JPH06105263B2 - Current detector - Google Patents
Current detectorInfo
- Publication number
- JPH06105263B2 JPH06105263B2 JP62044663A JP4466387A JPH06105263B2 JP H06105263 B2 JPH06105263 B2 JP H06105263B2 JP 62044663 A JP62044663 A JP 62044663A JP 4466387 A JP4466387 A JP 4466387A JP H06105263 B2 JPH06105263 B2 JP H06105263B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- magnetic flux
- magnetic
- pair
- orbiting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、送配電系統に生ずる対地漏れ電流等の微小
電流を、その周回磁束によって検出する環状磁心を有す
る電流検出装置に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current detecting device having an annular magnetic core for detecting a minute current such as a ground leakage current generated in a power transmission and distribution system by its circulating magnetic flux.
配電線やその負荷回路の絶縁抵抗等が低下して対地側に
漏れる漏れ電流が増加すると、漏れ電流の発生部で電気
加熱が生じ、これが漏電火災の発生原因となることが間
々ある。これらの危険性を予知して災害を未然に防止す
るために、漏電遮断器が広く用いられている。これらの
装置においては、数十mAオーダー以下の漏れ電流を先ず
検出する必要があるが、配電線には大きな負荷電流が流
れているために、負荷電流に重なって流れる微弱な漏れ
電流を拾い出すために、漏れ電流を三相線路の不平衡電
流(零相電流)また単相往復導体の不平衡電流として検
出する環状磁心を有する電流検出装置が知られている。
三相または単相電線路の周囲には不平衡電流による電流
磁界が電線路の周囲を周回する方向に発生しており(こ
こでは周回磁束とよぶ)、透磁率の大きい環状磁心を配
することにより、周回磁束を磁心内に集束させることが
できる。環状磁心内の周回磁束を検出する方法として
は、環状磁心に検出コイルを巻装し、磁束変化に伴う誘
起電圧を検出するいわゆる零相変流器方式と、環状磁心
の周方向に磁路を分断する空隙部を設け、この空隙部用
にホール素子などの磁界センサを配設した方式が知られ
ている。When the insulation resistance of the distribution line or its load circuit decreases and the leakage current leaking to the ground side increases, electric heating occurs at the leakage current generating portion, which often causes a leakage fire. An earth leakage breaker is widely used in order to predict these risks and prevent disasters. In these devices, it is necessary to first detect leakage currents on the order of tens of mA or less, but since a large load current is flowing through the distribution line, a weak leakage current that overlaps with the load current is picked up. Therefore, there is known a current detection device having an annular magnetic core that detects a leakage current as an unbalanced current (zero-phase current) in a three-phase line or an unbalanced current in a single-phase reciprocating conductor.
A current magnetic field due to an unbalanced current is generated around the three-phase or single-phase electric line in a direction that goes around the electric line (referred to as an orbiting magnetic flux here), and an annular magnetic core with a large magnetic permeability should be placed. Thereby, the circulating magnetic flux can be focused in the magnetic core. As a method for detecting the orbiting magnetic flux in the annular magnetic core, a so-called zero-phase current transformer method in which a detection coil is wound around the annular magnetic core and the induced voltage due to the magnetic flux change is detected, and a magnetic path is formed in the circumferential direction of the annular magnetic core. There is known a method in which a gap is provided to divide and a magnetic field sensor such as a Hall element is arranged for the gap.
