Nothing Special   »   [go: up one dir, main page]

JPH0598408A - Method for calculating heat gain in alloying furnace of galvannealed steel strip - Google Patents

Method for calculating heat gain in alloying furnace of galvannealed steel strip

Info

Publication number
JPH0598408A
JPH0598408A JP26087491A JP26087491A JPH0598408A JP H0598408 A JPH0598408 A JP H0598408A JP 26087491 A JP26087491 A JP 26087491A JP 26087491 A JP26087491 A JP 26087491A JP H0598408 A JPH0598408 A JP H0598408A
Authority
JP
Japan
Prior art keywords
independent
heat input
amount
contribution rate
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26087491A
Other languages
Japanese (ja)
Inventor
Isao Nakamura
村 功 中
Kunitoshi Watanabe
辺 国 俊 渡
Fusahiro Sekimoto
本 総 裕 関
Youichi Sashihara
洋 一 佐志原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26087491A priority Critical patent/JPH0598408A/en
Priority to DE69215613T priority patent/DE69215613T2/en
Priority to EP92115409A priority patent/EP0531963B1/en
Priority to US07/942,569 priority patent/US5423926A/en
Publication of JPH0598408A publication Critical patent/JPH0598408A/en
Priority to US08/167,607 priority patent/US5442570A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

(57)【要約】 【目的】 合金化処理炉の加熱帯の必要な入熱量を計算
するに際し、鋼種,通板速度,めっき付着量等が大きく
変化する実際の操業においても、常時適正な入熱量を求
める。 【構成】 計算式を定める二次元以上の空間を複数に区
分して区分された各々の領域に独立した計算式を割り当
てるとともに、領域と領域との境界では、メンバ−シッ
プ関数を利用してその位置の各領域への寄与率を求め、
複数領域の計算式を利用し、荷重平均を計算して入熱量
を求める。
(57) [Summary] [Purpose] When calculating the required heat input for the heating zone of the alloying furnace, it is necessary to always obtain the correct heat input, even in actual operation where the steel grade, strip running speed, coating weight, etc. vary greatly. Calculate the amount of heat. [Structure] A two or more-dimensional space that defines a calculation formula is divided into a plurality of regions, and an independent calculation formula is assigned to each divided region. At the boundary between regions, a membership function is used to Calculate the contribution rate of each position to each area,
The heat input is calculated by calculating the weighted average using the calculation formulas of multiple regions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融合金化亜鉛めっき
鋼帯の製造工程における合金化炉制御のための入熱量算
出に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to calculation of heat input for controlling an alloying furnace in a manufacturing process of hot-dip galvanized steel strip.

【0002】[0002]

【従来の技術】溶融合金化亜鉛めっき鋼帯の製造工程に
おいては、一般に鋼帯を溶融亜鉛めっき浴に通して鋼帯
表面に亜鉛めっき層を付着させ、次に鋼帯表面へのガス
の吹付けによってめっき付着量を調整し、続いて鋼帯を
合金化処理炉に通し、該合金化処理炉内で熱処理による
拡散によって、めっき層を鉄と亜鉛との合金とする。
2. Description of the Related Art In the process of manufacturing hot-dip galvanized steel strip, the steel strip is generally passed through a hot-dip galvanizing bath to deposit a galvanized layer on the surface of the strip, and then a gas is blown onto the surface of the strip. The coating amount is adjusted by attachment, the steel strip is then passed through an alloying treatment furnace, and the plated layer is made of an alloy of iron and zinc by diffusion by heat treatment in the alloying treatment furnace.

【0003】このようにして製造される溶融合金化亜鉛
めっき鋼帯は、耐フレ−キング性及びパウダリング性に
優れていることが品質上重要である。好ましい品質の溶
融合金化亜鉛めっき鋼帯を得るためには、その製造工程
の合金化炉の温度や通板速度を制御して、合金化程度
(例えばめっき層中の鉄分の含有率で表わされる)を所
定の状態に制御し、合金化不足や合金化過剰の発生を防
止する必要がある。
It is important in terms of quality that the hot-dip galvanized steel strip produced in this manner has excellent flaking resistance and powdering resistance. In order to obtain a hot-dip galvanized steel strip having a preferable quality, the temperature of the alloying furnace and the strip-passing speed in the manufacturing process are controlled, and the degree of alloying (for example, the content of iron in the plating layer is represented. ) Should be controlled to a predetermined state to prevent insufficient alloying or excessive alloying.

【0004】例えば特開平1−279738号公報に開
示された製造方法においては、合金化処理における初期
の熱処理条件を特定することにより、耐フレ−キング性
を向上させ得ることが示されている。
For example, in the manufacturing method disclosed in Japanese Patent Application Laid-Open No. 1-279738, it is shown that the flaking resistance can be improved by specifying the initial heat treatment conditions in the alloying treatment.

【0005】[0005]

【発明が解決しようとする課題】本発明者等の調査によ
れば、めっき合金中の鉄量6〜13%の溶融合金化亜鉛
めっきの合金化制御において、耐フレ−キング性等を向
上させるために、めっき層表面部でのη相等の生成を抑
制し、また、均一合金化制御のため加熱帯に次いで保熱
帯を通して合金化するに際し、加熱帯では鋼種,通板速
度,めっき付着量等の緒元に基づいて入熱量を演算し制
御することが有効であることが明らかになっている。
According to the investigation by the present inventors, the flaking resistance and the like are improved in the alloying control of the hot-dip galvanized zinc plating containing 6 to 13% of iron in the plated alloy. In order to suppress the formation of η phase, etc. on the surface of the plating layer, and for alloying through the heat-retaining zone after the heating zone for uniform alloying control, the steel type, strip speed, coating amount, etc. in the heating zone It has been clarified that it is effective to calculate and control the amount of heat input based on the specifications.

