Nothing Special   »   [go: up one dir, main page]

JPH06116690A - Method for producing Ti-Al based intermetallic compound-based alloy - Google Patents

Method for producing Ti-Al based intermetallic compound-based alloy

Info

Publication number
JPH06116690A
JPH06116690A JP4169278A JP16927892A JPH06116690A JP H06116690 A JPH06116690 A JP H06116690A JP 4169278 A JP4169278 A JP 4169278A JP 16927892 A JP16927892 A JP 16927892A JP H06116690 A JPH06116690 A JP H06116690A
Authority
JP
Japan
Prior art keywords
temperature
intermetallic compound
phase
alloy
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4169278A
Other languages
Japanese (ja)
Other versions
JP3331625B2 (en
Inventor
Masakatsu Hosomi
政功 細見
Hisashi Maeda
尚志 前田
Minoru Okada
岡田  稔
Masaharu Yamaguchi
正治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16927892A priority Critical patent/JP3331625B2/en
Publication of JPH06116690A publication Critical patent/JPH06116690A/en
Application granted granted Critical
Publication of JP3331625B2 publication Critical patent/JP3331625B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

(57)【要約】 【目的】 常温伸び2.0 %以上、800 ℃における0.2 %
耐力30kgf/mm2 以上、破壊靱性値50 kgf/mm3/2以上のTi
−Al系金属間化合物基合金を製造する。 【構成】 Ti−Al系金属間化合物基合金を、下記式(1)
のT1 (℃) の温度範囲で50%以上の加工を施した後、下
記(2) 式のT2 (℃) の温度範囲で1時間以上保持し、次
いで、空冷または徐冷する。 1200≦T1 <T2 ・・・・(1) T2 ={1226+37×(X−46) }±25 ・・・・(2) ただし、X : Al原子%
(57) [Summary] [Purpose] Room temperature elongation of 2.0% or more, 0.2% at 800 ℃
Ti with a yield strength of 30 kgf / mm 2 or more and a fracture toughness value of 50 kgf / mm 3/2 or more
An Al-based intermetallic compound-based alloy is manufactured. [Structure] A Ti-Al-based intermetallic compound-based alloy is represented by the following formula (1)
After processing 50% or more in the temperature range of T 1 (° C.), the temperature is maintained in the temperature range of T 2 (° C.) of the following formula (2) for 1 hour or more, and then air cooling or slow cooling. 1200 ≦ T 1 <T 2 ··· (1) T 2 = {1226 + 37 × (X−46)} ± 25 ··· (2) However, X: Al atom%

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Ti−Al系金属間化合物
基合金の製造方法、特に軽量耐熱材料としてジェットエ
ンジンのエンジンケースあるいはコンプレッサブレード
およびベーン、自動車エンジンの排気バルブおよびピス
トンピン、またスペースプレーンや超音速航空機の外
板、さらにボイラーの耐熱管、タービンブレードにも使
用が考えられるTiAlおよびTi3Al の金属間化合物を含む
Ti−Al系金属間化合物基合金の製造方法に関する。本発
明によれば加工熱処理によって、常温延性、強度および
靱性が改善される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Ti-Al intermetallic compound base alloy, particularly as a lightweight heat-resistant material, an engine case or compressor blade and vane of a jet engine, an exhaust valve and a piston pin of an automobile engine, and Includes intermetallic compounds of TiAl and Ti 3 Al, which may be used for space planes, outer skins of supersonic aircraft, heat-resistant tubes of boilers, and turbine blades.
The present invention relates to a method for producing a Ti-Al-based intermetallic compound-based alloy. According to the present invention, the room temperature ductility, strength and toughness are improved by thermomechanical treatment.

【0002】[0002]

【従来の技術】Ti−Al系金属間化合物基合金は、金属間
化合物であるTiAl (以下、γ相という) とTi3Al ( 以
下、α2 相という) を含有するとともに、その他必要に
よりMn、Mo、V等を含有する合金であるが、α2 +γの
2相組織を有し軽量かつ耐熱性に優れていると言われて
いる。以下、かかるTi−Al系金属間化合物基合金をTiAl
基合金と称する。
2. Description of the Related Art A Ti-Al-based intermetallic compound-based alloy contains TiAl (hereinafter referred to as γ phase) and Ti 3 Al (hereinafter referred to as α 2 phase) which are intermetallic compounds and, if necessary, Mn. Although it is an alloy containing Mo, V, etc., it is said to have a two-phase structure of α 2 + γ and is lightweight and excellent in heat resistance. Hereinafter, such Ti-Al-based intermetallic compound-based alloy is
It is called a base alloy.