零相変流器方式の従来の電流検出装置においては、微弱
な不平衡電流による周回磁束を効率よく環状磁心に集束
させるために、パーマロイ(Ni-Fe系合金)などの高透
磁率材料を設い、かつ磁心断面積を大きくして磁束量を
多くするとともに、検出コイルの巻回数を数百ないし数
千ターンと多くするなどの対策を必要とするために、装
置の大型化や製作コスト高を招く欠点がある。また、不
平衡電流波形の周波数や波形ひずみの影響を受けやす
く、これらに基づく測定誤差が生じやすいために汎用性
に欠けるという問題点がある。一方、センサ方式の従来
装置においては、ホール素子がその構造上不平衡電圧を
持ち、周回磁束が零の状態でも出力信号を発するため
に、微弱な周囲磁束の測定精度に悪影響を及ぼすととも
に、不平衡電圧の補償や温度特性の補償を含めて回路構
成が複雑化するという問題がある。In the conventional zero-phase current transformer type current detection device, a high magnetic permeability material such as permalloy (Ni-Fe alloy) is installed to efficiently focus the circulating magnetic flux due to the weak unbalanced current on the annular magnetic core. In addition to increasing the cross-sectional area of the magnetic core to increase the amount of magnetic flux and increasing the number of turns of the detection coil to hundreds or thousands of turns, the size of the device is increased and the manufacturing cost is increased. There is a drawback that leads to. In addition, there is a problem in that versatility is lacking because the frequency of the unbalanced current waveform and the waveform distortion are easily affected, and measurement errors based on these are likely to occur. On the other hand, in the conventional sensor type device, since the Hall element has an unbalanced voltage due to its structure and emits an output signal even when the circulating magnetic flux is zero, it adversely affects the measurement accuracy of the weak ambient magnetic flux and There is a problem that the circuit configuration becomes complicated, including compensation of the balanced voltage and compensation of the temperature characteristic.
この発明の目的は、微小な被検出電流の検出感度にすぐ
れ、被検出電流波形のひずみや周波数の影響を受けにく
く、構造が簡素で経済的な電流検出装置を得ることにあ
る。An object of the present invention is to obtain an economical current detection device that has excellent detection sensitivity for minute currents to be detected, is less susceptible to distortion of the current waveform to be detected and frequency, and has a simple structure.
上記問題点を解決するため、この発明によれば、電磁路
の周囲に被検出電流によって生ずる周回磁束の磁路を形
成する一対の環状磁心と、この一対の環状磁心に形成さ
れた間隙部に磁路に平行にそれぞれ配設されたアモルフ
ァス細線および高周波励磁コイルからなり,前記周回磁
束によりそのインダクタンスに差を生ずる一対の周回磁
束センサと、この一対の周回磁束センサを2辺に有する
ブリッジ回路と、このブリッジ回路を介して前記アモル
ファス細線が磁気飽和領域に達する高周波振動電流を供
給する発振器と、前記インダクタンス差に基づくブリッ
ジ回路の不平衡出力を直流化し,前記被検出電流に換算
して求める検出回路とを備えるものとする。In order to solve the above problems, according to the present invention, a pair of annular magnetic cores that form a magnetic path of a circulating magnetic flux generated by a detected current around an electromagnetic path, and a gap portion formed in the pair of annular magnetic cores are provided. A pair of orbiting magnetic flux sensors each of which has an inductance difference due to the orbiting magnetic flux, and a bridge circuit having the pair of orbiting magnetic flux sensors on two sides, each of which is composed of an amorphous thin wire and a high-frequency exciting coil disposed in parallel to the magnetic path. , An oscillator that supplies a high-frequency oscillating current through which the amorphous thin wire reaches a magnetic saturation region through this bridge circuit, and a detection of the unbalanced output of the bridge circuit that is based on the inductance difference is converted to a direct current and converted into the detected current. And a circuit.
