JPH0594865A - Ceramic heater - Google Patents
Ceramic heaterInfo
- Publication number
- JPH0594865A JPH0594865A JP25359891A JP25359891A JPH0594865A JP H0594865 A JPH0594865 A JP H0594865A JP 25359891 A JP25359891 A JP 25359891A JP 25359891 A JP25359891 A JP 25359891A JP H0594865 A JPH0594865 A JP H0594865A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- metal layer
- shaped substrate
- heating element
- dense
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 76
- 238000010438 heat treatment Methods 0.000 claims abstract description 55
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 239000003870 refractory metal Substances 0.000 claims description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052702 rhenium Inorganic materials 0.000 claims description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 36
- 230000006866 deterioration Effects 0.000 abstract description 4
- 235000012431 wafers Nutrition 0.000 description 30
- 239000004065 semiconductor Substances 0.000 description 25
- 230000002093 peripheral effect Effects 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000000075 oxide glass Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000008642 heat stress Effects 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Resistance Heating (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
- Surface Heating Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、プラズマCVD、減圧
CVD、プラズマエッチング、光エッチング装置等に使
用される半導体ウエハー加熱装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor wafer heating apparatus used in plasma CVD, low pressure CVD, plasma etching, photo etching apparatus and the like.
【0002】[0002]
【従来の技術】スーパークリーン状態を必要とする半導
体製造装置では、デポジション用ガス、エッチング用ガ
ス、クリーニング用ガスとして塩素系ガス、弗素系ガス
等の腐食性ガスが使用されている。このため、半導体ウ
エハーをこれらの腐食性ガスに接触させた状態で加熱す
るための加熱装置として、抵抗発熱体の表面をステンレ
ススチール、インコネル等の金属により被覆した従来の
ヒーターを使用すると、これらのガスの暴露によって、
塩化物、酸化物、弗化物等の粒径数μm の、好ましくな
いパーティクルが発生する。2. Description of the Related Art A semiconductor manufacturing apparatus requiring a super clean state uses a corrosive gas such as a chlorine gas and a fluorine gas as a deposition gas, an etching gas, and a cleaning gas. Therefore, if a conventional heater in which the surface of the resistance heating element is coated with a metal such as stainless steel or Inconel is used as a heating device for heating the semiconductor wafer in contact with these corrosive gases, these By exposure to gas,
Undesirable particles such as chlorides, oxides and fluorides having a particle size of several μm are generated.
【0003】そこでデポジション用ガス等に暴露される
容器の外側に赤外線ランプを設置し、容器外壁に赤外線
透過窓を設け、グラファイト等の耐食性良好な材質から
なる被加熱体に赤外線を放射し、被加熱体の上面に置か
れた半導体ウエハーを加熱する、間接加熱方式の半導体
ウエハー加熱装置が開発されている。ところがこの方式
のものは、直接加熱式のものに比較して熱損失が大きい
こと、温度上昇に時間がかかること、赤外線透過窓への
CVD膜の付着により赤外線の透過が次第に妨げられ、
赤外線透過窓で熱吸収が生じて窓が加熱すること等の問
題があった。Therefore, an infrared lamp is installed outside the container exposed to the deposition gas and the like, an infrared transmitting window is provided on the outer wall of the container, and infrared rays are radiated to a heated object made of a material having good corrosion resistance such as graphite, An indirect heating type semiconductor wafer heating device for heating a semiconductor wafer placed on the upper surface of an object to be heated has been developed. However, in this system, the heat loss is larger than that in the direct heating system, it takes a long time to raise the temperature, and the transmission of infrared rays is gradually hindered due to the deposition of the CVD film on the infrared transmission window.
There is a problem that the infrared transmitting window absorbs heat and the window is heated.
【0004】[0004]
【発明が解決しようとする課題】上記の問題を解決する
ため、本発明者等は、新たに円盤状の緻密質セラミック
ス内に抵抗発熱体を埋設し、このセラミックスヒーター
をグラファイトのケースに保持した加熱装置について検
討した。この結果この加熱装置は、上述のような問題点
を一掃した極めて優れた装置であることが判明した。し
かし、本発明者がなお検討を進めると、以下の問題が未
だ残されていることが解った。In order to solve the above problems, the present inventors newly embedded a resistance heating element in a disc-shaped dense ceramic, and held this ceramic heater in a graphite case. The heating device was examined. As a result, it was found that this heating device was an extremely excellent device that eliminated the above-mentioned problems. However, when the present inventor further studied, it was found that the following problems still remained.
