional area of the individual fibers in the wood chips is not constant and mixed in size and size, so 2
It shall be measured for more than 00 fibers and evaluated by the average value.

【0027】木材中における繊維のルンケル比 木材中の繊維のルンケル比(R)は、繊維の形態を特徴
づけるための指標であり、繊維のルーメン(内腔)の幅
Lと細胞壁の厚さtとから、式1によって求まる値であ
る。
Runkel Ratio of Fibers in Wood The Runkel ratio (R) of fibers in wood is an index for characterizing the morphology of fibers, and is the width L of the lumen (lumen) of the fiber and the thickness t of the cell wall. It is the value obtained from Equation 1 from

【0028】[0028]

【式1】R=2・t/L[Formula 1] R = 2 · t / L

【0029】動的弾性率の測定法 積層板原紙の動的弾性率は、手抄シートのように方向性
がない場合次の方法で測定する。温度20℃、相対湿度
65%の環境中で、少なくとも24時間調湿した手抄マ
シンで作成した積層板原紙の超音波伝播速度Cを超音波
伝播速度計(例えば、SST-250、野村商事製)を用いて
測定する。次に、この積層板原紙の厚さをJIS P 8118に
従い測定し、更にその坪量を測定して、積層板原紙の密
度ρを求める。
Method of Measuring Dynamic Elastic Modulus The dynamic elastic modulus of the laminated base paper is measured by the following method when it has no directivity like a hand-made sheet. The ultrasonic wave propagation speed C of the laminated board base paper made by the hand-papermaking machine that has been conditioned for at least 24 hours in the environment of temperature 20 ° C and relative humidity 65% is measured by an ultrasonic wave speed meter (eg, SST-250, manufactured by Nomura Shoji). ) Is used for measurement. Next, the thickness of the laminated board raw paper is measured according to JIS P 8118, and the basis weight is measured to obtain the density ρ of the laminated board raw paper.

【0030】動的弾性率Eは、式2より求める。The dynamic elastic modulus E is obtained from the equation 2.

【0031】[0031]

【式2】E=ρ(C)2 [Equation 2] E = ρ (C) 2

【0032】積層板原紙が通常の抄紙機で製造される場
合紙は異方性を有するので、マシン方向とクロスマシン
方向における動的弾性率EMDとECDから式3によって動
的弾性率E(EMDとECDの相乗平均)を求める。
When the laminated base paper is produced by a normal paper machine, since the paper has anisotropy, the dynamic elastic modulus E MD and E CD in the machine direction and the cross machine direction are calculated by the equation 3 from the dynamic elastic modulus E. Calculate (geometric mean of E MD and E CD ).

【0033】[0033]

【式3】 [Formula 3]

【0034】積層板の寸法変化率の測定法 積層板の寸法変化率は次の方法で測定する。積層板原紙
に熱硬化性樹脂、即ちレゾール型フェノ−ル樹脂を基
材:樹脂の固形重量比が1:1となるように含浸し、1
00℃の温度で5分間乾燥し、プリプレグを作成する。
このプリプレグ8枚を積層し、165℃、100kg/
cm2で60分間加圧して圧締し、積層板を製造する。
この積層板にスパン約250mmで標点を付け、温度2
0℃、相対湿度65%の環境中で24時間調湿した後、
標点間の距離L0mmを高精度の2次元座標測定装置
(例えば、デジタ ルリーダー、DR-550-D、大日本スク
リーン製造製)で測定する。続いて、120℃で15分
間加熱し、再び20℃、相対湿度65%の環境中で24
時間調湿した後同じ標点間の距離L1mmを測定する。
寸法変化率αを式4より求める。積層板原紙が通常の抄
紙機で製造され、異方性を有する場合、積層板の寸法変
化率は、縦方向、横方向及び縦方向と横方向の相乗平均
値をもって示す。寸法変化率の小さい程、この積層板の
寸法安定性が高いことを示すが、本発明では寸法変化率
(異方性を有する場合は縦方向と横方向の相乗平均値)
が0.025%以下であれば寸法安定性は 実用上問題
とはならない 。
Measuring Method of Dimensional Change of Laminated Plate The dimensional change rate of the laminated plate is measured by the following method. The laminated base paper was impregnated with a thermosetting resin, that is, a resole-type phenol resin so that the solid weight ratio of the base material to the resin was 1: 1.
Dry at a temperature of 00 ° C. for 5 minutes to prepare a prepreg.
8 sheets of this prepreg are laminated, and 165 ° C, 100 kg /
A laminated plate is manufactured by pressurizing and pressing at cm 2 for 60 minutes.
The laminated plate is marked with a span of about 250 mm and the temperature is 2
After conditioning for 24 hours in an environment of 0 ° C and 65% relative humidity,
The distance L 0 mm between the reference points is measured with a highly accurate two-dimensional coordinate measuring device (for example, digital reader, DR-550-D, manufactured by Dainippon Screen Mfg. Co., Ltd.). Then, heat at 120 ° C. for 15 minutes, and again in an environment of 20 ° C. and 65% relative humidity for 24 hours.
After time humidity control, the distance L 1 mm between the same gauge points is measured.
The dimensional change rate α is obtained from the equation 4. When the laminated board base paper is manufactured by a normal paper machine and has anisotropy, the dimensional change rate of the laminated board is shown as a longitudinal direction, a transverse direction, and a geometric mean value in the longitudinal direction and the transverse direction. The smaller the dimensional change rate, the higher the dimensional stability of this laminated plate. However, in the present invention, the dimensional change rate (in the case of having anisotropy, the geometric mean value in the machine direction and the machine direction)
Is 0.025% or less, dimensional stability does not pose a practical problem.