上述のように、アモルフアス細線に高周波励磁コイルを
巻装した2個の周回磁束センサを用い、その高周波励磁
コイルを2辺に有するブリッジ回路を形成し、不平衡電
流を発する電線路を一括して包囲し,周方向に空隙部を
有する2個の環状磁心の空隙部に、高周波磁界が互いに
逆向きになるよう前記2個の周回磁束センサを環状磁心
の周回磁束の磁路方向に平行に配設するとともに、ブリ
ッジ回路に発振器を接続して高周波振動電流を供給する
ようにした。このような状態で2個の周回磁束センサの
アモルファス細線が磁気飽和領域に達するよう高周波磁
化した場合、不平衡電流による周回磁束が発生しない状
態では両高周波励磁コイルのインダクタンスは互いに等
しく、ブリッジ回路は平衡を保ち、ブリッジ回路の出力
側に配された検出回路の出力信号は零となる。不平衡電
流が発生すると、一対のアモルファス細線中の高周波磁
束に、一方では周回磁束がプラスされ,他方ではマイナ
スされるので、それぞれの磁気飽和状態が変化し、励磁
インダクタンスが一方は増加し,他方は減少する。した
がって、このインダクタンス変化はブリッジ回路の不平
衡出力として感度よく検出され、検出回路で直流化され
ることにより、波形歪の影響を排して被検出電流を求め
ることができる。As described above, two circulating magnetic flux sensors in which a high-frequency exciting coil is wound around an amorphous thin wire are used, a bridge circuit having the high-frequency exciting coil on two sides is formed, and an electric line that generates an unbalanced current is collectively formed. The two surrounding magnetic flux sensors are arranged in parallel in the magnetic path direction of the circular magnetic flux of the circular magnetic core so that the high-frequency magnetic fields are opposite to each other in the voids of the two circular magnetic cores that surround and have a spatial gap in the circumferential direction. The oscillator was connected to the bridge circuit to supply high-frequency oscillating current. When the amorphous thin wires of the two orbiting magnetic flux sensors are high-frequency magnetized so as to reach the magnetic saturation region in such a state, the inductances of both high-frequency exciting coils are equal to each other and the bridge circuit is The output signal of the detection circuit arranged on the output side of the bridge circuit is zero while maintaining balance. When an unbalanced current is generated, the high-frequency magnetic flux in the pair of amorphous thin wires is added with the circulating magnetic flux on one side and negative on the other side, so that the respective magnetic saturation states change, the exciting inductance increases on the one side, and the exciting inductance on the other side increases. Decreases. Therefore, this inductance change is detected as an unbalanced output of the bridge circuit with high sensitivity, and is converted into a direct current by the detection circuit, whereby the influence of the waveform distortion can be eliminated and the detected current can be obtained.
以下、この発明を実施例に基づいて説明する。 Hereinafter, the present invention will be described based on examples.
第1図はこの発明の実施例装置を示す概略構成図、第2
図は実施例装置における環状磁心の電線路への装着状況
を示す斜視図、第3図は実施例装置における周回磁束セ
ンサ部分の拡大図である。図において、10は単相負荷電
流Iを導く単相電線路、20は三相負荷電流Iを導く三相
電線路であり、一対の環状磁心2A,2Bが、電線路10また
は20を一括包囲し、相互の磁気干渉を防ぐ間隔を保持す
るよう図示しない支持具により支持されている。一対の
環状磁心2A,2Bそれぞれには、周方向の一個所に間隙部
3が形成されており、それぞれの間隙部には、第3図に
示すように直径125μm,長さ数mmのアモルファス細線複
数本の束11を磁心とし、これに直径0.1mm程度の銅線複
数ターンを巻装した高周波励磁コイル12を装着した周回
磁束センサ1A,1Bが環状磁心の磁路方向に平行に配設さ
れている。5はブリッジ回路であり、高周波励磁コイル
12A,12B、および2つの抵抗辺6,7とで構成されるととも
に、ブリッジ回路5の平衡検出回路側にはポテンショメ
ータ式の平衡器8および検出回路9が、ブリッジ回路5
の電源側には図中IAで示す高周波振動電流を供給する発
振器4が導電接続されている。なお、ブリッジ回路にリ
ード線13A,13Bで導電接続される高周波励磁コイル12A,1
2Bは、高周波振動電流IAが互いに逆向きに流れるようブ
リッジ回路に接続することにより、一対の周回磁束セン
サ1A,1Bには互いに逆向きの高周波磁束φA,φBを発生
させることができる。FIG. 1 is a schematic configuration diagram showing an apparatus according to an embodiment of the present invention, and FIG.