【0005】即ち、セラミックスヒーター側面を伝熱性
の高いグラファイト製やアルミニウム製のケースで保持
するため、この接触部分からケースの方へと熱が逃げ、
セラミックスヒーターの外周部の温度が内周部の温度に
くらべて低くなり、均熱性が損なわれるという問題が生
じた。従って、半導体ウエハーを加熱した場合、このウ
エハーの周縁部で相対的に温度が低下するため、例えば
熱CVD法によって膜を堆積させる場合に、半導体ウエ
ハーの中心部と周縁部とで膜の成長速度に差が生じ、半
導体の不良の原因となる。That is, since the side surface of the ceramic heater is held by a case made of graphite or aluminum having high heat conductivity, heat escapes from this contact portion to the case,
The temperature of the outer peripheral portion of the ceramics heater becomes lower than the temperature of the inner peripheral portion thereof, which causes a problem of impairing the thermal uniformity. Therefore, when the semiconductor wafer is heated, the temperature relatively decreases at the peripheral portion of the wafer. Therefore, for example, when the film is deposited by the thermal CVD method, the growth rate of the film at the central portion and the peripheral portion of the semiconductor wafer is high. Difference occurs, which causes a semiconductor defect.
【0006】特に最近、半導体ウエハーが大型化してき
ており、これに対応すべく半導体ウエハー加熱用のセラ
ミックスヒーターを大型化させる必要がある。しかし、
半導体ウエハー加熱面の直径が大きくなると、これを均
熱化するのはますます難しくなってきている。Particularly in recent years, the size of semiconductor wafers has been increasing, and in order to cope with this, it is necessary to increase the size of ceramic heaters for heating semiconductor wafers. But,
As the diameter of the heated surface of a semiconductor wafer increases, it becomes more and more difficult to equalize it.
【0007】これを解決する方法として、本発明者は、
円盤状セラミックスヒーターを内周側と外周側とに分
け、内周側と外周側とで独立に、抵抗発熱体からの発熱
量を制御する技術を検討した。しかし、この方法では、
制御系統が複雑になるし、発熱量を制御するコントロー
ラーのコストが高くなる。また、セラミックス基体を窒
化珪素セラミックスで形成してその表面温度を測定して
も、未だ温度にムラが残っていた。.As a method of solving this, the present inventor
A technique for controlling the amount of heat generated from the resistance heating element by dividing the disk-shaped ceramic heater into an inner peripheral side and an outer peripheral side and independently controlling the inner peripheral side and the outer peripheral side was studied. But with this method,
The control system becomes complicated, and the cost of the controller that controls the heat generation amount increases. Further, when the ceramic substrate was formed of silicon nitride ceramics and the surface temperature was measured, the temperature still had unevenness. .
【0008】本発明の課題は、ウエハーの汚染や熱効率
の悪化といった問題を生じず、しかもウエハーの加熱温
度を均一化してウエハーの歩留りを向上させることがで
きるような、セラミックスヒーターを提供することにあ
る。An object of the present invention is to provide a ceramic heater which does not cause problems such as contamination of the wafer and deterioration of thermal efficiency, and which can make the heating temperature of the wafer uniform and improve the yield of the wafer. is there.
【0009】[0009]
【課題を解決するための手段】本発明は、緻密質セラミ
ックスからなる盤状基体と、この盤状基体の内部に埋設
された抵抗発熱体とを備えたウエハー加熱用のセラミッ
クスヒーターであって、前記抵抗発熱体とウエハーとの
間に耐熱金属層と緻密質セラミックス層とが設けられ、
この緻密質セラミックス層の表面がウエハー加熱面を構
成している、セラミックスヒーターに係るものである。The present invention relates to a ceramic heater for heating a wafer, which comprises a board-shaped substrate made of dense ceramics and a resistance heating element embedded in the board-shaped substrate. A heat-resistant metal layer and a dense ceramics layer are provided between the resistance heating element and the wafer,
The present invention relates to a ceramic heater in which the surface of the dense ceramic layer constitutes a wafer heating surface.
【0010】[0010]
【実施例】図1は、本発明の実施例に係る円盤状セラミ
ックスヒーター5Aを示す断面図、図2は半導体製造用
熱CVD装置のフランジ部19に本実施例のヒーターを取
り付けた状態を示す概略断面図、図3は図2のIII −II
I 線矢視図である。EXAMPLE FIG. 1 is a sectional view showing a disk-shaped ceramics heater 5A according to an example of the present invention, and FIG. 2 shows a state in which the heater of this example is attached to a flange portion 19 of a thermal CVD apparatus for semiconductor manufacturing. Schematic sectional view, FIG. 3 is III-II of FIG.
FIG.
【0011】この円盤状セラミックスヒーター5Aにお
いては、緻密質セラミックス基体3の内部に、抵抗発熱
体4が埋設されている。この抵抗発熱体4は、例えば直
径0.4 mm程度のワイヤーをコイル状に卷回してなるもの
である。そして、この抵抗発熱体4が、円盤状基体3の
内部に、平面的にみて渦巻状に埋設されている。抵抗発
熱体4の両端部には、それぞれ塊状端子6が連結されて
おり、各塊状端子6の表面が、円盤状基体3の表面に露
出している。円盤状基体3の側周面には、円環状の突出
部3bが形成されている。In the disk-shaped ceramics heater 5A, the resistance heating element 4 is embedded inside the dense ceramics base 3. The resistance heating element 4 is formed by winding a wire having a diameter of about 0.4 mm in a coil shape. The resistance heating element 4 is embedded in the disk-shaped substrate 3 in a spiral shape when seen in a plan view. Bulk terminals 6 are connected to both ends of the resistance heating element 4, and the surfaces of the bulk terminals 6 are exposed on the surface of the disk-shaped substrate 3. An annular protrusion 3b is formed on the side peripheral surface of the disk-shaped substrate 3.