【0035】[0035]

【式4】α(%)=[(L0−L1)/L0]×100[Formula 4] α (%) = [(L 0 −L 1 ) / L 0 ] × 100

【0036】[0036]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明するが、勿論本発明はこれによって何等
制限されるものではない。尚、実施例及び比較例中の%
は特に断らないかぎり重量%を示す。
The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is of course not limited thereto. In the examples and comparative examples,%
Indicates weight% unless otherwise specified.

【0037】実施例に用いたパルプの製造方法は次の通
りである。 パルプの製造法 (1)未晒パルプ 蒸解条件:4リットルオートクレーブ、クラフト白液
(硫化度29%)、液比4.5、最高温度167℃、保
持時間90分、アルカリ添加率=未晒カッパー価が18
±0.5の範囲内にあるように絶乾チップ当り15.0
〜22.0%(Na2Oとして)の範囲内で変えた。
The method for producing the pulp used in the examples is as follows. Pulp production method (1) Unbleached pulp Cooking conditions: 4 liter autoclave, craft white liquor (sulfurization degree 29%), liquid ratio 4.5, maximum temperature 167 ° C, holding time 90 minutes, alkali addition rate = unbleached copper Value is 18
15.0 per dry-dry tip to be within ± 0.5
Vary within the range of ˜22.0% (as Na 2 O).

【0038】(2)晒パルプ 公知のC−E−H−Dの4段漂白法によりパルプのハン
ターによる白色度が89.0±1.0の範囲内にあるよ
うに次亜塩素酸ソーダの添加率を変え、実験室において
ポリエチレン袋にパルプを入れ、次に述べる条件で漂白
した。 塩素段C:Cl2添加率=未晒パルプのカッパー価×
0.2%、温度常温、時間60分、パルプ濃度4%;ア
ルカリ抽出段E:NaOH添加率=未晒パルプのカッパ
ー価×0.1%、温度60℃、時間90分、パルプ濃度
10%;次亜塩素酸ソーダ段H:次亜塩素酸ソーダ添加
率=絶乾未晒パルプ当り0.3〜4.0%、温度40
℃、時間120分、パルプ濃度10%;二酸化塩素段
D:二酸化塩素添加率=絶乾未晒パルプ当り0.4%、
温度75度、時間120分、パルプ濃度10%
(2) Bleached pulp By the known C-E-H-D four-stage bleaching method, the whiteness of the pulp by the hunter of sodium hypochlorite was adjusted to be within the range of 89.0 ± 1.0. Pulp was placed in a polyethylene bag in the laboratory at different addition rates and bleached under the conditions described below. Chlorine stage C: Cl 2 addition rate = Kappa number of unbleached pulp ×
0.2%, temperature normal temperature, time 60 minutes, pulp concentration 4%; alkali extraction stage E: NaOH addition rate = Kappa number of unbleached pulp x 0.1%, temperature 60 ° C, time 90 minutes, pulp concentration 10% Sodium hypochlorite stage H: Sodium hypochlorite addition rate = 0.3 to 4.0% per absolutely dry unbleached pulp, temperature 40
C, time 120 minutes, pulp concentration 10%; chlorine dioxide stage D: chlorine dioxide addition rate = 0.4% per absolutely dry unbleached pulp,
Temperature 75 degrees, time 120 minutes, pulp concentration 10%