【0006】しかしながら、合金化プロセスは非常に複
雑でかつ非線形である。従って、鋼種,通板速度,めっ
き付着量等の緒元が大きく変化する実際の操業において
は、単一の計算式では常時適正な入熱量を求めることが
できない。また、諸元の内容に応じて複数の計算式を選
択的に使用することが考えられるが、どの範囲でどの計
算式を選択すれば適正な入熱量が計算できるかの判断が
非常に難しく、特に計算式を変更する範囲の境界付近で
は、いずれの計算式を用いても適正な入熱量が求められ
ない場合が多い。
However, the alloying process is very complex and non-linear. Therefore, in an actual operation in which specifications such as steel type, strip running speed, and amount of deposited coating change greatly, it is not possible to always obtain an appropriate heat input amount with a single calculation formula. Also, it is possible to selectively use multiple calculation formulas according to the contents of specifications, but it is very difficult to judge which calculation formula should be selected in which range to calculate the proper heat input, Especially in the vicinity of the boundary of the range where the calculation formula is changed, it is often the case that an appropriate heat input amount cannot be obtained by using any of the calculation formulas.

【0007】従って本発明は、鋼種,通板速度,めっき
付着量等の諸元が大きく変化する実際の操業において
も、常時適正な入熱量を求めることを課題とする。
Therefore, an object of the present invention is to always obtain an appropriate heat input amount even in an actual operation in which specifications such as steel type, strip running speed, and amount of deposited coating change greatly.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本願の第1番の発明においては、溶融亜鉛を付着さ
れた鋼帯を合金化炉に通し、該合金化炉で加熱によって
鋼帯に鉄と亜鉛の合金化層を形成する工程で、前記合金
化炉の入熱量を算出するに際して、入熱量を算出するた
めの計算式を定める空間を、少なくとも鋼種定数の軸と
めっき付着量の軸とで表わされる二次元以上の空間と
し、該空間を3以上の独立領域及び該複数の独立領域の
間に存在する境界領域に区分して区分された独立領域毎
に独立した計算式を用意するとともに、前記境界領域の
内部におけるそれの区分された各独立領域への寄与率を
定めるメンバ−シップ関数を各軸に2つ以上用意し、入
力された鋼種定数とそのメンバ−シップ関数から鋼種定
数の各独立領域への寄与率を計算し、入力されためっき
付着量とそのメンバ−シップ関数からめっき付着量の各
独立領域への寄与率を計算し、各独立領域に割り当てら
れた計算式と求められた各寄与率に基づく計算を実施し
て、入熱量を求める。
In order to solve the above problems, in the first invention of the present application, a steel strip to which molten zinc is adhered is passed through an alloying furnace, and the steel is heated by heating in the alloying furnace. When calculating the heat input of the alloying furnace in the step of forming the alloyed layer of iron and zinc in the zone, at least the space for defining the calculation formula for calculating the heat input, the axis of the steel type constant and the plating adhesion amount A two-dimensional or more space represented by the axis and the space is divided into three or more independent regions and boundary regions existing between the plurality of independent regions, and an independent calculation formula is obtained for each independent region. At the same time, two or more membership functions are prepared for each axis that determine the contribution rate to each of the divided independent areas inside the boundary area. From the input steel type constant and its membership function, Steel grade constants for each independent area The rate of contribution is calculated, and the contribution rate of the plating coverage to each independent area is calculated from the input plating coverage and its membership function, and the formula assigned to each independent area and the calculated contribution rate Calculate the heat input by performing the calculation based on

【0009】また本願の第2番の発明においては、入熱
量を算出するための計算式を定める空間を、鋼種定数の
軸,めっき付着量の軸,及び通板速度の軸で表わされる
三次元の空間とし、該空間を3以上の独立領域及び該複
数の独立領域の間に存在する境界領域に区分して区分さ
れた独立領域毎に独立した計算式を用意するとともに、
前記境界領域の内部におけるそれの区分された各独立領
域への寄与率を定めるメンバ−シップ関数を各軸に2つ
以上用意し、入力された鋼種定数とそのメンバ−シップ
関数から鋼種定数の各独立領域への寄与率を計算し、入
力されためっき付着量とそのメンバ−シップ関数からめ
っき付着量の各独立領域への寄与率を計算し、入力され
た通板速度とそのメンバ−シップ関数から通板速度の各
独立領域への寄与率を計算し、各独立領域に割り当てら
れた計算式と求められた各寄与率に基づく計算を実施し
て、入熱量を求める。
Further, in the second invention of the present application, the space for defining the calculation formula for calculating the heat input is a three-dimensional space represented by the axis of the steel type constant, the axis of the coating deposition amount, and the axis of the strip running speed. And the space is divided into three or more independent regions and a boundary region existing between the plurality of independent regions, and an independent calculation formula is prepared for each divided independent region,
Two or more membership functions that determine the contribution rate to each of the divided independent regions inside the boundary region are prepared for each axis, and the steel type constant and the steel type constant are input from the input steel type constant and its membership function. The contribution rate to the independent area is calculated, and the contribution rate of the plating adhesion amount to each independent area is calculated from the input plating adhesion amount and its membership function, and the input strip speed and its membership function are calculated. Then, the contribution rate of the strip running speed to each independent area is calculated, and the heat input amount is obtained by carrying out the calculation based on the calculation formula assigned to each independent area and each obtained contribution rate.