【0012】円盤状基体3の発熱面3aに対して耐熱金属
層1Aが接合され、この耐熱金属層1Aの表面に対し、
緻密質セラミックス層2Aが接合される。緻密質セラミ
ックス層2Aの表面が半導体ウエハー加熱面22を構成す
る。半導体ウエハーは、加熱面22に対して直接設置され
るか、他のサセプターを介して設置される。耐熱金属層
1Aの熱伝導率は、緻密質セラミックス層2Aや盤状基
体3を構成するセラミックスの熱伝導率よりも大きくな
ければならない。The heat-resistant metal layer 1A is bonded to the heat-generating surface 3a of the disk-shaped substrate 3, and the heat-resistant metal layer 1A is joined to the surface of the heat-resistant metal layer 1A.
The dense ceramics layer 2A is joined. The surface of the dense ceramics layer 2A constitutes a semiconductor wafer heating surface 22. The semiconductor wafer is placed directly on the heating surface 22 or via another susceptor. The heat conductivity of the refractory metal layer 1A must be higher than the heat conductivity of the ceramics forming the dense ceramic layer 2A and the disk-shaped substrate 3.
【0013】図示しない半導体製造用熱CVD装置の容
器に、フランジ部19が取り付けられ、このフランジ部19
が容器の天井面を構成している。フランジ部19と、図示
しない容器との間は、Oリング17によって気密にシール
されている。フランジ部19の上側に、取り外し可能な天
板20が取り付けられ、この天板20が、フランジ部19の円
形貫通孔19a を覆っている。フランジ部19に水冷ジャケ
ット18が取り付けられる。A flange portion 19 is attached to a container of a semiconductor manufacturing thermal CVD apparatus (not shown).
Constitutes the ceiling surface of the container. An O-ring 17 hermetically seals between the flange portion 19 and a container (not shown). A removable top plate 20 is attached to the upper side of the flange portion 19, and the top plate 20 covers the circular through hole 19a of the flange portion 19. The water cooling jacket 18 is attached to the flange portion 19.
【0014】フランジ部19の下側面には、グラファイト
からなるリング状ケース保持具14が、断熱リング16を介
して固定されている。ケース保持具14とフランジ部19と
は直接には接触しておらず、若干の間隙が設けられてい
る。ケース保持具14の下側面には、グラファイトからな
る略リング状のケース11が、断熱リング13を介して固定
されている。ケース11とケース保持具14とは直接に接触
しておらず、若干の間隙が設けられている。A ring-shaped case holder 14 made of graphite is fixed to the lower side surface of the flange portion 19 via a heat insulating ring 16. The case holder 14 and the flange portion 19 are not in direct contact with each other, and a slight gap is provided. A substantially ring-shaped case 11 made of graphite is fixed to the lower surface of the case holder 14 via a heat insulating ring 13. The case 11 and the case holder 14 are not in direct contact with each other, and a slight gap is provided.
【0015】ステンレスシース付きの熱電対10が、モリ
ブデン、セラミックス等からなる中空シース9内に挿入
され、中空シース9の細い先端がセラミックス基体3の
背面側に接合されている。一対の電極部材7及び中空シ
ース9は、それぞれ天板20を貫通して容器外に端部を付
き出した状態となっている。また、一対の電極部材7及
び中空シース9と天板20との間は、Oリングで気密にシ
ールされる。A thermocouple 10 with a stainless steel sheath is inserted into a hollow sheath 9 made of molybdenum, ceramics or the like, and a thin tip of the hollow sheath 9 is joined to the back side of the ceramic substrate 3. The pair of electrode members 7 and the hollow sheath 9 are in a state of penetrating the top plate 20 and projecting their ends outside the container. Further, the pair of electrode members 7 and the hollow sheath 9 and the top plate 20 are hermetically sealed with an O-ring.
【0016】円盤状セラミックスヒーター5Aの側周面
の背面側には、前述のように突出部3bがリング状に形成
され、一方、ケース11の下部内周にはやはりリング状に
ケース本体から突出した支持部11a が形成されている。
円盤状セラミックスヒーター5Aとケース11との間には
所定の間隔を置き、これら両者を接触させない。そし
て、図2及び図3に示すように、例えば計4個の円柱状
介在ピン21をケース11内周とセラミックスヒーター5A
の側周面との間に介在させ、介在ピン21の一端を支持部
11a 上に螺合、接合、嵌合等により固定し、他端の上に
突出部3bを載置し、これによりセラミックスヒーター5
Aを断熱固定する。一対の塊状端子6には、それぞれ棒
状の電極部材7が連結され、電極部材7の一端がリード
線8に接続されている。On the back side of the side peripheral surface of the disk-shaped ceramics heater 5A, the protruding portion 3b is formed in a ring shape as described above, while on the other hand, in the lower inner circumference of the case 11, it is also protruded from the case body in a ring shape. The supporting portion 11a is formed.