FIG. 3 is a perspective view showing how the annular magnetic core is attached to the electric line in the embodiment apparatus, and FIG. 3 is an enlarged view of the orbiting magnetic flux sensor portion in the embodiment apparatus. In the figure, 10 is a single-phase electric line that guides the single-phase load current I, 20 is a three-phase electric line that guides the three-phase load current I, and a pair of annular magnetic cores 2A, 2B collectively enclose the electric line 10 or 20. However, it is supported by a support tool (not shown) so as to maintain a distance preventing mutual magnetic interference. Each of the pair of annular magnetic cores 2A, 2B has a gap portion 3 formed at one position in the circumferential direction, and each of the gap portions has an amorphous thin wire of 125 μm in diameter and several mm in length as shown in FIG. Circulating magnetic flux sensors 1A and 1B each having a plurality of bundles 11 as a magnetic core and a high frequency exciting coil 12 in which a plurality of turns of a copper wire having a diameter of about 0.1 mm are mounted are arranged parallel to the magnetic path direction of the annular magnetic core. ing. 5 is a bridge circuit, which is a high-frequency exciting coil
12A and 12B and two resistance sides 6 and 7, and a potentiometer type balancer 8 and a detection circuit 9 are provided on the side of the balanced detection circuit of the bridge circuit 5.
An oscillator 4 for supplying a high-frequency oscillating current indicated by IA in the figure is conductively connected to the power source side of. In addition, the high frequency exciting coil 12A, 1 which is conductively connected to the bridge circuit by the lead wires 13A, 13B.
By connecting the high frequency oscillating current IA to the bridge circuit so that the high frequency oscillating currents IA flow in opposite directions, the high frequency oscillating currents 2A can generate high frequency magnetic fluxes φA, φB in opposite directions in the pair of orbiting magnetic flux sensors 1A, 1B.
つぎに、実施例装置の動作原理を説明する。例えば第1
図において、商用周波数の負荷電流Iを通ずる往復電線
路10にiなる漏れ電流(不平衡電流)が発生すると、不
平衡電流iに相応した周回磁束φiが発生する。したが
って、環状磁心2A,2Bを初透磁率の大きいパーマロイ等
の磁性材を用いて形成すれば、周辺に広がろうとする周
回磁束を環状磁心内に集束させる増幅作用が得られ、環
状磁心1A,1B内を同方向に周回する周回磁束φiが発生
する。ところで、一対の周回磁束センサ1A,1Bは互いに
逆向きの高周波(振動)磁束φA,φBを発生するので、
環状磁心2A側ではφ1とφAが同方向、2B側ではφ1と
φAとが逆方向となる。周回磁束φ1の周期が高周波磁
束の振動周期に比べて著しく長いと仮定すれば、高周波
磁束φA,φBは周囲磁束φ1によって互いに逆向きにバ
イアスされた状態となる。Next, the operation principle of the embodiment apparatus will be described. For example, the first
In the figure, when a leakage current (i.e., an unbalanced current) i is generated in the reciprocating electric line 10 passing through the load current I at the commercial frequency, a circulating magnetic flux φi corresponding to the unbalanced current i is generated. Therefore, by forming the annular magnetic core 2A, 2B using a magnetic material such as permalloy having a large initial magnetic permeability, an amplifying effect of converging the orbiting magnetic flux that tends to spread to the periphery into the annular magnetic core is obtained, and the annular magnetic core 1A, An orbiting magnetic flux φi that orbits in 1B in the same direction is generated. By the way, since the pair of orbiting magnetic flux sensors 1A and 1B generate high frequency (vibration) magnetic fluxes φA and φB which are opposite to each other,
On the side of the annular magnetic core 2A, φ1 and φA are in the same direction, and on the side of 2B, φ1 and φA are in the opposite directions. Assuming that the cycle of the circulating magnetic flux φ1 is significantly longer than the cycle of the high frequency magnetic flux, the high frequency magnetic fluxes φA and φB are biased in the opposite directions by the surrounding magnetic flux φ1.