【0010】[0010]

【作用】本発明においては、入熱量を算出するための計
算式を定める空間を、少なくとも鋼種定数とめっき付着
量で表わされる二次元以上の空間とし、この空間を複数
に区分して、各々の空間毎にそれに適した計算式を用意
するので、区分された空間(独立領域)毎にそれに適し
た計算式を使用して入熱量を計算することができる。し
かも、互いに隣接する独立領域と独立領域との間の空間
においては、その位置での各独立領域に対する寄与率を
予め定められたメンバ−シップ関数によって求め、各独
立領域に割り当てられた計算式と求められた各寄与率に
基づく複数の計算式を計算して入熱量を求めるので、領
域と領域との境界が不明瞭な場合であっても、メンバ−
シップ関数に適切なものを使用することによって、その
境界領域においても計算結果を実際に必要な入熱量と一
致させうる。つまり、分割される各領域の範囲と領域間
の境界における寄与率を定める各メンバ−シップ関数と
の調整によって、非常に複雑な合金化プロセスに対して
も、精密に一致する計算結果を得ることができる。
In the present invention, the space for defining the calculation formula for calculating the heat input is at least a two-dimensional space represented by the steel type constant and the plating adhesion amount, and this space is divided into a plurality of spaces. Since a calculation formula suitable for each space is prepared, the heat input amount can be calculated using a calculation formula suitable for each divided space (independent region). Moreover, in the space between the independent areas adjacent to each other, the contribution rate to each independent area at that position is obtained by a predetermined membership function, and a calculation formula assigned to each independent area is obtained. Since the heat input is calculated by calculating a plurality of calculation formulas based on the calculated respective contribution rates, even if the boundary between regions is unclear, the member-
By using an appropriate ship function, the calculation result can be matched with the actually required heat input amount even in the boundary region. In other words, by adjusting the range of each divided region and each membership function that determines the contribution ratio at the boundary between the regions, it is possible to obtain a precisely consistent calculation result even for a very complicated alloying process. You can

【0011】[0011]

【実施例】図1に、溶融合金化亜鉛めっき鋼帯の製造工
程の主要部の構成を示す。図1を参照して説明する。鋼
帯2は、図中矢印の方向に搬送され、溶融亜鉛浴1を通
ってその表面に溶融亜鉛が付着された後、ノズル3を通
る際にガスの吹付けによって溶融亜鉛の付着量が調整さ
れ、その後合金化処理炉4に入る。合金化処理炉4の内
部は、加熱帯4a,保熱帯4b及び冷却帯4cに区分さ
れており、合金化処理炉4に入った鋼帯2は、まず加熱
帯4aで急速に470℃以上の板温に加熱され、続いて
保熱帯4b中で一定の温度に保持されて合金化処理を施
され、次に冷却帯4cで冷却され、鉄分含有率が6〜1
3%程度の亜鉛−鉄合金めっき層をその表面近傍に形成
する。合金化処理炉4を出た鋼帯2は、ロ−ル20を通
って次の工程に搬送される。
EXAMPLE FIG. 1 shows the structure of the main part of the manufacturing process of hot-dip galvanized steel strip. This will be described with reference to FIG. The steel strip 2 is conveyed in the direction of the arrow in the figure, and after the molten zinc is adhered to its surface through the molten zinc bath 1, the amount of molten zinc adhered is adjusted by blowing gas when passing through the nozzle 3. Then, the alloying furnace 4 is entered. The interior of the alloying treatment furnace 4 is divided into a heating zone 4a, a heat retaining zone 4b, and a cooling zone 4c. The steel strip 2 that has entered the alloying treatment furnace 4 is first heated rapidly in the heating zone 4a at 470 ° C or higher. It is heated to the plate temperature, then kept at a constant temperature in the heat retaining zone 4b for alloying treatment, and then cooled in the cooling zone 4c so that the iron content is 6 to 1
A zinc-iron alloy plating layer of about 3% is formed near the surface. The steel strip 2 exiting the alloying treatment furnace 4 is conveyed to the next step through the roll 20.

【0012】この実施例においては、合金化処理炉の加
熱帯4aにガスの燃焼によって熱を供給しており、供給
される燃料ガスの流量を制御することによって加熱帯4
aの入熱量を制御している。この制御は、熱量調節器1
1が図示しない流量調節弁の開度を調節することによっ
て実施される。この熱量調節器11には、入熱量演算器
13の出力する熱量設定値(目標値:入熱量)が印加さ
れる。温度計10は、加熱帯4aの炉温を測定し、その
測定値を入熱量演算器13に入力する。ノズル3から出
るガスの流量は、めっき付着量調節器12によって制御
される。めっき付着量調節器12は、入力されるめっき
付着量(設定値)に応じて、ノズル3に与えるガスの流
量を制御する。プロセスコンピュ−タ(プロコン)14
は、溶融合金化亜鉛めっき鋼帯の製造工程の全体を管理
しており、めっき付着量調節器12に対してはめっき付
着量の設定値を出力し、入熱量演算器13に対しては、
めっき付着量,鋼種,通板速度,板幅及び板厚の情報を
出力する。入熱量演算器13は、入力される炉温と、め
っき付着量,鋼種,通板速度,板幅及び板厚の情報に基
づいて、入熱量、即ち熱量設定値を計算し、その結果を
熱量調節器11に印加する。
In this embodiment, heat is supplied to the heating zone 4a of the alloying furnace by gas combustion, and the heating zone 4a is controlled by controlling the flow rate of the supplied fuel gas.
The heat input amount of a is controlled. This control is performed by the calorie controller 1
1 is performed by adjusting the opening degree of a flow rate control valve (not shown). A heat quantity set value (target value: heat quantity) output from the heat quantity calculator 13 is applied to the heat quantity controller 11. The thermometer 10 measures the furnace temperature of the heating zone 4a and inputs the measured value to the heat input calculator 13. The flow rate of the gas discharged from the nozzle 3 is controlled by the plating amount controller 12. The coating amount controller 12 controls the flow rate of the gas supplied to the nozzle 3 in accordance with the input coating amount (set value). Process computer (Pro computer) 14
Manages the entire manufacturing process of the hot-dip galvanized steel strip, outputs the set value of the coating weight to the coating weight controller 12, and outputs the set value of the coating weight to the heat input calculator 13.
Outputs information on coating weight, steel grade, strip speed, strip width and strip thickness. The heat input amount calculator 13 calculates the heat input amount, that is, the heat amount set value, based on the input furnace temperature and the information of the amount of deposited coating, the steel type, the plate passing speed, the plate width, and the plate thickness, and the result is the heat amount. Apply to regulator 11.