【0039】実施例1〜4 木材中の繊維断面積が128μm2、ルンケル比が0.
96のユーカリ・エグザータ材 から前記のクラフト蒸
解法で蒸解し、カッパー価18.5の未晒クラフトパル
プを製造し、次いでこのパルプを用いて実験室において
前記漂白条件で4段漂白法によりLBKP(パルプ白色
度=89.2%)を製造した。同様に、木材中の繊維断
面積が248μm2、ルンケル比が0.48の北海道産
広葉樹混合材チップを用いてLBKP(パルプ白色度=
89.2%)を製造した。このユーカリLBKPと北海
道産広葉樹LBKPを混合して絶乾パルプ当りユーカリ
LBKPを12%(実施例1)、30%(実施例2)、
50%(実施例3)、100%(実施例4)含有させて
抄紙原料とし、叩解を施さず、又抄紙薬品、填料等を添
加せずに実験室角型手抄マシンにおいて坪量125g/
2、厚さ255μm、密度0.5g/cm3の積層板原
紙を抄造し、その動的弾性率を測定した。これらの積層
板原紙を用いて前記積層板の寸法変化率の測定方法によ
り積層板を作成し、寸法変化率を測定した。
Examples 1 to 4 The fiber cross-sectional area in wood is 128 μm 2 , and the Runkel ratio is 0.
96 eucalyptus exata materials were digested by the above-mentioned kraft cooking method to produce unbleached kraft pulp with a Kappa number of 18.5, and this pulp was used in the laboratory under the above-mentioned bleaching conditions by the four-stage bleaching method to produce LBKP ( Pulp whiteness = 89.2%) was produced. Similarly, LBKP (pulp whiteness =) was obtained by using Hokkaido hardwood mixed wood chips having a fiber cross-sectional area in wood of 248 μm 2 and a Runkel ratio of 0.48.
89.2%). This eucalyptus LBKP and Hokkaido hardwood LBKP are mixed to give 12% (Example 1), 30% (Example 2) of eucalyptus LBKP per absolutely dry pulp.
The content of 50% (Example 3) and 100% (Example 4) was used as a papermaking raw material, without beating, and without adding papermaking chemicals, fillers, etc., in a laboratory square type handmaking machine, the basis weight was 125 g /
A laminated base paper having an m 2 , a thickness of 255 μm and a density of 0.5 g / cm 3 was made into a paper, and its dynamic elastic modulus was measured. Using these laminated board base papers, a laminated board was prepared by the method for measuring the dimensional change rate of the laminated board, and the dimensional change rate was measured.

【0040】実施例5 木材中の繊維断面積が175μm2、ルンケル比が1.
07のユーカリ・デリガテンシス材から前記のクラフト
蒸解法で蒸解し、カッパー価18.5の未晒クラフトパ
ルプを製造し、次いでこのパルプを用いて実験室におい
て前記漂白条件でLBKP(パルプ白色度=89.8
%)を製造し、このパルプを単独で用いて実施例1〜4
と同様の方法で、坪量126g/m2、厚さ255μ
m、密度0.5g/cm3の積層板原紙を抄造し、 その
動的弾性率を測定した。更に、この積層板原紙から積層
板を製造し、その寸法変化率を測定した。
Example 5 The fiber cross-sectional area in wood is 175 μm 2 , and the Runkel ratio is 1.
07 eucalyptus delgatensis wood was cooked by the above-mentioned kraft cooking method to produce unbleached kraft pulp with a Kappa number of 18.5, and this pulp was then used in the laboratory under the bleaching conditions under the above-mentioned bleaching conditions to obtain LBKP (pulp whiteness = 89. .8
%) And using this pulp alone Examples 1-4
The same method as above, basis weight 126 g / m 2 , thickness 255 μ
Laminated paper having m and a density of 0.5 g / cm 3 was made into a paper, and its dynamic elastic modulus was measured. Further, a laminated board was produced from this laminated board base paper, and the dimensional change rate was measured.