【0003】図1はTi−Al系合金の状態図の一部拡大図
であって、これからも分かるように、このTiAl基合金で
は、1130℃以上でTi固溶体であるα相 (α−Ti) が存在
し、冷却するにしたがって、α→α2 +γの反応が起こ
り、常温ではα2 +γの2相組織を有する。
FIG. 1 is a partially enlarged view of the phase diagram of the Ti-Al alloy. As can be seen from this, in this TiAl-based alloy, the α phase (α-Ti) which is a Ti solid solution at 1130 ° C. or higher. Exists, and the reaction of α → α 2 + γ occurs as it cools, and it has a two-phase structure of α 2 + γ at room temperature.

【0004】しかしながら、かかるTiAl基合金において
は、α相からγ相およびα2 相が析出する速度に対する
検討は行われておらず、比較的速い冷却速度条件の材料
でしか機械的特性は調査されていない。
However, in such a TiAl-based alloy, no study has been made on the rate at which the γ phase and the α 2 phase are precipitated from the α phase, and the mechanical properties have only been investigated with materials having relatively high cooling rate conditions. Not not.

【0005】例えば、50℃/sec というこの比較的速い
冷却速度で冷却すると、鋳造材でも47〜50at%Al−Tiの
範囲において、常温延性が出現すると言われている。し
かし、詳細な検討の結果より、常温延性は出現するもの
の、その値は十分とは言えず、むしろ冷却速度が速いこ
とが悪影響を及ぼしていることがわかってきた。つま
り、このような急冷は材料中に歪が残存するため、かえ
って延性が低下する。なお、このような成分における鋳
造凝固時の組織、つまり、油冷、水冷の冷却速度で冷却
して得られた組織は全面にγ相とα2 相が層状になった
ラメラ組織を呈しており、延性は不十分である。
For example, it is said that room temperature ductility appears even in a cast material in the range of 47 to 50 at% Al-Ti by cooling at a relatively high cooling rate of 50 ° C./sec. However, as a result of detailed examination, it has been found that although room temperature ductility appears, its value cannot be said to be sufficient, and rather a high cooling rate has an adverse effect. In other words, such quenching causes strain to remain in the material, which rather reduces ductility. Incidentally, the structure at the time of solidification by casting in such a component, that is, the structure obtained by cooling at a cooling rate of oil cooling, water cooling exhibits a lamellar structure in which the γ phase and the α 2 phase are layered on the entire surface. , Ductility is insufficient.

【0006】一方、TiAl基合金の加工や熱処理に関する
技術については情報が少ない。特開昭63−171862号公報
には、700 〜1100℃での2段階の恒温鍛造法が開示され
ている。特開平2−274307号公報には、重量%で34.5%
Al (原子%で48.4%Al) のTiAl基合金を1200℃での熱間
押出加工後、同じく1200℃で1時間焼鈍することにより
ラメラ粒組織のTiAl基合金が、ラメラ組織の消滅した等
軸微細粒のTiAl基合金に変化することが示されている。
On the other hand, little information is available on the technology relating to the processing and heat treatment of TiAl-based alloys. Japanese Unexamined Patent Publication No. 63-171862 discloses a two-step isothermal forging method at 700 to 1100 ° C. In Japanese Patent Laid-Open No. 2-274307, the weight percentage is 34.5%.
A TiAl-based alloy of Al (48.4% Al in atomic%) was hot-extruded at 1200 ° C and then annealed at 1200 ° C for 1 hour. It has been shown to change to a fine grain TiAl-based alloy.

【0007】[0007]

【発明が解決しようとする課題】しかし、鋳造凝固時に
TiAl (γ相) とTi3Al(α2 相)の層状ラメラ組織を有す
る材料 (α2 +γ) は常温延性が十分でないため改善す
る必要がある。また前述のように、熱間加工により等軸
微細粒組織を得ることにより常温延性が改善することは
報告されているが (特開平2−274307号公報) 、この組
織でも十分な破壊靱性、高温強度は得られない。その実
用上の観点からTiAl基合金としては、常温伸び2.0 %以
上、800 ℃における0.2 %耐力30kgf/mm2 以上、破壊靱
性値50 kgf/mm3/2以上の特性を有することが望まれる。
However, at the time of solidification by casting,
A material (α 2 + γ) having a layered lamellar structure of TiAl (γ phase) and Ti 3 Al (α 2 phase) has insufficient room temperature ductility and needs to be improved. Further, as described above, it has been reported that the room temperature ductility is improved by obtaining an equiaxed fine grain structure by hot working (JP-A-2-274307), but even with this structure, sufficient fracture toughness and high temperature are obtained. No strength is obtained. From the viewpoint of its practical use, it is desired that the TiAl-based alloy has characteristics such as room temperature elongation of 2.0% or more, 0.2% proof stress at 800 ° C of 30 kgf / mm 2 or more, and fracture toughness value of 50 kgf / mm 3/2 or more.