【0013】以下、入熱量演算器13が入熱量を計算す
る処理について説明する。合金化プロセスは非常に複雑
でかつ非線形であり、実際の操業においては、鋼種定
数,めっき付着量,通板速度等の操業条件に応じて変化
するので、この実施例においては、入熱量の計算のため
に、鋼種定数に対応する軸(x)とめっき付着量に対応
する軸(y)で表わされる二次元空間を定め、この二次
元空間を図2に示すような領域1,領域2,領域3,領
域4,領域5及び領域6の6つに区分してある。しかし
これらの領域の互いに隣接する部分の境界は明確ではな
いので、その境界部分、つまり図2にハッチングを施し
て示す部分は、5つのメンバ−シップ関数X1,X2,
Y1,Y2及びY3を使用して、その部分の各領域への
寄与率を求めるようにしてある。
The process by which the heat input calculator 13 calculates the heat input will be described below. The alloying process is very complicated and non-linear, and in actual operation, it changes according to the operating conditions such as steel type constant, coating deposition amount, strip running speed, etc. Therefore, in this embodiment, the calculation of the heat input amount is performed. For this purpose, a two-dimensional space represented by an axis (x) corresponding to the steel type constant and an axis (y) corresponding to the plating adhesion amount is defined, and this two-dimensional space is defined as a region 1, a region 2, as shown in FIG. It is divided into six areas, area 3, area 5, and area 6. However, since the boundaries between the parts adjacent to each other in these regions are not clear, the boundary part, that is, the part shown by hatching in FIG. 2, has five membership functions X1, X2, and
Using Y1, Y2, and Y3, the contribution rate of that portion to each area is obtained.

【0014】具体的には、この二次元空間内の任意の位
置(x,y)の領域1に対する寄与率c1,領域2に対
する寄与率c2,領域3に対する寄与率c3,領域4に
対する寄与率c4,領域5に対する寄与率c5及び領域
6に対する寄与率c6は、それぞれ次式で表わされる。
Specifically, the contribution rate c1 to the area 1 at a given position (x, y) in this two-dimensional space, the contribution rate c2 to the area 2, the contribution rate c3 to the area 3, and the contribution rate c4 to the area 4. , The contribution rate c5 to the area 5 and the contribution rate c6 to the area 6 are respectively expressed by the following equations.

【0015】[0015]

【数1】 c1=Min[X1(x),Y1(y)] ・・・(1) c2=Min[X1(x),Y2(y)] ・・・(2) c3=Min[X1(x),Y3(y)] ・・・(3) c4=Min[X2(x),Y1(y)] ・・・(4) c5=Min[X2(x),Y2(y)] ・・・(5) c6=Min[X2(x),Y3(y)] ・・・(6) 但し、Min[]:[]内の最小値を選択 X1(),X2():鋼種定数のメンバ−シップ関数 Y1()〜Y3():めっき付着量のメンバ−シップ関数 x:鋼種定数の値 y:めっき付着量の値 例えば、図2において点P1で示される位置では、メン
バ−シップ関数X1(x)が1、X2(x)が0、Y1(y)が
0、Y2(y)が1、Y3(y)が0であるので、領域2に対
する寄与率c2以外は0であり、明らかに点P1は領域
2のみに属している。しかし、点P2で示される位置で
は、メンバ−シップ関数X1(x),X2(x),Y1(y),
及びY2(y)が、各々0と1の間の値をとるので、領域
1,領域2,領域4及び領域5の4つに対してそれぞれ
ある寄与率を有しており、P1が属する領域はあいまい
である。
## EQU00001 ## c1 = Min [X1 (x), Y1 (y)] ... (1) c2 = Min [X1 (x), Y2 (y)] ... (2) c3 = Min [X1 ( x), Y3 (y)] (3) c4 = Min [X2 (x), Y1 (y)] (4) c5 = Min [X2 (x), Y2 (y)]・ (5) c6 = Min [X2 (x), Y3 (y)] (6) However, select the minimum value in Min []: [] X1 (), X2 (): Member of steel type constant -Ship function Y1 () to Y3 (): Member of plating adhesion amount-Ship function x: Value of steel grade constant y: Value of plating adhesion amount For example, at the position indicated by point P1 in FIG. Since (x) is 1, X2 (x) is 0, Y1 (y) is 0, Y2 (y) is 1, and Y3 (y) is 0, it is 0 except for the contribution ratio c2 to the region 2, which is obvious. The point P1 belongs to the area 2 only. However, at the position indicated by the point P2, the membership functions X1 (x), X2 (x), Y1 (y),
And Y2 (y) each take a value between 0 and 1, and therefore have a certain contribution rate to each of the four regions 1, region 2, region 4, and region 5, and the region to which P1 belongs Is ambiguous.