第4図ないし第6図はアモルファス細線の磁化特性(B
−H特性)線図であり、ヒステリシスを無視して1本の
曲線で簡略化して示してある。第4図は、周回磁束φi
が零の状態におけるアモルファス細線11A,11Bの磁化状
況を示しており、高周波振動電流IA(図の場合、波形50
で示す脈動電流)により、アモルファス細線は振幅H1で
+H側に磁気飽和領域幅Hsを保持するよう磁化される。
第5図は周回磁束φiによる磁化力HiがH1と同じ+H側
に加わった状態を示しており、図中実線で示すように磁
化曲線は+H側にHiだけシフトし、磁気飽和領域幅がHs
+Hiに増加するので、アモルファス細線中の高周波振動
磁束の変化量が少なくなり、結果的に高周波励磁コイル
のインダクタンスが減少する。第6図は周回磁束φiに
よる磁化力Hiが逆方向の負側加わった状態を示してお
り、磁化曲線が負側ににシフトするために、磁気飽和領
域幅がHs−Hiと狭くなり、高周波振動磁束の変化量が大
きくなることにより、結果的に高周波励磁コイルのイン
ダクタンスが減少することになる。4 to 6 show the magnetization characteristics of amorphous thin wires (B
(-H characteristic) diagram, which is simplified and shown by one curve ignoring hysteresis. FIG. 4 shows the circulating magnetic flux φi.
Shows the magnetization state of the amorphous thin wires 11A and 11B in the state of zero.
The pulsating current) indicated by the amorphous thin line is magnetized to hold the magnetic saturation region width Hs in + H side amplitude H 1.
FIG. 5 shows a state in which the magnetizing force Hi due to the orbiting magnetic flux φi is applied to the + H side, which is the same as H 1, and the magnetization curve is shifted to the + H side by Hi as shown by the solid line in the figure, and the magnetic saturation region width is Hs
Since it increases to + Hi, the amount of change in the high-frequency oscillating magnetic flux in the amorphous thin wire decreases, and as a result, the inductance of the high-frequency exciting coil decreases. FIG. 6 shows a state in which the magnetizing force Hi due to the orbiting magnetic flux φi is applied to the negative side in the opposite direction. Since the magnetization curve shifts to the negative side, the magnetic saturation region width narrows to Hs−Hi, and high frequency As the amount of change in the oscillating magnetic flux increases, the inductance of the high frequency exciting coil decreases as a result.
したがって、周回磁束センサ1A,1Bを環状磁心2A,2Bの間
隙部に互いに逆向きに配設しておけば、例えばアモルフ
ァス細線11Aが第5図に示す磁化状況を示すとき、アモ
ルファス細線11Bは第6図に示す磁化状況を示すことに
なり、かつこの状況を交互に入れ替って繰返すので、高
周波励磁コイル12A,12Bのインダクタンスが一方で増
加,他方で減少することになる。そこで、周回磁束φi
が零の状態でブリッジ回路が平衡するよう抵抗辺6,7の
抵抗値および平衡器8を調整しておけば、不平衡電流i
による高周波励磁コイルのインダクタンス変化をブリッ
ジ回路の不平衡出力として検出することが可能となる。
ブリッジ回路の不平衡出力は、検出回路9で整流,増幅
かつノイズ除去などが行われ、不平衡電流値に換算表示
される。Therefore, if the orbiting magnetic flux sensors 1A and 1B are arranged in the gap portions of the annular magnetic cores 2A and 2B in directions opposite to each other, for example, when the amorphous thin wire 11A shows the magnetization state shown in FIG. Since the magnetization state shown in FIG. 6 is shown and this state is alternately replaced and repeated, the inductances of the high frequency exciting coils 12A and 12B increase on the one hand and decrease on the other hand. Therefore, the circulating magnetic flux φi
If the resistance values of the resistance sides 6 and 7 and the balancer 8 are adjusted so that the bridge circuit is balanced in the state of zero, the unbalanced current i
It is possible to detect the change in the inductance of the high-frequency exciting coil as a result of the unbalanced output of the bridge circuit.