【0008】したがって、本発明の目的は、Ti−Al系金
属間化合物であるTiAlとTi3Al とを含有する合金 (TiAl
基合金) において常温延性、高温強度、破壊靱性の各特
性のバランスを改善したTi−Al系金属間化合物基合金の
製造方法を提供することである。
It is therefore an object of the present invention, an alloy containing a TiAl and Ti 3 Al is TiAl-based intermetallic compound (TiAl
(Base alloy), a method for producing a Ti—Al-based intermetallic compound-based alloy having an improved balance of room temperature ductility, high temperature strength, and fracture toughness.

【0009】本発明のより具体的な目的は、常温伸び2.
0 %以上、800 ℃における0.2 %耐力30kgf/mm2 以上、
破壊靱性値50 kgf/mm3/2以上の特性を有するTi−Al系金
属間化合物基合金の製造方法を提供することである。
A more specific object of the present invention is room temperature elongation 2.
0% or more, 0.2% proof stress at 800 ℃ 30kgf / mm 2 or more,
It is an object of the present invention to provide a method for producing a Ti-Al-based intermetallic compound-based alloy having a fracture toughness value of 50 kgf / mm 3/2 or more.

【0010】[0010]

【課題を解決するための手段】本発明者らは、ラメラ粒
と等軸γ粒とからなる微細組織が、常温延性、高温強
度、破壊靱性のバランスに優れると考え、その手段とし
て、まず、1200℃以上の( α+γ) 二相域の温度範囲で
加工し、その後に臨界温度以下の温度から冷却すること
を特徴とするTi−Al系金属間化合物基合金の製造方法を
提案した (特願平3−233151号) 。
DISCLOSURE OF THE INVENTION The inventors of the present invention believe that a microstructure composed of lamella grains and equiaxed γ grains has an excellent balance of room temperature ductility, high temperature strength and fracture toughness. We proposed a method for producing a Ti-Al-based intermetallic compound-based alloy, which is characterized by processing in a temperature range of (α + γ) two-phase region of 1200 ° C or higher, and then cooling from a temperature below the critical temperature (Japanese Patent Application No. (Head 3-233151).

【0011】しかし、この方法では、微細ラメラ粒と微
細等軸γ粒の混合組織は得られるものの、ラメラ粒と等
軸γ粒とは均一に分散されてはおらず、ラメラ粒の集合
体と等軸γ粒の集合体が混在した不均一な組織となり、
常温延性、高温強度、破壊靱性のバランスが、まだ充分
改善されているとは言えなかった。
However, although this method can obtain a mixed structure of the fine lamella grains and the fine equiaxed γ grains, the lamella grains and the equiaxed γ grains are not uniformly dispersed, and the aggregate of the lamella grains, etc. A non-uniform structure in which aggregates of axial γ grains are mixed,
The balance between room temperature ductility, high temperature strength and fracture toughness has not been sufficiently improved.

【0012】そこで、本発明者らは、さらに検討を重ね
た結果、加工と熱処理を組合せた加工熱処理を行うこ
と、その際に、加工温度と熱処理温度との温度差を小
さくし、かつその熱処理を (α+γ) 二相域のα相と
γ相の量比が等しくなる温度で、所定時間以上行うこと
により、ラメラ粒と等軸γ粒とが極めて均一に分散でき
ることを知り、本発明に至った。
Therefore, as a result of further studies, the inventors of the present invention conducted a thermomechanical treatment in which machining and heat treatment were combined, and at that time, the temperature difference between the machining temperature and the heat treatment temperature was reduced and the heat treatment was performed. It was found that the lamella grains and the equiaxed γ grains can be dispersed extremely uniformly by carrying out at a temperature at which the amount ratio of the α phase and the γ phase in the (α + γ) two-phase region becomes equal to each other for a predetermined time or longer, and thus the present invention was completed. It was