【0016】この実施例においては、領域1に関する入
熱量Q1,領域2に関する入熱量Q2,領域3に関する
入熱量Q3,領域4に関する入熱量Q4,領域5に関す
る入熱量Q5及び領域6に関する入熱量Q6は、それぞ
れ次式で計算される。
In this embodiment, the heat input amount Q1 regarding the region 1, the heat input amount Q2 regarding the region 2, the heat input amount Q3 regarding the region 3, the heat input amount Q4 regarding the region 4, the heat input amount Q5 regarding the region 5, and the heat input amount Q6 regarding the region 6. Are respectively calculated by the following equations.

【0017】[0017]

【数2】 Q1=a01+a11×炉温+a21×入熱量補正値+a31×鋼種定数・・・(7) Q2=a02+a12×炉温+a22×入熱量補正値+a32×鋼種定数・・・(8) Q3=a03+a13×炉温+a23×入熱量補正値+a33×鋼種定数・・・(9) Q4=a04+a14×炉温+a24×入熱量補正値+a34×鋼種定数・・・(10) Q5=a05+a15×炉温+a25×入熱量補正値+a35×鋼種定数・・・(11) Q6=a06+a16×炉温+a26×入熱量補正値+a36×鋼種定数・・・(12) 入熱量補正値=めっき付着量×通板速度× [1+k1(板幅−板幅標準値)+k2(板厚−板厚標準値)]・・・(13) 但し、a01〜a36,k1,k2:定数 最終的に求める入熱量Qは、6つの領域での計算結果Q
1〜Q6と各領域に対する寄与率c1〜c6に基づい
て、次の第(14)式により荷重平均を求めることにより計
算される。
[Equation 2] Q1 = a01 + a11 × furnace temperature + a21 × heat input correction value + a31 × steel grade constant (7) Q2 = a02 + a12 × furnace temperature + a22 × heat input correction value + a32 × steel grade constant (8) Q3 = a03 + a13 x furnace temperature + a23 x heat input correction value + a33 x steel grade constant (9) Q4 = a04 + a14 x furnace temperature + a24 x heat input correction value + a34 x steel grade constant (10) Q5 = a05 + a15 x furnace temperature + a25 x Heat input correction value + a35 x steel type constant ... (11) Q6 = a06 + a16 x furnace temperature + a26 x heat input correction value + a36 x steel type constant ... (12) Heat input correction value = coating adhesion amount x strip running speed x [ 1 + k1 (plate width-plate width standard value) + k2 (plate thickness-plate thickness standard value)] (13) However, a01 to a36, k1, k2: constants The final heat input Q is in six areas. Calculation result in Q
It is calculated by obtaining the weighted average by the following equation (14) based on 1 to Q6 and the contribution rates c1 to c6 to each area.

【0018】[0018]

【数3】 Q=(c1×Q1+c2×Q2+c3×Q3+c4×Q4+c5×Q5+c6×Q6)/ (c1+c2+c3+c4+c5+c6) ・・・(14) 図2に示す空間の分割数,分割する位置,各メンバ−シ
ップ関数の内容,及び入熱量の推定式(第(7)式〜第(1
3)式)の内容は、必要に応じて変更される。分割すべき
位置は、過去の操業実績デ−タを参照し、入熱量の推定
式が変化するような点をみつけることにより、その点に
決定される。入熱量の推定式としては、例えば次に示す
式を用いてもよい。
[Equation 3] Q = (c1 × Q1 + c2 × Q2 + c3 × Q3 + c4 × Q4 + c5 × Q5 + c6 × Q6) / (c1 + c2 + c3 + c4 + c5 + c6) (14) Number of space divisions shown in FIG. 2, division position, each member-of the ship function Estimated expression of contents and heat input (Equation (7) to (1)
The contents of formula 3) are changed as necessary. The position to be divided is determined at that point by referring to past operation performance data and finding a point at which the heat input estimation formula changes. As the estimation formula of the heat input amount, for example, the following formula may be used.

【0019】[0019]

【数4】 Qi=a0i+a1i×(めっき付着量×通板速度)+a2i×鋼種定数 ・・(15) Qi=a0i+a1i×めっき付着量+a2i×通板速度+a3i×鋼種定数・・(16) Qi=a0i+a1i×炉温+a2i×めっき付着量+a3i×通板速度 +a4i×板幅+a5i×板厚+a6i×鋼種定数 ・・(17) i:1〜領域区分数 前記実施例においては、5つのメンバシップ関数X1,
X2,Y1,Y2及びY3を使用して空間を6つの領域
に区分したが、例えばメンバシップ関数を各軸2つと
し、図3に示すように空間を3つに区分したり、図4に
示すように空間を4つに区分することも可能である。
[Equation 4] Qi = a0i + a1i × (plating adhesion amount × passing speed) + a2i × steel grade constant ・ ・ (15) Qi = a0i + a1i × plating amount + a2i × passing speed + a3i × steel grade constant ・ ・ (16) Qi = a0i + a1i × Furnace temperature + a2i × Plating adhesion amount + a3i × Plate passing speed + a4i × Plate width + a5i × Plate thickness + a6i × Steel type constant ... (17) i: 1 to number of area divisions In the embodiment, five membership functions X1,
The space is divided into six regions by using X2, Y1, Y2 and Y3. For example, the membership function is divided into two axes, and the space is divided into three as shown in FIG. It is also possible to divide the space into four as shown.