【0041】実施例6 木材中の繊維断面積が107μm2、ルンケル比が0.
65のユーカリ・シトリオドラ材から前記のクラフト蒸
解法で蒸解し、カッパー価18.4の未晒クラフトパル
プを製造し、次いでこのパルプを用いて実験室において
前記漂白条件でLBKP(パルプ白色度=89.3%)
を製造し、このパルプを単独で用いて実施例1〜4と同
様の方法で、坪量126g/m2 、厚さ255μm、密
度0.5g/cm3の積層板原紙を抄造し、その動的弾
性率を測定した。更に、この積層板原紙から積層板を製
造し、その寸法変化率を測定した。
Example 6 The fiber cross-sectional area in wood was 107 μm 2 , and the Runkel ratio was 0.
65 eucalyptus citriodora wood was digested by the above-mentioned kraft cooking method to produce unbleached kraft pulp with a Kappa number of 18.4, and this pulp was used in the laboratory under the bleaching conditions under the above-mentioned bleaching conditions to obtain LBKP (pulp whiteness = 89). .3%)
Was used to make a laminated base paper having a basis weight of 126 g / m 2 , a thickness of 255 μm, and a density of 0.5 g / cm 3 by the same method as in Examples 1 to 4, and the dynamics thereof were used. The elastic modulus was measured. Further, a laminated board was produced from this laminated board base paper, and the dimensional change rate was measured.

【0042】実施例7 木材中の繊維断面積が125μm2、ルンケル比が1.
77のユーカリ・ライチョウNo.1材から前記のクラフト
蒸解法で蒸解し、カッパー価18.3の未晒クラフトパ
ルプを製造し、次いでこのパルプを用いて実験室におい
て前記漂白条件でLBKP(パルプ白色度=89.4
%)を製造し、このパルプを単独で用いて実施例1〜4
と同様の方法で坪量126g/m2、厚さ255μm、
密度0.5g/cm3の積層板原紙を抄造し、そ の動的
弾性率を測定した。更に、この積層板原紙から積層板を
製造し、その寸法変化率を測定した。
Example 7 The cross-sectional area of fibers in wood was 125 μm 2 , and the Runkel ratio was 1.
77 eucalyptus grouse No. 1 wood was cooked by the above-mentioned kraft cooking method to produce unbleached kraft pulp with a Kappa number of 18.3, and this pulp was used in the laboratory under the bleaching conditions under the above-mentioned bleaching conditions. Degree = 89.4
%) And using this pulp alone Examples 1-4
In the same manner as above, the basis weight is 126 g / m 2 , the thickness is 255 μm,
A laminated base paper having a density of 0.5 g / cm 3 was made into a paper, and its dynamic elastic modulus was measured. Further, a laminated board was produced from this laminated board base paper, and the dimensional change rate was measured.

【0043】実施例8 木材中の繊維断面積が122μm2、ルンケル比が1.
41のアカシア・メランシー材から前記のクラフト蒸解
法で蒸解(液比=2.85)し、カッパー価18.3の
未晒クラフトパルプを製造し、次いでこのパルプを用い
て実験室において前記漂白条件でLBKP(パルプ白色
度88.2)を製造し、このパルプを単独で用いて実施
例1〜4と同様の方法で坪量126g/m2、厚さ25
5μm、密度0.5g/cm3の積層板原紙を抄造 し、
その動的弾性率を測定した。更に、この積層板原紙から
積層板を製造し、その寸法変化率を測定した。
Example 8 The cross-sectional area of fibers in wood is 122 μm 2 , and the Runkel ratio is 1.
41 acacia melancly wood was cooked by the above-mentioned kraft cooking method (liquid ratio = 2.85) to produce unbleached kraft pulp with a Kappa number of 18.3, and this pulp was used in the laboratory under the bleaching conditions. To produce LBKP (pulp whiteness of 88.2), and using this pulp alone in the same manner as in Examples 1 to 4, the basis weight is 126 g / m 2 , and the thickness is 25.
Paper making of laminated board base paper of 5 μm and density of 0.5 g / cm 3 ,
The dynamic elastic modulus was measured. Further, a laminated board was produced from this laminated board base paper, and the dimensional change rate was measured.