【0013】ここに、本発明の要旨は、原子%で、Al:
46〜51%、残部TiのTi−Al系金属間化合物基合金、また
は、Mo、Mn、V、Cr、Nb、W、SiおよびTaのうちの一種
または二種以上を合計量で、5%以下、Al:46 〜51%、
残部TiのTi−Al系金属間化合物基合金に対し、下記式
(1) のT1 (℃) の温度範囲で50%以上の加工を施した
後、下記式(2) のT2 (℃) の温度範囲で1時間以上保持
し、次いで空冷または徐冷することを特徴とする、Ti−
Al系金属間化合物合金の製造方法である。
Here, the gist of the present invention is, in atomic%, Al:
46-51%, balance Ti-Al-based intermetallic compound-based alloy, or one or more of Mo, Mn, V, Cr, Nb, W, Si and Ta in a total amount of 5% Below, Al: 46-51%,
For the balance Ti-Al based intermetallic compound based alloy, the following formula
After processing 50% or more in the temperature range of T 1 (° C) of (1), hold it in the temperature range of T 2 (° C) of the following formula (2) for 1 hour or more, and then perform air cooling or slow cooling. Ti−
It is a method for producing an Al-based intermetallic compound alloy.

【0014】 1200≦T1 <T2 ・・・・(1) T2 ={1226+37×(X−46) }±25 ・・・・(2) ただし、X : Al原子% 本発明によれば、従来の鋳造凝固組織に見られるような
α2 相とγ相とが層状になったラメラ組織とは異なり、
あるいは前述の先願のようにラメラ粒の集合体と等軸γ
粒の集合体が混在した不均一組織と異なり、ラメラ粒と
等軸γ粒とが均一に分散した組織が得られ、その結果、
常温靱性、高温強度、そして破壊靱性がバランスよく実
現される。
1200 ≦ T 1 <T 2 (1) T 2 = {1226 + 37 × (X−46)} ± 25 (2) However, X: Al atom% According to the present invention , Unlike the lamellar structure in which the α 2 phase and the γ phase are layered as seen in the conventional cast solidification structure,
Alternatively, as in the above-mentioned prior application, the aggregate of lamella grains and the equiaxial γ
Unlike a non-uniform structure in which aggregates of grains are mixed, a structure in which lamella grains and equiaxed γ grains are uniformly dispersed is obtained, and as a result,
Good balance of room temperature toughness, high temperature strength and fracture toughness.

【0015】[0015]

【作用】次に、添付図面を参照して本発明をさらに説明
する。図2(a) 、(b) は、本発明の方法のヒートパター
ン (パターンI とパターンII) をそれぞれ示す線図であ
り、図中、所定組織のTi−Al系金属間化合物基合金を、
前記(1) 式で規定される温度範囲T1で50%以上加工して
から、パターンI の場合には一旦1200℃以下、例えば室
温にまで冷却してから再び加熱して、あるいはパターン
IIの場合には加工に引き続いて加熱して、式(2) で規定
されるT2の温度範囲で1時間以上の熱処理を施し、空冷
または徐冷するものである。なお、「徐冷」には炉冷も
含む。加工度は圧下率または減面率をもって示す。
The present invention will now be further described with reference to the accompanying drawings. 2 (a) and 2 (b) are diagrams showing the heat patterns (Pattern I and Pattern II) of the method of the present invention, respectively, in which the Ti--Al based intermetallic compound-based alloy having a predetermined structure is
After processing 50% or more in the temperature range T 1 specified by the above formula (1), in the case of pattern I, once cooled to 1200 ° C or less, for example, room temperature and then heated again, or the pattern
In the case of II, after processing, heating is performed, heat treatment is performed for 1 hour or more in the temperature range of T 2 defined by the formula (2), and air cooling or slow cooling is performed. Note that “slow cooling” also includes furnace cooling. The workability is indicated by the reduction rate or the area reduction rate.

【0016】ここで、本発明において合金組成、加工条
件および熱処理条件を前述のように限定した理由を説明
する。なお、本明細書において、特にことわりがない限
り、「%」は「原子%」である。本発明において対象と
するのは、Al: 46〜51原子% (重量%でほぼ32.4〜37.0
%に相当) 、残部TiのTi−Al二元系金属間化合物基合金
である。
Now, the reason why the alloy composition, working conditions and heat treatment conditions are limited as described above in the present invention will be explained. In the present specification, “%” is “atomic%” unless otherwise specified. In the present invention, the object is Al: 46 to 51 atomic% (approximately 32.4 to 37.0% by weight).
%), And the balance Ti is a Ti-Al binary intermetallic compound base alloy.