【0020】図5に示す実施例においては、空間を鋼種
定数を示すx軸,めっき付着量を示すy軸,及び通板速
度を示すz軸の三次元空間とし、各軸に2つのメンバシ
ップ関数X1,X2,Y1,Y2,Z1及びZ2を割り
当てて、空間を8つの領域(領域1〜領域8)に区分し
てある。図5において、ハッチングを施した部分は領域
と領域との境界部分である。区分した領域数の違いに対
応して入熱量推定式の数が変化し、また荷重平均を求め
る式の内容が変わる他は前記実施例と同様にして入熱量
を求めることができる。
In the embodiment shown in FIG. 5, the space is a three-dimensional space consisting of an x-axis showing a steel type constant, ay-axis showing the amount of plating deposit, and a z-axis showing the strip running speed, and two memberships are provided for each axis. The functions X1, X2, Y1, Y2, Z1 and Z2 are assigned to divide the space into eight regions (region 1 to region 8). In FIG. 5, hatched portions are boundary portions between regions. The heat input amount can be obtained in the same manner as in the above-mentioned embodiment except that the number of heat input amount estimation formulas changes according to the difference in the number of divided regions and the content of the formula for obtaining the weighted average changes.

【0021】前記実施例においては、入熱量の絶対値を
求めるようにしているが、実際には一定の周期で入熱量
の計算を繰り返し実行することになるので、入熱量の偏
差を繰り返し演算し、得られた入熱量の偏差量をそれま
での入熱量に加えるように制御内容を変更してもよい。
その場合には、次の計算式を使用して入熱量偏差を計算
すればよい。なおここでは、1演算周期(Δt)間の変
数の変化をΔで示す。
In the above-mentioned embodiment, the absolute value of the heat input amount is obtained. However, since the heat input amount is repeatedly calculated in a constant cycle, the deviation of the heat input amount is repeatedly calculated. The control content may be changed so that the deviation amount of the obtained heat input amount is added to the heat input amount up to that point.
In that case, the heat input deviation may be calculated using the following calculation formula. Note that here, the change of the variable during one calculation cycle (Δt) is indicated by Δ.

【0022】[0022]

【数5】 ΔQi=a0i+a1i×Δ炉温+a2i×Δ入熱量補正値+a3i×Δ鋼種定数 i:1〜領域区分数 ・・・
(18) Δ入熱量補正値=Δ[めっき付着量×通板速度× {1+k1(板幅−板幅標準値)+k2(板厚−板厚標準値)}]・・・(1
9) ΔQ=(c1×ΔQ1+c2×ΔQ2+c3×ΔQ3+c4×ΔQ4 +c5×ΔQ5+c6×ΔQ6)/(c1+c2+c3+c4+c5+c6)・・・(20) (領域区分数が6の場合) 前記第(15)式,第(16)式及び第(17)式は、各々次式のよ
うに変更される。
[Equation 5] ΔQi = a0i + a1i × Δ furnace temperature + a2i × Δheat input correction value + a3i × Δ steel grade constant i: 1 to number of zone divisions ...
(18) Δ Heat input correction value = Δ [Amount of plating adhered x plate passing speed x {1 + k1 (plate width-plate width standard value) + k2 (plate thickness-plate thickness standard value)}] (1
9) ΔQ = (c1 × ΔQ1 + c2 × ΔQ2 + c3 × ΔQ3 + c4 × ΔQ4 + c5 × ΔQ5 + c6 × ΔQ6) / (c1 + c2 + c3 + c4 + c5 + c6) (20) (when the number of area divisions is 6) Formula (15), (16) The equation and the equation (17) are respectively changed to the following equations.

【0023】 ΔQi=a0i+a1i×Δ(めっき付着量×通板速度)+a2i×Δ鋼種定数 ・・・(21) ΔQi=a0i+a1i×Δめっき付着量+a2i×Δ通板速度 +a3i×Δ鋼種定数 ・・・(22) ΔQi=a0i+a1i×Δ炉温+a2i×Δめっき付着量+a3i×Δ通板速度 +a4i×Δ板幅+a5i×Δ板厚+a6i×Δ鋼種定数 ・・・(23)ΔQi = a0i + a1i × Δ (amount of plating adhered × passing speed) + a2i × Δ steel grade constant ... (22) ΔQi = a0i + a1i × Δ furnace temperature + a2i × Δ plating deposit amount + a3i × Δ strip speed + a4i × Δ strip width + a5i × Δ strip thickness + a6i × Δ steel grade constant (23)

【0024】[0024]

【発明の効果】以上のとおり本発明によれば、入熱量を
算出するための計算式を定める空間を、少なくとも鋼種
定数とめっき付着量で表わされる二次元以上の空間と
し、この空間を複数に区分して、各々の空間毎にそれに
適した計算式を用意するので、区分された空間(独立領
域)毎にそれに適した計算式を使用して入熱量を計算す
ることができる。しかも、互いに隣接する独立領域と独
立領域との間の空間においては、その位置での各独立領
域に対する寄与率を予め定められたメンバ−シップ関数
によって求め、各独立領域に割り当てられた計算式と求
められた各寄与率に基づく複数の計算式を計算して入熱
量を求めるので、領域と領域との境界が不明瞭な場合で
あっても、メンバ−シップ関数に適切なものを使用する
ことによって、その境界領域においても計算結果を実際
に必要な入熱量と一致させうる。つまり、分割される各
領域の範囲と領域間の境界における寄与率を定める各メ
ンバ−シップ関数との調整によって、非常に複雑な合金
化プロセスに対しても、それに合った適切な計算結果を
得ることができる。
As described above, according to the present invention, the space for defining the calculation formula for calculating the heat input is at least a two-dimensional space represented by the steel type constant and the plating deposition amount, and the space is made plural. Since the calculation formula suitable for each space is prepared for each space, the heat input amount can be calculated using the calculation formula suitable for each space (independent region). Moreover, in the space between the independent areas adjacent to each other, the contribution rate to each independent area at that position is obtained by a predetermined membership function, and a calculation formula assigned to each independent area is obtained. Since the heat input is calculated by calculating multiple formulas based on the calculated contribution ratios, use an appropriate membership function even if the boundaries between regions are unclear. Therefore, the calculation result can be matched with the actually required heat input amount even in the boundary region. In other words, by adjusting the range of each divided region and each membership function that determines the contribution ratio at the boundary between regions, an appropriate calculation result suitable for a very complicated alloying process can be obtained. be able to.