【0044】比較例1 木材中の繊維断面積が248μm2、ルンケル比が0.
48のミズナラ材から前記のクラフト蒸解法で蒸解し、
カッパー価17.7の未晒クラフトパルプを製造し、次
いでこのパルプを用いて実験室において前記漂白条件で
LBKP(パルプ白色度89.2%)を製造し、このパ
ルプに実施例1〜4で得られたユーカリ・エグザータ材
からのLBKP(木材中の繊維断面積は128μm2
ルンケル比は0.96)を絶乾パルプ当り8%含有させ
て用いて実施例1〜4と同様の方法で坪量126g/m
2、厚さ255μm、密度0.5g/cm3の積層板原紙
を抄造し、その動的弾性率を測定した。更に、この積層
板原紙から積層板を製造し、その寸法変化率を測定し
た。
Comparative Example 1 The cross-sectional area of fibers in wood was 248 μm 2 , and the Runkel ratio was 0.1.
Cooked from 48 oak woods by the craft cooking method,
An unbleached kraft pulp with a Kappa number of 17.7 was produced, and this pulp was then used in the laboratory to produce LBKP (pulp whiteness 89.2%) under the bleaching conditions described above in Examples 1-4. LBKP from the obtained eucalyptus exata material (fiber cross-sectional area in wood is 128 μm 2 ,
A Runkel ratio of 0.96) was used in an amount of 8% based on absolutely dry pulp, and the basis weight was 126 g / m 2 in the same manner as in Examples 1 to 4.
2. A laminated base paper having a thickness of 255 μm and a density of 0.5 g / cm 3 was made into paper, and its dynamic elastic modulus was measured. Further, a laminated board was produced from this laminated board base paper, and the dimensional change rate was measured.

【0045】比較例2 木材中の繊維断面積が254μm2、ルンケル比が1.
2のユーカリ・グランディス材から前記のクラフト蒸解
法で蒸解し、カッパー価18.2の未晒クラフトパルプ
を製造し、次いでこのパルプを用いて実験室において前
記漂白条件でLBKP(パルプ白色度88.5%)を製
造し、このパルプを単独で用いて実施例1〜4と同様の
方法で坪量126g/m2、厚さ255μm、密度0.
5g/cm3の積層板原紙を抄造し、その動的弾性率を
測定した。更に、この積層板原紙から積層板を製造し、
その寸法変化率を測定した。
Comparative Example 2 The fiber cross-sectional area in wood was 254 μm 2 , and the Runkel ratio was 1.
No. 2 eucalyptus grandis wood was cooked by the above-mentioned kraft cooking method to produce unbleached kraft pulp with a Kappa number of 18.2, and this pulp was used in the laboratory under the bleaching conditions under the LBKP (pulp whiteness 88. 5%), and using this pulp alone in the same manner as in Examples 1 to 4, basis weight 126 g / m 2 , thickness 255 μm, density 0.
A 5 g / cm 3 laminated base paper was made into paper, and its dynamic elastic modulus was measured. Furthermore, a laminated board is manufactured from this laminated board base paper,
The dimensional change rate was measured.

【0046】実施例1乃至比較例2で得られた測定結果
を表1に示す。
Table 1 shows the measurement results obtained in Examples 1 to 2.

【0047】[0047]

【表1】 [Table 1]

【0048】表1から明らかなように、繊維断面積が2
00μm2以下のパルプ単独で製造された本発明の積層
板原紙は動的弾性率が高く、この原紙を用いて製造され
た積層板の寸法変化率は極めて優れており(実施例4〜
8)、又前記のパルプを10%以上含有する本発明の積
層板原紙も動的弾性率が高く、積層板の寸法変化率も実
用に十分供することができるほど低い(実施例1〜3)
が、前記パルプを10%未満含有する積層板原紙は動的
弾性率は低く、積層板の寸法変化率は比較的高いので実
用に供することができず(比較例1)、更に繊維断面積
が200μm2を越えたパルプを単独で積層板原紙の原
料として用いると得られる積層板は前記の理由で実用に
供することができない(比較例2)。
As is clear from Table 1, the fiber cross-sectional area is 2
The laminated board base paper of the present invention produced solely from pulp having a size of 00 μm 2 or less has a high dynamic elastic modulus, and the dimensional change rate of the laminated board produced using this base paper is extremely excellent (Examples 4 to 4).
8) Also, the laminated board base paper of the present invention containing 10% or more of the above pulp has a high dynamic elastic modulus, and the dimensional change rate of the laminated board is low enough to be practically used (Examples 1 to 3).
However, the laminated board base paper containing less than 10% of the pulp has a low dynamic elastic modulus and a relatively high dimensional change rate of the laminated board, and therefore cannot be put to practical use (Comparative Example 1). The laminate obtained by using pulp exceeding 200 μm 2 alone as a raw material for the laminate base paper cannot be put to practical use for the above reason (Comparative Example 2).