【0017】Alを46〜51原子%に限定するのは、本発明
方法を適用したときに、Alが46%未満あるいは51%超で
あると、冷却したときα2 相あるいはγ相の量が過多に
なり、本発明の所期の目的とする特性が得られないため
である。Tiの一部は、Mo、Mn、V、Cr、Nb、W、Si、お
よびTaのうちの一種または二種以上によって合計量5原
子%まで置換されてもよいが、これらの合計量が5原子
%を超えると、得られる合金の機械加工性が劣化する。
The Al content is limited to 46 to 51 atomic%, because when the method of the present invention is applied and the Al content is less than 46% or more than 51%, the amount of α 2 phase or γ phase when cooled is small. This is because the amount becomes excessive and the intended characteristics of the present invention cannot be obtained. A part of Ti may be replaced by one kind or two or more kinds of Mo, Mn, V, Cr, Nb, W, Si, and Ta up to a total amount of 5 atom%, but the total amount of these is 5 If it exceeds atomic percent, the machinability of the resulting alloy deteriorates.

【0018】このようにして用意したTi−Al系金属間化
合物基合金は前記式(1) で制限される温度範囲内で加工
されるが、そのような温度限定は、γ相、α相の再結晶
粒を微細等軸化し、均一に混在化させるためである。12
00℃未満で加工したときにもγ相、α相の再結晶粒は微
細等軸粒であるが、熱処理を実施する際に、加工温度と
熱処理温度の差が大きすぎ、加工温度で平衡するγ/α
比と熱処理温度で平衡するγ/α比の差が過大になり、
熱処理後の冷却過程でα粒が成長し、冷却時に生ずる変
態ラメラ粒径が粗大になり、不均一組織となる。そのた
め加工温度の下限を1200℃に設定した。
The Ti-Al-based intermetallic compound-based alloy thus prepared is processed within the temperature range restricted by the above formula (1). This is because the recrystallized grains are finely equiaxed and uniformly mixed. 12
The recrystallized grains of γ phase and α phase are fine equiaxed grains even when processed at less than 00 ° C, but when performing heat treatment, the difference between the processing temperature and the heat treatment temperature is too large, and the equilibrium occurs at the processing temperature. γ / α
Ratio and the γ / α ratio that equilibrates at the heat treatment temperature become too large,
Α grains grow in the cooling process after the heat treatment, and the transformed lamella grain size generated during cooling becomes coarse, resulting in a non-uniform structure. Therefore, the lower limit of processing temperature was set to 1200 ℃.

【0019】加工温度の上限を、続く熱処理温度未満と
したのは、加工温度が熱処理温度と同じか、それ以上に
なると熱処理の作用であるα相とγ相の均一混在化を行
うための駆動力が消失してしまうからである。よって、
加工温度の上限は熱処理温度未満とした。なお、加工温
度は均一微細混合組織を得る観点から、続く熱処理温度
に近いほど望ましい。
The upper limit of the processing temperature is set to be lower than the subsequent heat treatment temperature because the driving temperature is equal to or higher than the heat treatment temperature, and the driving is for uniformly mixing the α phase and the γ phase, which is a function of the heat treatment. This is because the power will disappear. Therefore,
The upper limit of the processing temperature was lower than the heat treatment temperature. The processing temperature is preferably closer to the subsequent heat treatment temperature from the viewpoint of obtaining a uniform fine mixed structure.

【0020】このときの (α+γ) 2相域での加工は、
50%以上の加工度で行うが、これが50%未満では均一に
再結晶しないからである。このときの加工度は圧下率ま
たは減面率で表わす。加工度は合計量であるが、1回の
加工で30%以上の圧下率または減面率を実現するのが好
ましい。また、加工度は高いほど熱処理後の再結晶粒径
は微細になるため延性に優れる。具体的には常温延性の
ためには加工度は80%以上が好ましい。
The processing in the (α + γ) 2 phase region at this time is as follows.
This is because the workability is 50% or more, but if it is less than 50%, it is not recrystallized uniformly. The workability at this time is represented by the reduction rate or the area reduction rate. The degree of processing is the total amount, but it is preferable to achieve a reduction rate or surface reduction rate of 30% or more in one processing. In addition, the higher the degree of processing, the finer the recrystallized grain size after heat treatment and the more excellent the ductility. Specifically, the workability is preferably 80% or more for room temperature ductility.

【0021】なお、加工手段は特に制限ないが、例えば
慣用の恒温鍛造を行えばよい。その他の方法としては、
シース鍛造、恒温圧延、パック圧延、シース圧延、酸化
防止剤で表面をコーティングしての通常の鍛造、圧延、
押出などにより、鍛造材、板材、管材等を製造できる。
The processing means is not particularly limited, but for example, conventional isothermal forging may be performed. Alternatively,
Sheath forging, isothermal rolling, pack rolling, sheath rolling, normal forging and rolling with the surface coated with an antioxidant,
Forging materials, plate materials, pipe materials and the like can be manufactured by extrusion and the like.