The unbalanced output of the bridge circuit is rectified, amplified, and noise-removed by the detection circuit 9, and is converted and displayed as an unbalanced current value.
上述のように構成された電流検出装置において、Co基ア
モルファス細線は、高周波領域まで高透磁率を保持する
優れた周波数特性を150℃程度の周囲温度まで保持する
とともに、剛性が高く,直径125μm程度の細線に直径1
00μm程度の銅線を容易に巻回できる特質を有する。し
たがって、周回磁束センサ1A,1Bを極めて小形に形成で
き、かつアモルファス細線を僅かな磁化エネルギーで磁
気飽和量域まで容易に磁化することが可能になる。つぎ
に、高周波振動波によって一方の磁気飽和領域まで高周
波磁化されたアモルファス細線を一対の環状磁心の空隙
部に互いに逆向きに配設するようにしたので、被検出電
流による周回磁束を一対の周回磁束センサのインダクタ
ンス差に変換して検出することを可能にした。さらに、
このインダクタンス変化を一対の周回磁束センサを2辺
に有するブリッジ回路の不平衡出力に変換して出力する
ことにより、微小なインダクタンス変化,いいかえれば
被検出電流の発生を高感度で検出でき、かつ検出回路で
不平衡出力を直流化し,被検出電流に換算出力すること
により、被検出電流の波形の歪みや周波数(直流電流を
含む)の影響を受けることなく検出することができる。In the current detection device configured as described above, the Co-based amorphous thin wire has excellent frequency characteristics that maintain high magnetic permeability up to high frequency regions up to an ambient temperature of approximately 150 ° C, and has high rigidity and a diameter of approximately 125 μm. Diameter 1 for fine wire
It has the characteristic that a copper wire of about 00 μm can be easily wound. Therefore, the orbiting magnetic flux sensors 1A and 1B can be formed in an extremely small size, and the amorphous thin wire can be easily magnetized to a magnetic saturation amount region with a small amount of magnetization energy. Next, the amorphous thin wires that were high-frequency magnetized to one magnetic saturation region by the high-frequency vibration wave were arranged in the voids of the pair of annular magnetic cores in opposite directions. It is possible to detect by converting to the inductance difference of the magnetic flux sensor. further,
By converting this inductance change into an unbalanced output of a bridge circuit having a pair of orbiting magnetic flux sensors on two sides and outputting it, a minute inductance change, in other words, the generation of a current to be detected can be detected with high sensitivity. By converting the unbalanced output into a direct current in the circuit and converting the unbalanced output into a detected current, the detected current can be detected without being affected by the waveform distortion and frequency (including direct current).