【0049】[0049]

【発明の効果】前記した如く、本発明は、プリント配線
板の加工工程において寸法及び形状の安定性が良好な積
層板を製造するのにもっとも適した積層板原紙を提供す
るという効果を奏する。
As described above, the present invention has the effect of providing a laminated board base paper most suitable for producing a laminated board having good size and shape stability in the process of processing a printed wiring board.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】木材からのパルプを原料として抄紙された
積層板原紙において、木材中における繊維断面積が20
0μm2以下である木材から製造されたパルプ繊維を1
0重量%以上含有していることを特徴とする積層板原
紙。
1. A laminated board base paper made from pulp from wood as a raw material, wherein the fiber cross-sectional area in the wood is 20.
1 pulp fiber made from wood that is 0 μm 2 or less
A laminated board base paper characterized by containing 0% by weight or more.
JP28281892A 1992-10-21 1992-10-21 Base paper for laminated board Pending JPH06128895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28281892A JPH06128895A (en) 1992-10-21 1992-10-21 Base paper for laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28281892A JPH06128895A (en) 1992-10-21 1992-10-21 Base paper for laminated board

Publications (1)

Publication Number Publication Date
JPH06128895A true JPH06128895A (en) 1994-05-10

Family

ID=17657487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28281892A Pending JPH06128895A (en) 1992-10-21 1992-10-21 Base paper for laminated board

Country Status (1)

Country Link
JP (1) JPH06128895A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595828A (en) * 1994-11-30 1997-01-21 Kimberly-Clark Corporation Polymer-reinforced, eucalyptus fiber-containing paper

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123095A (en) * 1992-10-12 1994-05-06 Nippon Paper Ind Co Ltd Base paper for electrical insulating laminate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123095A (en) * 1992-10-12 1994-05-06 Nippon Paper Ind Co Ltd Base paper for electrical insulating laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595828A (en) * 1994-11-30 1997-01-21 Kimberly-Clark Corporation Polymer-reinforced, eucalyptus fiber-containing paper
US5622786A (en) * 1994-11-30 1997-04-22 Kimberly-Clark Corporation Polymer-reinforced, eucalyptus fiber-containing paper

Similar Documents

Publication Publication Date Title
US4652324A (en) Process for the production of laminated sheet
CN106498807B (en) Production technology for the dipping flame retardant type copper coated foil plate base paper of printed wiring board
CN110644289B (en) Laminated board base paper and production process thereof
JPH06128895A (en) Base paper for laminated board
JP2959392B2 (en) Laminated board
JPH10102392A (en) Base paper for laminated plate, and laminated plate
JPH03128244A (en) Sheetlike pulp-base material for laminate and laminate
JP2679494B2 (en) Manufacturing method of base paper for laminated board
JP2002038391A (en) Base paper for electrical insulating laminar board
JPH08209587A (en) Base paper for electrical insulating laminated sheet
JP3467903B2 (en) Electrically insulating laminate base paper
JPH0240799B2 (en) DENKIZETSUENSEKISOITAYOGENSHI
JP2525705B2 (en) Manufacturing method of laminated base paper
JPH01221438A (en) Laminate and sheetlike base for laminate
JP2943892B2 (en) Electrically insulating laminate base paper
JPH0523592B2 (en)
JPH03185195A (en) Sheet pulp base material for laminated board and laminated board
JPH06136687A (en) Base paper for electrical insulating laminate board
JPH09268500A (en) Base paper for dielectric laminate
JPH0988000A (en) Production of base paper for electrical insulating laminated sheet
JPH0681296A (en) Sheet for laminated sheet
JPH059268B2 (en)
JPH08302588A (en) Base paper for electrical insulation laminate and laminated board
JPH03890A (en) Paper base for laminate
JPH03146794A (en) Laminated board and sheetlike pump substrate therefor