【0022】なお、加工後熱処理前に図2(a) に示すパ
ターンI のように素材はいったん冷却しても、図2(b)
に示すパターンIIのようにそのまま昇温して続く熱処理
を行ってもよく、いずれの場合にあっても均一微細混合
組織は得られる。熱処理温度(T2)は、次式で表わされる
臨界温度の上側、下側に25℃の範囲内に設定した。
Even after the material is once cooled as shown in the pattern I shown in FIG. 2 (a) after the processing but before the heat treatment, the material shown in FIG.
As in the pattern II shown in (1), the heat treatment may be carried out by raising the temperature as it is, and in any case, a uniform fine mixed structure can be obtained. The heat treatment temperature (T 2 ) was set within the range of 25 ° C. above and below the critical temperature represented by the following equation.

【0023】 臨界温度: T=1226+37(X−46) (X:Al 原子%) …(3) これは、熱処理時に平衡するα相、γ相の体積量がぼ等
しく、お互いの結晶粒成長を抑制し、冷却に際して局部
的に粗大なα2 粒、γ粒の形成を防止するためである。
その結果、本発明によれば、均一微細混合組織が得られ
る。熱処理温度(T2)が臨界温度T±25℃の範囲を外れる
と、γ相とα相の体積比が1から大きくずれるため、組
織の均質性が失われる。熱処理温度はできるだけ臨界温
度(T) と等しいことが望ましい(T=T2) 。
Critical temperature: T = 1226 + 37 (X−46) (X: Al atomic%) (3) This is because the volume amounts of the α phase and the γ phase equilibrated during the heat treatment are almost equal to each other, and the mutual growth of crystal grains is caused. This is to suppress and prevent the formation of locally coarse α 2 grains and γ grains during cooling.
As a result, according to the present invention, a uniform fine mixed structure can be obtained. When the heat treatment temperature (T 2 ) is out of the range of the critical temperature T ± 25 ° C., the volume ratio of the γ phase and the α phase deviates greatly from 1, and the homogeneity of the structure is lost. It is desirable that the heat treatment temperature be as close to the critical temperature (T) as possible (T = T 2 ).

【0024】かくして、本発明において熱処理温度T2
範囲は前述の式(2) によって規定される。熱処理時間
は、1時間未満であると均一微細混合組織 (等軸粒+ラ
メラ粒) が得られない。よって、熱処理時間の下限は1
時間とした。前述の式(2) で規定される温度の範囲内で
あれば、熱処理時間が長くともγ/α=1近傍であるた
め、粒成長はほとんど観察されず、何ら特性上問題とな
るものではないが、生産性の点からは24時間で充分であ
る。
Thus, in the present invention, the range of the heat treatment temperature T 2 is defined by the above equation (2). If the heat treatment time is less than 1 hour, a uniform fine mixed structure (equiaxed grains + lamella grains) cannot be obtained. Therefore, the lower limit of heat treatment time is 1
It was time. Within the temperature range defined by the above equation (2), since the heat treatment time is close to γ / α = 1 even at the longest time, almost no grain growth is observed, and there is no problem in the characteristics. However, 24 hours is sufficient from the viewpoint of productivity.

【0025】熱処理後の冷却は、空冷または徐冷( 炉
冷、断熱材に包んで行う徐冷を含む)によって行う。こ
れは、高温固溶相であるα相からの冷却中にγ相および
α2 相を十分に析出させ、 (α2 +γ) の変態ラメラ粒
を形成させるためである。かくして、本発明によれば、
常温延性、高温強度、破壊靱性のバランスに優れた特性
を有するTi−Al系金属間化合物基合金が製造される。次
に、実施例によって本発明をさらに具体的に説明する。
Cooling after the heat treatment is performed by air cooling or slow cooling (including furnace cooling and slow cooling performed by wrapping in a heat insulating material). This is because the γ phase and the α 2 phase are sufficiently precipitated during cooling from the α phase, which is a high temperature solid solution phase, to form (α 2 + γ) transformed lamellar grains. Thus, according to the invention,
A Ti-Al-based intermetallic compound-based alloy having excellent balance of room temperature ductility, high temperature strength and fracture toughness is manufactured. Next, the present invention will be described more specifically by way of examples.

【0026】[0026]

【実施例】消耗式Arアークスカル溶解法で表1に示す成
分の各合金を溶製した。各インゴットより40×40×80(m
m)のブロックを切り出し、厚さ10mmのTi−6Al−4V合金
製の板により包んで封じたシース材をそれぞれの合金に
つき数個ずつ作製した。
Example Each alloy having the components shown in Table 1 was melted by a consumable Ar arc skull melting method. 40 × 40 × 80 (m from each ingot
A block of m) was cut out and wrapped with a plate made of Ti-6Al-4V alloy having a thickness of 10 mm, and several sheath materials were produced for each alloy and sealed.