この発明は前述のように、アモルファス細線に高周波励
磁コイルを巻装した一対の周回磁束センサを、周回磁束
の磁路となる一対の環状磁心の間隙部に高周波磁束が互
いに逆向きになるよう配設し、上記一対の周回磁束セン
サを2辺に有するブリッジ回路と、このブリッジ回路を
介してアモルファス細線に高周波振動電流を供給する発
振器と、ブリッジ回路の不平衡出力を直流化して被検出
電流値を求める検出する検出回路を設けるよう構成し
た。その結果、被検出電流に基づく周介磁束が発生した
とき、一対のアモルファス細線の磁気飽和状態が互いに
逆向きに変化し、これを周回磁束センサのインダクタン
スの増減に変換し、ブリッジ回路の不平衡出力として感
度よく検出でき、かつ検出回路で直流化して被検出電流
波形の歪みや周波数の影響を排除できるので、電線路の
不平衡電流等の微小な被検出電流をその波形や周波数の
影響を受けることなく高感度で検出でき、したがって単
相,三相交流電線路や直流電線路などに適用可能な汎用
性の高い電流検出装置を提供することができる。また、
零相変流器形の従来の電流検出装置に比べて周回磁束セ
ンサを巻回数の少ない高周波励磁コイルとアモルファス
細線とで小形に形成でき、加工工数を大幅に低減できる
とともにホール素子における素子の不平衡電圧や周囲温
度の影響が排除され、したがって補償回路を必要とせ
ず,回路の構成を簡素化できる利点が得られる。As described above, according to the present invention, a pair of revolving magnetic flux sensors, in which a high frequency exciting coil is wound around an amorphous thin wire, are arranged so that the high frequency magnetic fluxes are opposite to each other in a gap between a pair of annular magnetic cores which are magnetic paths of the revolving magnetic flux. A bridge circuit having the pair of orbiting magnetic flux sensors on two sides, an oscillator for supplying a high-frequency oscillating current to the amorphous thin wire via the bridge circuit, and a current value to be detected by converting the unbalanced output of the bridge circuit into a direct current. A detection circuit for detecting is determined. As a result, when magnetic flux is generated based on the current to be detected, the magnetic saturation state of the pair of amorphous thin wires changes in opposite directions, and this is converted into an increase / decrease in the inductance of the circular magnetic flux sensor, resulting in an unbalanced output of the bridge circuit. As it can be detected with high sensitivity, and the influence of the distortion and frequency of the detected current waveform can be eliminated by converting it to DC in the detection circuit, minute detected current such as unbalanced current in the electric line is affected by the waveform and frequency. Therefore, it is possible to provide a highly versatile current detection device that can be detected with high sensitivity without being concerned and can be applied to single-phase, three-phase AC power lines, DC power lines, and the like. Also,
Compared with the current detector of the zero-phase current transformer type, the orbiting magnetic flux sensor can be made small with a high-frequency exciting coil and an amorphous thin wire that have a small number of windings, which can significantly reduce the processing man-hours and reduce the number of elements in the Hall element. The effects of the equilibrium voltage and the ambient temperature are eliminated, and therefore there is an advantage that a compensating circuit is not required and the circuit configuration can be simplified.
第1図はこの発明の実施例装置を示す概略構成図、第2
図は実施例装置の電線路への取付状況を示す要部の斜視
図、第3図は実施例装置における周回磁束センサ部分の
拡大図、第4図ないし第6図は実施例装置におけるアモ
ルファス細線の磁化状況を説明するための磁化特性線図
である。 1A,1B……周回磁束センサ、2A,2B……環状磁心、3,3A,3
B……間隙部、4……発振器、5……ブリッジ回路、6,7
……抵抗辺、8……平衡器、9……検出回路、11……ア
モルファス細線、12……高周波励磁コイル、10,20……
電線路、i……漏れ電流(不平衡電流)、φi……周回
磁束、IA……高周波振動電流、φA,φB……高周波磁
束。FIG. 1 is a schematic configuration diagram showing an apparatus according to an embodiment of the present invention, and FIG.
FIG. 3 is a perspective view of a main part showing a state of attachment of the embodiment apparatus to an electric line, FIG. 3 is an enlarged view of a circulating magnetic flux sensor portion in the embodiment apparatus, and FIGS. 4 to 6 are amorphous thin wires in the embodiment apparatus. 3 is a magnetization characteristic diagram for explaining the magnetization state of FIG. 1A, 1B …… Orbiting magnetic flux sensor, 2A, 2B …… Annular magnetic core, 3,3A, 3
B: gap, 4: oscillator, 5: bridge circuit, 6,7
...... Resistance side, 8 …… Balancer, 9 …… Detection circuit, 11 …… Amorphous thin wire, 12 …… High frequency exciting coil, 10,20 ……
Electric line, i ... Leakage current (unbalanced current), φi ... Circulating magnetic flux, IA ... High frequency vibration current, φA, φB ... High frequency magnetic flux.