A predetermined space is provided between the disk-shaped ceramics heater 5A and the case 11 so that they are not in contact with each other. Then, as shown in FIGS. 2 and 3, for example, a total of four cylindrical interposition pins 21 are provided on the inner circumference of the case 11 and the ceramic heater 5A.
And the end of the intervening pin 21 is supported by the supporting part.
11a is fixed by screwing, joining, fitting, etc., and the protrusion 3b is placed on the other end, whereby the ceramic heater 5
Insulate and fix A. A rod-shaped electrode member 7 is connected to each of the pair of massive terminals 6, and one end of the electrode member 7 is connected to the lead wire 8.
【0017】本実施例によれば、緻密質セラミックスか
らなる円盤状基体3の内部に抵抗発熱体4を埋設するの
で、半導体装置内を汚染する等のおそれがない。また、
円盤状基体3から直接発熱させるので、間接加熱方式の
場合のような熱効率の悪化は生じない。According to this embodiment, since the resistance heating element 4 is embedded inside the disk-shaped substrate 3 made of dense ceramics, there is no possibility of polluting the inside of the semiconductor device. Also,
Since heat is directly generated from the disk-shaped substrate 3, there is no deterioration in thermal efficiency as in the case of the indirect heating method.
【0018】また、抵抗発熱体4を埋設した円盤状基体
3を真空中または希薄気体中で使用するとき、円盤状基
体3の表面、裏面、及び側面からの熱放射、熱伝達、ま
たは基体3を支持するためのケース11への熱伝導によっ
て熱が放散する。このうち、側面からの熱の放散は、円
盤状基体3の中心から側面に向かって温度が下がる原因
となり、半導体ウエハー1の均熱化を妨げる。When the disk-shaped substrate 3 with the resistance heating element 4 embedded therein is used in a vacuum or in a dilute gas, heat radiation, heat transfer from the front surface, back surface, and side surfaces of the disk-shaped substrate 3 or the substrate 3 is performed. The heat is dissipated by the heat conduction to the case 11 for supporting the. Of these, the dissipation of heat from the side surface causes the temperature to decrease from the center of the disk-shaped substrate 3 toward the side surface, and hinders uniform heat distribution of the semiconductor wafer 1.
【0019】この点、本実施例では、円盤状基体3の側
周面とケース11とを直接接触させず、介在ピン21で円盤
状基体3を支持している。従って、円盤状基体3の側周
面から熱伝導によって逃げる熱を少なくできる。In this respect, in this embodiment, the disk-shaped substrate 3 is supported by the interposition pins 21 without directly contacting the side peripheral surface of the disk-shaped substrate 3 and the case 11. Therefore, the heat escaping from the side peripheral surface of the disk-shaped substrate 3 by heat conduction can be reduced.
【0020】そして、円盤状基体3の発熱面3aに対して
耐熱金属層1Aを接合させているので、耐熱金属層1A
内で熱量が図1において横方向へと移動する。この結
果、耐熱金属層1Aにおいて温度勾配がほぼ消去され、
半導体ウエハー加熱面22において温度のムラが防止され
る。しかも、緻密質セラミックス層2Aによって耐熱金
属層1Aが被覆されているので、耐熱金属層1Aを構成
する金属が半導体ウエハーを汚染するおそれがない。Since the heat-resistant metal layer 1A is bonded to the heating surface 3a of the disk-shaped substrate 3, the heat-resistant metal layer 1A is formed.
Inside, the amount of heat moves laterally in FIG. As a result, the temperature gradient is almost eliminated in the refractory metal layer 1A,
Temperature unevenness on the semiconductor wafer heating surface 22 is prevented. Moreover, since the refractory metal layer 1A is covered with the dense ceramics layer 2A, there is no possibility that the metal constituting the refractory metal layer 1A will contaminate the semiconductor wafer.
【0021】セラミックス層2A、円盤状基体3の材質
は、デポジション用ガスの吸着を防止するために緻密体
である必要があり、吸水率が0.01%以下の材質が好まし
い。また機械的応力は加わらないものの、常温から1100
℃までの加熱と冷却に耐えることのできる耐熱衝撃性を
有するものが好ましい。耐熱衝撃性の点からは、窒化珪
素セラミックス、サイアロンが好ましい。ただし、窒化
珪素セラミックスを採用した場合は、この材料の熱伝導
率が低いことから、耐熱金属層1Aの作用が一層重要に
なる。The materials of the ceramics layer 2A and the disk-shaped substrate 3 need to be dense in order to prevent the adsorption of the deposition gas, and a material having a water absorption rate of 0.01% or less is preferable. In addition, no mechanical stress is applied, but at room temperature 1100
Those having a thermal shock resistance capable of withstanding heating up to and cooling down are preferable. From the viewpoint of thermal shock resistance, silicon nitride ceramics and sialon are preferable. However, when silicon nitride ceramics is used, the action of the refractory metal layer 1A becomes more important because the thermal conductivity of this material is low.