【0027】このようにして用意したシース材をセラミ
ックス製の金型を用いて恒温鍛造を実施して加工した。
The sheath material thus prepared was subjected to isothermal forging using a ceramic mold to be processed.

【0028】このときの恒温鍛造条件と得られた鍛造材
の常温引張伸び、800 ℃における0.2 %耐力、常温の破
壊靱性値を表2〜4にまとめて示す。なお、加工度はシ
ース材を含まないTiAl+Ti3Al 基合金のみの圧下率で示
す値であり、冷却速度は炉冷、空冷、断熱材で包むこと
等により調整した。その他の試験条件は次の通りであっ
た。
Tables 2 to 4 collectively show the isothermal forging conditions at this time, the room temperature tensile elongation of the obtained forged material, the 0.2% proof stress at 800 ° C., and the room temperature fracture toughness value. The workability is a value indicated by the rolling reduction of only TiAl + Ti 3 Al based alloy containing no sheath material, and the cooling rate was adjusted by furnace cooling, air cooling, wrapping with a heat insulating material, or the like. The other test conditions were as follows.

【0029】引張試験: 常温および800 ℃の試験温度で
板厚0.5 mm、板幅2mm、平行部長さ5mmの板状試験片を
ε=10-4 1/Sの歪み速度で引張試験を実施した。
Tensile test: A plate test piece having a plate thickness of 0.5 mm, a plate width of 2 mm and a parallel part length of 5 mm was subjected to a tensile test at a strain rate of ε = 10 −4 1 / S at room temperature and a test temperature of 800 ° C. .

【0030】破壊靱性試験: CT試験片 (ハーフサイ
ズ) を用いた。 表2〜3に示す結果からも、本発明によれば、常温引張
伸び2.0 %以上、800℃の0.2 耐力30kgf/mm2 以上、常
温破壊靱性50kgf/mm3/2 以上の特性がバランスよく得ら
れることがわかる。
Fracture toughness test: CT test pieces (half size) were used. From the results shown in Tables 2 to 3, according to the present invention, the properties such as room temperature tensile elongation of 2.0% or more, 0.2 proof stress at 800 ° C of 30 kgf / mm 2 or more, and room temperature fracture toughness of 50 kgf / mm 3/2 or more can be obtained in a well-balanced manner. You can see that

【0031】図3は試験No.11(比較例) で得た材料の金
属顕微鏡組織写真であり、不均一な混合組織 (等軸粒、
変態ラメラ粒) である。一方、図4は試験No.13 の本発
明にかかる方法により製造された合金の同じく金属顕微
鏡組織写真である。本発明によれば均一微細混合組織
(等軸粒、変態ラメラ粒) が生成しているのがわかる。
FIG. 3 is a metallographic micrograph of the material obtained in Test No. 11 (comparative example), showing a non-uniform mixed microstructure (equiaxed grains,
(Transformed lamella grains). On the other hand, FIG. 4 is a similar metallographic micrograph of the alloy produced by the method according to the present invention of Test No. 13. According to the present invention a uniform fine mixed structure
It can be seen that (equiaxed grains and transformed lamellar grains) are generated.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【発明の効果】本発明により目標とする機械的性質がバ
ランスよく得られるTi−Al系金属間化合物基合金の製造
が可能になり、Ti−Al系合金の産業上の利用分野が広が
る。
Industrial Applicability According to the present invention, it becomes possible to produce a Ti-Al-based intermetallic compound base alloy which can obtain desired mechanical properties in a well-balanced manner, and the industrial application field of the Ti-Al-based alloy is expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】斜線領域で加工温度範囲を示すTi−Alの二元系
状態図である。
FIG. 1 is a binary system state diagram of Ti—Al showing a processing temperature range in a shaded area.

【図2】図2(a) 、(b) は、いずれも本発明における加
工熱処理ヒートパターンを示す線図である。
FIG. 2 (a) and FIG. 2 (b) are diagrams showing a heat treatment heat pattern in the present invention.

【図3】実施例における比較材の光学金属顕微鏡組織写
真である。
FIG. 3 is an optical metallographic micrograph of a comparative material in an example.