【0025】これによって、入熱量の調整を完全自動化
しても、鋼帯の耐フレ−キング性及び耐パウダリング性
を向上させることができ、まためっき層中の鉄量を目標
値に正確に制御しうるので、溶融合金化亜鉛めっき鋼帯
の品質を著しく向上させることができ、同時にオペレ−
タの負担も著しく軽減される。製造コストの低減につな
がるのは勿論である。
As a result, the flaking resistance and powdering resistance of the steel strip can be improved even when the heat input amount is completely automated, and the iron amount in the plating layer can be accurately adjusted to the target value. Since it can be controlled, the quality of the hot-dip galvanized steel strip can be significantly improved, and at the same time
The burden on the computer is also significantly reduced. Needless to say, this leads to a reduction in manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 溶融合金化亜鉛めっき鋼帯の製造工程の主要
部の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a main part of a manufacturing process of a hot-dip galvanized steel strip.

【図2】 計算式を定める空間の区分とメンバ−シップ
関数を示すマップである。
FIG. 2 is a map showing a division of a space defining a calculation formula and a membership function.

【図3】 図2の変形実施例を示すマップである。FIG. 3 is a map showing a modified example of FIG.

【図4】 図2の変形実施例を示すマップである。FIG. 4 is a map showing a modified example of FIG.

【図5】 計算式を定める空間を三次元空間に変更した
実施例を示すマップである。
FIG. 5 is a map showing an embodiment in which a space defining a calculation formula is changed to a three-dimensional space.

【符号の説明】[Explanation of symbols]

1:溶融亜鉛浴 2:鋼帯 3:
ノズル 4:合金化処理炉 4a:加熱帯 4
b:保熱帯 4c:冷却帯 10:放射温度計 1
1:熱量調節器 12:めっき付着量調節器 1
3:入熱量演算器 14:プロコン
1: Molten zinc bath 2: Steel strip 3:
Nozzle 4: Alloying treatment furnace 4a: Heating zone 4
b: tropical zone 4c: cooling zone 10: radiation thermometer 1
1: Heat quantity controller 12: Plating adhesion amount controller 1
3: Heat input calculator 14: Process control

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐志原 洋 一 東海市東海町5−3 新日本製鐵株式会社 名古屋製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoichi Sashihara 5-3 Tokai-cho, Tokai City Nippon Steel Corporation Nagoya Steel Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶融亜鉛を付着された鋼帯を合金化炉に
通し、該合金化炉で加熱によって鋼帯に鉄と亜鉛の合金
化層を形成する工程で、前記合金化炉の入熱量を算出す
るに際して、 入熱量を算出するための計算式を定める空間を、少なく
とも鋼種定数の軸とめっき付着量の軸とで表わされる二
次元以上の空間とし、該空間を3以上の独立領域及び該
複数の独立領域の間に存在する境界領域に区分して区分
された独立領域毎に独立した計算式を用意するととも
に、前記境界領域の内部におけるそれの区分された各独
立領域への寄与率を定めるメンバ−シップ関数を各軸に
2つ以上用意し、入力された鋼種定数とそのメンバ−シ
ップ関数から鋼種定数の各独立領域への寄与率を計算
し、入力されためっき付着量とそのメンバ−シップ関数
からめっき付着量の各独立領域への寄与率を計算し、各
独立領域に割り当てられた計算式と求められた各寄与率
に基づく計算を実施して、入熱量を求める、溶融合金化
亜鉛めっき鋼帯の合金化炉入熱量算出方法。
1. A heat input amount of the alloying furnace in the step of passing a steel strip to which molten zinc is adhered through an alloying furnace and forming an alloyed layer of iron and zinc on the steel strip by heating in the alloying furnace. In calculating the heat input, the space that defines the calculation formula for calculating the heat input is at least a two-dimensional space represented by the axis of the steel type constant and the axis of the coating deposition amount, and the space is defined as three or more independent regions and An independent calculation formula is prepared for each independent region divided into boundary regions existing between the plurality of independent regions, and the contribution rate to each divided independent region inside the boundary region. Two or more membership functions that determine the above are prepared for each axis, and the input steel grade constant and the contribution rate of the steel grade constant to each independent region are calculated from the membership function, and the input plating adhesion amount and its From the membership function A hot-dip galvanized steel strip that calculates the heat input by calculating the contribution rate of the amount of adhesion to each independent area and performing the calculation based on the calculation formula assigned to each independent area and each calculated contribution rate. Calculation method of heat input to alloying furnace.
【請求項2】 入熱量を算出するための計算式を定める
空間を、鋼種定数の軸,めっき付着量の軸,及び通板速
度の軸で表わされる三次元の空間とし、該空間を3以上
の独立領域及び該複数の独立領域の間に存在する境界領
域に区分して区分された独立領域毎に独立した計算式を
用意するとともに、前記境界領域の内部におけるそれの
区分された各独立領域への寄与率を定めるメンバ−シッ
プ関数を各軸に2つ以上用意し、入力された鋼種定数と
そのメンバ−シップ関数から鋼種定数の各独立領域への
寄与率を計算し、入力されためっき付着量とそのメンバ
−シップ関数からめっき付着量の各独立領域への寄与率
を計算し、入力された通板速度とそのメンバ−シップ関
数から通板速度の各独立領域への寄与率を計算し、各独
立領域に割り当てられた計算式と求められた各寄与率に
基づく計算を実施して、入熱量を求める、前記請求項1
記載の溶融合金化亜鉛めっき鋼帯の合金化炉入熱量算出
方法。
2. A space for defining a calculation formula for calculating the heat input is a three-dimensional space represented by an axis of steel type constant, an axis of coating adhesion amount, and an axis of plate passing speed, and the space is 3 or more. Independent regions and boundary regions existing between the plurality of independent regions, and an independent calculation formula is prepared for each divided independent region, and each of the partitioned independent regions inside the boundary region is prepared. Prepare two or more membership functions for each axis that determine the contribution rate to each axis, calculate the contribution rate of the steel grade constant and the steel grade constant to each independent region from the entered steel grade constant, and input the plating Calculate the contribution rate of the plating adhesion amount to each independent area from the adhesion amount and its membership function, and calculate the contribution rate of the plating speed to each independent area from the input strip speed and its membership function. Assigned to each independent area The heat input amount is calculated by carrying out a calculation based on the calculated calculation formula and each calculated contribution ratio.
A method for calculating heat input to an alloying furnace of a hot-dip galvanized steel strip as described.
JP26087491A 1991-09-10 1991-10-08 Method for calculating heat gain in alloying furnace of galvannealed steel strip Pending JPH0598408A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP26087491A JPH0598408A (en) 1991-10-08 1991-10-08 Method for calculating heat gain in alloying furnace of galvannealed steel strip
DE69215613T DE69215613T2 (en) 1991-09-10 1992-09-09 Process for controlling the heating of an alloy furnace for the production of hot-dip metallized and alloy steel strip
EP92115409A EP0531963B1 (en) 1991-09-10 1992-09-09 Method of controlling heat input to an alloying furnace for manufacturing hot galvanized and alloyed band steel
US07/942,569 US5423926A (en) 1991-09-10 1992-09-09 Method of controlling heat input to an alloying furnace for manufacturing hot galvanized and alloyed band steel
US08/167,607 US5442570A (en) 1991-09-10 1993-12-15 Method of controlling heat input to an alloying furnace for manufacturing hot galvanized and alloyed band steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26087491A JPH0598408A (en) 1991-10-08 1991-10-08 Method for calculating heat gain in alloying furnace of galvannealed steel strip