【0022】耐熱金属層1Aの材質としては、銅、銀、
白金、タングステン、モリブデン、ニッケル、タンタ
ル、ニオブ、ハフニウム、レニウム、金等を例示でき
る。ただし、金を利用すると、ヒートサイクルの途中で
緻密質セラミックス層2Aの方へと金が拡散して出てく
ることがある。円盤状基体3、緻密質セラミックス層2
Aの材質として、熱伝導率の高い窒化アルミニウムセラ
ミックスを用いた場合には、耐熱金属板1Aを、これよ
りも熱伝導率の高い銅、銀、ニッケル等によって形成し
なければならない。As the material of the heat-resistant metal layer 1A, copper, silver,
Examples include platinum, tungsten, molybdenum, nickel, tantalum, niobium, hafnium, rhenium, gold and the like. However, if gold is used, gold may diffuse toward the dense ceramics layer 2A during the heat cycle. Disk-shaped substrate 3, dense ceramics layer 2
When aluminum nitride ceramics having a high thermal conductivity is used as the material of A, the heat-resistant metal plate 1A must be formed of copper, silver, nickel or the like having a higher thermal conductivity than this.
【0023】緻密質セラミックス層2Aの厚さは、1mm
以下とすることが好ましい。これが厚すぎると、セラミ
ックス層2Aでの熱伝導度が悪くなり、再び温度ムラが
生ずるからである。耐熱金属層1Aの厚さは100 〜800
μm とするのが好ましい。これが薄すぎると、断面積が
小さいことから横方向へと熱が伝わりにくく、均熱化の
効果が乏しくなってくる。耐熱金属層1Aが厚すぎる
と、加熱と冷却とを繰り返し行ったときに、過大な熱応
力が円盤状基体3にかかるおそれがある。The thickness of the dense ceramic layer 2A is 1 mm.
The following is preferable. This is because if it is too thick, the thermal conductivity in the ceramic layer 2A deteriorates and temperature unevenness occurs again. The thickness of the heat-resistant metal layer 1A is 100-800
It is preferably μm. If this is too thin, the cross-sectional area is too small to transmit heat in the lateral direction, and the effect of soaking becomes poor. If the heat-resistant metal layer 1A is too thick, excessive heat stress may be applied to the disk-shaped substrate 3 when heating and cooling are repeated.
【0024】緻密質セラミックス層2Aと耐熱金属層1
A、耐熱金属層1Aと円盤状基体3とをそれぞれ接合す
るには、幾つかの方法がある。即ち、各部材の間に高融
点金属の粉末を介在させて拡散接合したり、銀ろう、金
ろう等でろう付けしたりすることができる。また、緻密
質セラミックス用の原料粉末を図1に示すように成形
し、この成形体を一体に焼成して、図1に示すような円
盤状セラミックスヒーター5Aを作成することができ
る。Dense ceramics layer 2A and heat-resistant metal layer 1
There are several methods for joining the heat-resistant metal layer 1A and the disk-shaped substrate 3 to each other. That is, the high melting point metal powder may be interposed between the respective members for diffusion bonding, or for brazing with silver brazing, gold brazing or the like. Further, the raw material powder for the dense ceramics is molded as shown in FIG. 1, and this molded body is integrally fired, so that the disc-shaped ceramic heater 5A as shown in FIG. 1 can be produced.
【0025】抵抗発熱体4としては、タングステン、モ
リブデン、白金等を使用することが適当である。抵抗発
熱体としては、線材、薄いシート状等の形態のものが用
いられる。介在ピン21の材質としては、セラミックス、
又はガラス、無機結晶体、緻密な非金属無機材が好まし
く、酸化珪素質ガラス、水晶、部分安定化ジルコニア、
アルミナが更に好ましく、熱伝導率の低い酸化珪素質ガ
ラスが一層好ましい。As the resistance heating element 4, it is suitable to use tungsten, molybdenum, platinum or the like. As the resistance heating element, a wire rod, a thin sheet, or the like is used. The material of the interposition pin 21 is ceramics,
Or glass, an inorganic crystal body, a dense non-metal inorganic material is preferable, silicon oxide glass, quartz, partially stabilized zirconia,
Alumina is more preferable, and silicon oxide glass having a low thermal conductivity is more preferable.