【図4】実施例における本発明方法により製造された合
金材の光学金属顕微鏡組織写真である。
FIG. 4 is an optical metallographic micrograph of an alloy material produced by the method of the present invention in Examples.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月6日[Submission date] July 6, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 正治 京都市左京区北白川上別当町24−403 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Yamaguchi 24-403 Kita-Shirakawa-Kamibetsuto-cho, Sakyo-ku, Kyoto

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子%で、Al: 46〜51%、残部TiのTi−
Al系金属間化合物基合金、または、Mo、Mn、V、Cr、N
b、W、SiおよびTaのうちの一種または二種以上を合計
量で5%以下、Al:46 〜51%、残部TiのTi−Al系金属間
化合物基合金に対し、下記式(1) のT1 (℃) の温度範囲
で50%以上の加工を施した後、下記(2)式のT2 (℃) の
温度範囲で1時間以上保持し、次いで、空冷または徐冷
することを特徴とする、Ti−Al系金属間化合物基合金の
製造方法。 1200≦T1 <T2 ・・・・(1) T2 ={1226+37×(X−46) }±25 ・・・・(2) ただし、X : Al原子%
1. An atomic percentage of Al: 46 to 51%, the balance of Ti-
Al-based intermetallic compound-based alloy, or Mo, Mn, V, Cr, N
b, W, Si and Ta, one or two or more of which are contained in a total amount of 5% or less, Al: 46 to 51%, and the balance Ti is based on the following formula (1) After processing 50% or more in the temperature range of T 1 (° C), hold for 1 hour or more in the temperature range of T 2 (° C) in the formula (2) below, and then perform air cooling or slow cooling. A method for producing a Ti-Al-based intermetallic compound-based alloy, which is characterized. 1200 ≦ T 1 <T 2 ··· (1) T 2 = {1226 + 37 × (X−46)} ± 25 ··· (2) However, X: Al atom%
JP16927892A 1992-02-21 1992-06-26 Method for producing Ti-Al-based intermetallic compound-based alloy Expired - Lifetime JP3331625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16927892A JP3331625B2 (en) 1992-02-21 1992-06-26 Method for producing Ti-Al-based intermetallic compound-based alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3502092 1992-02-21
JP4-35020 1992-02-21
JP16927892A JP3331625B2 (en) 1992-02-21 1992-06-26 Method for producing Ti-Al-based intermetallic compound-based alloy

Publications (2)

Publication Number Publication Date
JPH06116690A true JPH06116690A (en) 1994-04-26
JP3331625B2 JP3331625B2 (en) 2002-10-07

Family

ID=26373904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16927892A Expired - Lifetime JP3331625B2 (en) 1992-02-21 1992-06-26 Method for producing Ti-Al-based intermetallic compound-based alloy

Country Status (1)

Country Link
JP (1) JP3331625B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116145010A (en) * 2023-02-28 2023-05-23 西安交通大学 Preparation method of light high-strength material based on vacuum heat treatment process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116145010A (en) * 2023-02-28 2023-05-23 西安交通大学 Preparation method of light high-strength material based on vacuum heat treatment process

Also Published As

Publication number Publication date
JP3331625B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
JP3027200B2 (en) Oxidation resistant low expansion alloy
US5226985A (en) Method to produce gamma titanium aluminide articles having improved properties
US4066447A (en) Low expansion superalloy
WO2012026354A1 (en) Co-based alloy
US5558729A (en) Method to produce gamma titanium aluminide articles having improved properties
US4386976A (en) Dispersion-strengthened nickel-base alloy
US9994934B2 (en) Creep-resistant TiA1 alloy
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
US5417781A (en) Method to produce gamma titanium aluminide articles having improved properties
JP7233659B2 (en) Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body
WO2017123186A1 (en) Tial-based alloys having improved creep strength by strengthening of gamma phase
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
KR102566987B1 (en) High strength aluminum-zinc-magnesium-cooper alloy thick plate and method of manufacturing the same
JPH06240428A (en) Production of ti-al intermetallic compound base alloy
JPH05255827A (en) Production of alloy based on tial intermetallic compound
JP2734794B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JP6829830B2 (en) Fe—Ni based alloy and its manufacturing method
JP3489173B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JP2000345259A (en) CREEP RESISTANT gamma TYPE TITANIUM ALUMINIDE
JPH06116690A (en) Method for producing Ti-Al based intermetallic compound-based alloy
JP2684891B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JPH08337832A (en) Ti-Al-based intermetallic compound-based alloy and method for producing the same
KR20200011040A (en) Nickel base superalloy for high temperature fastening member and method for manufacturing the same
JPH03193851A (en) Production of tial-base alloy having extremely superfine structure
JP7233658B2 (en) Titanium aluminide alloy material for hot forging and method for forging titanium aluminide alloy material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070726

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

EXPY Cancellation because of completion of term