Publications (1)

Publication Number Publication Date
JPH0598408A true JPH0598408A (en) 1993-04-20

Family

ID=17353953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26087491A Pending JPH0598408A (en) 1991-09-10 1991-10-08 Method for calculating heat gain in alloying furnace of galvannealed steel strip

Country Status (1)

Country Link
JP (1) JPH0598408A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252761A (en) * 1987-12-08 1989-10-09 Kawasaki Steel Corp Sheet temperature controller in alloying furnace for hot-dip galvanization
JPH02138420A (en) * 1988-11-15 1990-05-28 Sumitomo Metal Ind Ltd Combustion control method in heating furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252761A (en) * 1987-12-08 1989-10-09 Kawasaki Steel Corp Sheet temperature controller in alloying furnace for hot-dip galvanization
JPH02138420A (en) * 1988-11-15 1990-05-28 Sumitomo Metal Ind Ltd Combustion control method in heating furnace

Similar Documents

Publication Publication Date Title
CN106862283B (en) The ultrafast cold Process Control System of hot rolling
JP2018529845A (en) Hot-dip galvanized layer thickness control system and method for continuously variable thickness strip material
JPH0598408A (en) Method for calculating heat gain in alloying furnace of galvannealed steel strip
JPH03100154A (en) Production of alloying hot dip galvanized steel strip
CN110306144A (en) Control method and control system for hot-dip aluminum-silicon strip steel coating
EP0531963B1 (en) Method of controlling heat input to an alloying furnace for manufacturing hot galvanized and alloyed band steel
JP2895357B2 (en) Method of controlling phase structure of galvannealed layer
JP3261714B2 (en) Method for controlling alloying of galvanized steel sheet
JPH0770727A (en) Zero spangle galvanized steel sheet manufacturing method and equipment
CN106661709A (en) Method for predicting amount of capital gamma phase to be formed in galvannealed steel sheet and process for producing galvannealed steel sheet
JPH06322504A (en) Adhesion amount control device for hot-dip steel sheet
JPH07157856A (en) Alloying control method for induction heating alloying furnace
JPH07126863A (en) Flexible production facilities for metal plates and plated metal plates
JPH09157823A (en) Alloying treatment method for hot dip galvanized steel sheet and its alloying control device
JP2007262503A (en) Method and apparatus for controlling deposition amount of molten zinc
JPH0598409A (en) Heat input control method for alloying furnace of steel plate with molten alloyed zinc plating
JPH08246122A (en) Control method of induction heating alloying furnace
JP3141722B2 (en) Method for controlling the degree of alloying of hot-dip galvanized steel sheet
JPH03173757A (en) Method for controlling sticking rate of plating
JPH05247616A (en) Method for controlling spangle on hot-dip galvanized steel sheet
JPS62180050A (en) Method for controlling alloying degree of hot-dip galvanized steel sheet
JPH05222503A (en) Process for pretreatment for metallurgical treatment of moving product and apparatus for practicing said process
JPH068791B2 (en) Measuring method of alloying degree of galvannealed steel sheet
JP2545653B2 (en) Heat input control method for alloying furnace of hot-dip galvanized steel strip
JP3367452B2 (en) Manufacturing method of hot-dip Zn-based alloy plated steel sheet with excellent design

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19961008