【0026】図4は、本発明の他の実施例に係る円盤状
セラミックスヒーター5Bを示す断面図である。図1に
示したものと同一の機能部材には同一符号を付し、その
説明は省略する。FIG. 4 is a sectional view showing a disk-shaped ceramic heater 5B according to another embodiment of the present invention. The same functional members as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
【0027】円盤状セラミックス基体3の発熱面3aに、
円形の耐熱金属層1Bを接合する。この際、耐熱金属層
1Bの寸法を発熱面3aの寸法よりも若干小さくする。そ
して、耐熱金属層1Bの表面に緻密質セラミックス層2
Bを設ける。この際、耐熱金属層1Bのエッジも緻密質
セラミックス層2Bで覆い、このセラミックス層2Bの
端面を円盤状基体3の縁部に当接させ、接合させる。こ
れにより、耐熱金属層1Bは、緻密質セラミックス内に
埋設された状態となり、半導体製造容器内に全く露出し
ない。On the heating surface 3a of the disk-shaped ceramic substrate 3,
The circular refractory metal layer 1B is joined. At this time, the size of the refractory metal layer 1B is made slightly smaller than the size of the heat generating surface 3a. Then, the dense ceramics layer 2 is formed on the surface of the refractory metal layer 1B.
B is provided. At this time, the edge of the refractory metal layer 1B is also covered with the dense ceramics layer 2B, and the end surface of the ceramics layer 2B is brought into contact with the edge of the disk-shaped substrate 3 to bond them. As a result, the refractory metal layer 1B is embedded in the dense ceramics and is not exposed at all in the semiconductor manufacturing container.
【0028】次に、図1、図2に示すようなセラミック
スヒーター5Aを用い、電力供給ケーブル8に通電し、
目標温度450 ℃として抵抗発熱体4を発熱させた。そし
て、熱画像装置によって、半導体ウエハー加熱面22につ
いて30点の温度分布を測定した。また、図1、図2にお
いて、耐熱金属層1A及び緻密質セラミックス層2Aの
ないタイプの円盤状セラミックスヒーターについても、
これと同様の測定を行った。Next, using the ceramic heater 5A as shown in FIGS. 1 and 2, the power supply cable 8 is energized,
The resistance heating element 4 was heated to a target temperature of 450 ° C. Then, the temperature distribution of 30 points on the semiconductor wafer heating surface 22 was measured by the thermal imager. In addition, in FIG. 1 and FIG. 2, the disc-shaped ceramic heater of the type without the heat-resistant metal layer 1A and the dense ceramic layer 2A is also
The same measurement as this was performed.
【0029】まず、円盤状基体3の材質として窒化珪素
セラミックスを用いると、発熱面3aの温度分布は450 ±
10℃となった。これに対し、図1において、耐熱金属層
1Aを銀で形成し、緻密質セラミックス層2Aを窒化珪
素セラミックスで形成すると、半導体ウエハー加熱面22
の温度分布は450 ±1℃となった。ただし、耐熱金属層
1A、緻密質セラミックス層2Aの層厚はいずれも約50
0 μm とした。First, when silicon nitride ceramics is used as the material of the disk-shaped substrate 3, the temperature distribution on the heating surface 3a is 450 ±.
It reached 10 ° C. On the other hand, in FIG. 1, when the refractory metal layer 1A is formed of silver and the dense ceramic layer 2A is formed of silicon nitride ceramics, the semiconductor wafer heating surface 22
Temperature distribution of 450 ± 1 ℃. However, both the heat-resistant metal layer 1A and the dense ceramic layer 2A have a thickness of about 50.
It was set to 0 μm.
【0030】また、上記の実験において、円盤状基体3
の材質として窒化アルミニウムセラミックスを使用した
ところ、発熱面3aの温度分布は450 ±3℃となった。そ
して、更に耐熱金属層1Aを銀で形成し、緻密質セラミ
ックス層2Aを窒化アルミニウムセラミックスで形成す
ると、半導体ウエハー加熱面22の温度分布は450 ±0.5
℃となった。In the above experiment, the disk-shaped substrate 3
When aluminum nitride ceramics was used as the material, the temperature distribution on the heating surface 3a was 450 ± 3 ° C. When the heat-resistant metal layer 1A is further formed of silver and the dense ceramic layer 2A is formed of aluminum nitride ceramics, the temperature distribution of the semiconductor wafer heating surface 22 is 450 ± 0.5.
℃ was reached.
【0031】本発明のセラミックスヒーターは、Feウエ
ハー、Alウエハー等の加熱にも適用できる。また、盤状
基体は、上記した円盤状基体3の他、四角盤状、六角盤
状等の形状のものも含む。耐熱金属層1A,1Bを、C
VD法、スパッタリング法等によって形成することも可
能である。The ceramic heater of the present invention can be applied to heating Fe wafers, Al wafers and the like. Further, the disc-shaped substrate includes not only the disc-shaped substrate 3 described above but also a disc-shaped substrate, a hexagonal disc, or the like. The heat-resistant metal layers 1A and 1B are replaced by C
It can also be formed by a VD method, a sputtering method, or the like.
【0032】[0032]
【発明の効果】本発明によれば、緻密質セラミックスか
らなる盤状基体の内部に抵抗発熱体を埋設するので、装
置内を汚染するおそれがない。また、盤状基体から直接
発熱させるので、間接加熱方式の場合のような熱効率の
悪化は生じない。According to the present invention, since the resistance heating element is embedded in the board-shaped substrate made of dense ceramics, there is no possibility of polluting the inside of the device. In addition, since heat is directly generated from the board-shaped substrate, deterioration of thermal efficiency as in the case of the indirect heating method does not occur.