Claims (1)
周回磁束の磁路を形成する一対の環状磁心と、この一対
の環状磁心に形成された間隙部に磁路に平行にそれぞれ
配設されたアモルファス細線および高周波励磁コイルか
らなり,前記周回磁束によりそのインダクタンスに差を
生ずる一対の周回磁束センサと、この一対の周回磁束セ
ンサを2辺に有するブリッジ回路と、このブリッジ回路
を介して前記アモルファス細線が磁気飽和領域に達する
高周波振動電流を供給する発振器と、前記インダクタン
ス差に基づくブリッジ回路の不平衡出力を直流化し,前
記被検出電流に換算して求める検出回路とを備えたこと
を特徴とする電流検出装置。1. A pair of annular magnetic cores that form a magnetic path of a circulating magnetic flux generated by a current to be detected around an electric line, and a pair of annular magnetic cores that are arranged in parallel with the magnetic path in a gap portion formed between the pair of annular magnetic cores. And a pair of orbiting magnetic flux sensors each of which has an inductance difference due to the orbiting magnetic flux, a bridge circuit having the pair of orbiting magnetic flux sensors on two sides, and the amorphous circuit via the bridge circuit. An oscillator for supplying a high-frequency oscillating current in which a thin wire reaches a magnetic saturation region, and a detection circuit for converting the unbalanced output of the bridge circuit based on the inductance difference into a direct current and converting the current into the detected current. Current detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62044663A JPH06105263B2 (en) | 1987-02-27 | 1987-02-27 | Current detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62044663A JPH06105263B2 (en) | 1987-02-27 | 1987-02-27 | Current detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63210781A JPS63210781A (en) | 1988-09-01 |
JPH06105263B2 true JPH06105263B2 (en) | 1994-12-21 |
Family
ID=12697687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62044663A Expired - Lifetime JPH06105263B2 (en) | 1987-02-27 | 1987-02-27 | Current detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06105263B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5911065B2 (en) * | 2012-06-12 | 2016-04-27 | 公立大学法人大阪市立大学 | Earth leakage detector |
WO2016002500A1 (en) * | 2014-07-02 | 2016-01-07 | 株式会社村田製作所 | Current sensor |
-
1987
- 1987-02-27 JP JP62044663A patent/JPH06105263B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63210781A (en) | 1988-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101965977B1 (en) | Apparatus for measuring current | |
US6411078B1 (en) | Current sensor apparatus | |
JP3286431B2 (en) | DC current sensor | |
US7365535B2 (en) | Closed-loop magnetic sensor system | |
KR100993928B1 (en) | Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method | |
JP2829521B2 (en) | Current detector | |
JP5308500B2 (en) | Geomagnetic sensor | |
JP2007052019A (en) | Magnetometer for enhancing demagnetization region | |
JPH02165062A (en) | Current sensor | |
US3260932A (en) | Magnet-field measuring device with a galvanomagnetic resistance probe | |
JP2001264360A (en) | Dc current detector | |
JP2002202328A (en) | Magnetic field type current sensor | |
JP2003075475A (en) | Ac current sensor | |
JP3518260B2 (en) | Transformer, DC bias detection element of transformer, and DC bias evaluation device | |
JPH11237411A (en) | Dc current sensor and dc current measurement system | |
JPH06105263B2 (en) | Current detector | |
JP2586156B2 (en) | AC / DC dual-purpose current detection method | |
KR102039268B1 (en) | An Alternating and Direct Current Detection Circuit | |
JP2021081450A (en) | Magnetic field compensation device | |
JP2000266785A (en) | Current measuring device | |
JP3100100B2 (en) | Superconducting loop type magnetic field measuring device | |
JP3166987B2 (en) | Current sensor | |
JP2000266786A (en) | Current sensor | |
JPH0261710B2 (en) | ||
JPH08201061A (en) | Thin film magnetic sensor |