【0033】また、抵抗発熱体と緻密質セラミックス層
との間に耐熱金属層を設けているので、耐熱金属層内で
熱量が移動する。これにより、ウエハー加熱面において
温度のムラが防止される。しかも、緻密質セラミックス
層の表面がウエハー加熱面を構成しているので、耐熱金
属層を構成する金属がウエハーを汚染するおそれがな
い。Further, since the refractory metal layer is provided between the resistance heating element and the dense ceramic layer, the amount of heat moves within the refractory metal layer. This prevents temperature unevenness on the wafer heating surface. Moreover, since the surface of the dense ceramics layer constitutes the wafer heating surface, there is no risk of the metal constituting the refractory metal layer contaminating the wafer.
【図1】本発明の実施例に係るセラミックスヒーター5
Aを示す断面図である。FIG. 1 is a ceramic heater 5 according to an embodiment of the present invention.
It is sectional drawing which shows A.
【図2】図1のセラミックスヒーター5Aを半導体製造
用熱CVD装置のフランジ部19に取り付けた状態を示す
概略断面図である。FIG. 2 is a schematic cross-sectional view showing a state in which the ceramic heater 5A of FIG. 1 is attached to a flange portion 19 of a semiconductor manufacturing thermal CVD apparatus.
【図3】図2のIII −III 線矢視断面図である(電極部
材7等は図示省略する。)。3 is a sectional view taken along the line III-III of FIG. 2 (the electrode member 7 and the like are omitted in the drawing).
【図4】本発明の他の実施例に係るセラミックスヒータ
ー5Bを示す断面図である。FIG. 4 is a sectional view showing a ceramic heater 5B according to another embodiment of the present invention.
1A,1B 耐熱金属層 2A,2B 緻密質セラミックス層 3 円盤状基体 4 抵抗発熱体 5A,5B 円盤状セラミックスヒーター 22 半導体ウエハー加熱面 1A, 1B Heat-resistant metal layer 2A, 2B Dense ceramic layer 3 Disc-shaped substrate 4 Resistance heating element 5A, 5B Disc-shaped ceramic heater 22 Semiconductor wafer heating surface
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/324 H 8617−4M H05B 3/14 B 8715−3K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location H01L 21/324 H 8617-4M H05B 3/14 B 8715-3K
Claims (2)
と、この盤状基体の内部に埋設された抵抗発熱体とを備
えたウエハー加熱用のセラミックスヒーターであって、
前記抵抗発熱体とウエハーとの間に耐熱金属層と緻密質
セラミックス層とが設けられ、この緻密質セラミックス
層の表面がウエハー加熱面を構成している、セラミック
スヒーター。1. A ceramic heater for heating a wafer, comprising: a board-shaped base made of dense ceramics; and a resistance heating element embedded inside the board-shaped base,
A ceramic heater in which a heat resistant metal layer and a dense ceramic layer are provided between the resistance heating element and the wafer, and the surface of the dense ceramic layer constitutes a wafer heating surface.
ン、モリブデン、タンタル、ハフニウム、レニウム、ニ
オブ、白金及びニッケルからなる群から選ばれた耐熱金
属によって形成されている、請求項1記載のセラミック
スヒーター。2. The refractory metal layer is formed of a refractory metal selected from the group consisting of copper, silver, tungsten, molybdenum, tantalum, hafnium, rhenium, niobium, platinum and nickel. Ceramic heater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3253598A JP2531874B2 (en) | 1991-10-01 | 1991-10-01 | Ceramic heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3253598A JP2531874B2 (en) | 1991-10-01 | 1991-10-01 | Ceramic heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0594865A true JPH0594865A (en) | 1993-04-16 |
JP2531874B2 JP2531874B2 (en) | 1996-09-04 |
Family
ID=17253609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3253598A Expired - Lifetime JP2531874B2 (en) | 1991-10-01 | 1991-10-01 | Ceramic heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2531874B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0711446A (en) * | 1993-05-27 | 1995-01-13 | Applied Materials Inc | Vapor growth susceptor device |
JPH07153706A (en) * | 1993-05-27 | 1995-06-16 | Applied Materials Inc | Susceptor device |
EP0862352A3 (en) * | 1997-02-28 | 1998-10-21 | Applied Komatsu Technology, Inc. | A heating element with a diamond sealing material |
WO2000013466A1 (en) * | 1998-08-31 | 2000-03-09 | Daikin Industries, Ltd. | Heating device |
JP2004363335A (en) * | 2003-06-05 | 2004-12-24 | Sumitomo Electric Ind Ltd | Holder for semiconductor or liquid crystal manufacturing apparatus and semiconductor or liquid crystal manufacturing apparatus equipped with the same |
JP2005032898A (en) * | 2003-07-10 | 2005-02-03 | Ngk Insulators Ltd | Support structure of ceramic susceptor |
JP2006179897A (en) * | 2001-09-11 | 2006-07-06 | Sumitomo Electric Ind Ltd | SUBSTRATE HOLDER, SENSOR FOR SEMICONDUCTOR MANUFACTURING DEVICE, AND PROCESSING DEVICE |
JP2006313919A (en) * | 2001-09-11 | 2006-11-16 | Sumitomo Electric Ind Ltd | SUBSTRATE HOLDER, SENSOR FOR SEMICONDUCTOR MANUFACTURING DEVICE, AND PROCESSING DEVICE |
JP2014212249A (en) * | 2013-04-19 | 2014-11-13 | 株式会社アルバック | Substrate heating mechanism, film formation device, and susceptor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63271876A (en) * | 1987-04-28 | 1988-11-09 | Japan Steel Works Ltd:The | Ceramic heater |
JPH01289089A (en) * | 1988-05-16 | 1989-11-21 | Ngk Spark Plug Co Ltd | Ceramics heating body |
-
1991
- 1991-10-01 JP JP3253598A patent/JP2531874B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63271876A (en) * | 1987-04-28 | 1988-11-09 | Japan Steel Works Ltd:The | Ceramic heater |
JPH01289089A (en) * | 1988-05-16 | 1989-11-21 | Ngk Spark Plug Co Ltd | Ceramics heating body |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0711446A (en) * | 1993-05-27 | 1995-01-13 | Applied Materials Inc | Vapor growth susceptor device |
JPH07153706A (en) * | 1993-05-27 | 1995-06-16 | Applied Materials Inc | Susceptor device |
EP0862352A3 (en) * | 1997-02-28 | 1998-10-21 | Applied Komatsu Technology, Inc. | A heating element with a diamond sealing material |
US5977519A (en) * | 1997-02-28 | 1999-11-02 | Applied Komatsu Technology, Inc. | Heating element with a diamond sealing material |
US6191390B1 (en) | 1997-02-28 | 2001-02-20 | Applied Komatsu Technology, Inc. | Heating element with a diamond sealing material |
WO2000013466A1 (en) * | 1998-08-31 | 2000-03-09 | Daikin Industries, Ltd. | Heating device |
JP2006179897A (en) * | 2001-09-11 | 2006-07-06 | Sumitomo Electric Ind Ltd | SUBSTRATE HOLDER, SENSOR FOR SEMICONDUCTOR MANUFACTURING DEVICE, AND PROCESSING DEVICE |
JP2006313919A (en) * | 2001-09-11 | 2006-11-16 | Sumitomo Electric Ind Ltd | SUBSTRATE HOLDER, SENSOR FOR SEMICONDUCTOR MANUFACTURING DEVICE, AND PROCESSING DEVICE |
JP2004363335A (en) * | 2003-06-05 | 2004-12-24 | Sumitomo Electric Ind Ltd | Holder for semiconductor or liquid crystal manufacturing apparatus and semiconductor or liquid crystal manufacturing apparatus equipped with the same |
JP2005032898A (en) * | 2003-07-10 | 2005-02-03 | Ngk Insulators Ltd | Support structure of ceramic susceptor |
JP2014212249A (en) * | 2013-04-19 | 2014-11-13 | 株式会社アルバック | Substrate heating mechanism, film formation device, and susceptor |
Also Published As
Publication number | Publication date |
---|---|
JP2531874B2 (en) | 1996-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5231690A (en) | Wafer heaters for use in semiconductor-producing apparatus and heating units using such wafer heaters | |
JP2525974B2 (en) | Semiconductor wafer-heating device | |
JP2531874B2 (en) | Ceramic heater | |
JP2000021957A (en) | Sample heating device | |
JPH06105634B2 (en) | Semiconductor wafer heating device | |
TW541638B (en) | Heater member for mounting heating object and substrate processing apparatus using the same | |
TW200302541A (en) | Heated vacuum support apparatus | |
JP2786571B2 (en) | Semiconductor wafer heating equipment | |
JP2004296532A (en) | Hot plate unit | |
JPH06151332A (en) | Ceramic heater | |
JPH0628258B2 (en) | Semiconductor wafer heating device and manufacturing method thereof | |
JP2604944B2 (en) | Semiconductor wafer heating equipment | |
JP2527836B2 (en) | Semiconductor wafer-heating device | |
JPH088246B2 (en) | Heating device | |
JPH11354526A (en) | Plate body heating device | |
JPH07273175A (en) | Holding member | |
JPH0785473B2 (en) | Semiconductor wafer heating device | |
JPH0487180A (en) | Ceramic heater for heating semiconductor wafer | |
JPH0736391B2 (en) | Wafer heating equipment for semiconductor manufacturing equipment | |
JPH088215B2 (en) | Semiconductor wafer heating device | |
JPH05267191A (en) | Device for heating semiconductor wafer | |
JPH08330402A (en) | Semiconductor wafer holding device | |
JP2875095B2 (en) | Heating equipment | |
JPH0487179A (en) | Ceramic heater and its manufacture | |
JP3224628B2 (en) | Semiconductor heating equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080627 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 16 |