Nothing Special   »   [go: up one dir, main page]

JPH0590117A - Single crystal thin film semiconductor device - Google Patents

Single crystal thin film semiconductor device

Info

Publication number
JPH0590117A
JPH0590117A JP24817091A JP24817091A JPH0590117A JP H0590117 A JPH0590117 A JP H0590117A JP 24817091 A JP24817091 A JP 24817091A JP 24817091 A JP24817091 A JP 24817091A JP H0590117 A JPH0590117 A JP H0590117A
Authority
JP
Japan
Prior art keywords
wafer
plane
semiconductor device
thin film
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24817091A
Other languages
Japanese (ja)
Inventor
Shigeru Kanbayashi
茂 神林
Shinji Onga
伸二 恩賀
Kikuo Yamabe
紀久夫 山部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24817091A priority Critical patent/JPH0590117A/en
Publication of JPH0590117A publication Critical patent/JPH0590117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To enable using crystal orientation and crystal axis suitable to an element to be formed on each layer, and using a substrate advantageous to chip working, by adhering two or more wafers having different crystal orientations, and forming elements on these wafers. CONSTITUTION:An N-channel MOS is formed on a silicon wafer having a (100) face, and element isolation and activation are performed. At the same time, a P-channel MOS is formed on a silicon wafer having a (110) face. Each of the oxidation periods is adjusted so as to be matched with each of the crystal faces. The respective wafers are dipped in pure water, stuck to each other in the water, taken out from the water, and bonded by heat treatment in an N atmosphere. The wafer on which the pMOS is formed is polished and grinded from the rear. Hence it is made possible to apply a suitable semiconductor substrate to each kind of element, and to combine the substrates on which elements are previously formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単結晶薄膜を用いた半
導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device using a single crystal thin film.

【0002】[0002]

【従来の技術】現時点で殆どのLSIは基板面上に単に
2次元的に能動素子や受動素子を配置させるものであ
り、ただ一部に次世代高速素子あるいは多機能素子とし
て3次元的な配慮が見えてきた。この3次元的素子を具
体的に実現する試みとしてその半導体装置の製造方法と
しては、たとえば絶縁膜上に形成したアモルファスシリ
コン膜を熱処理により固相成長させ単結晶化したり、エ
ネルギービームを用いて溶融再結晶化したり、酸素イオ
ンを打ち込んでウェハの中に絶縁膜を形成したりする方
法が用いられてきた。また他方貼り合わせによる手法も
あるにはあった。しかし、前者らの方法では単結晶化を
進める時にシリコン基板を種結晶とするために、下地の
シリコン基板と上のシリコン単結晶膜は同じ結晶方位の
ものしか得られなかった。さらに、下の層から順番に積
み上げていく方法であるため、全体の不良率は各層の不
良率のかけ算になるため歩留まりが悪くなるという問題
点や、上の層の単結晶及び素子を作る時の下の層の熱履
歴の問題、結晶欠陥及び不純物の混入など結晶性や界面
の問題、一層づつ素子を作るため時間がかかるといった
作業工程上の問題があった。また、後者の貼り合わせに
関しては、これらの問題に対して大きく改善できる可能
性を持っているにもかかわらず、残念ながらデバイス的
配慮がなされていなかった。また、チップ化するための
切断工程についての自由度も乏しかった。
2. Description of the Related Art At present, most LSIs merely have two-dimensionally arranged active elements and passive elements on the surface of a substrate, and only some of them are considered three-dimensionally as next-generation high-speed elements or multifunctional elements. Came into view. As an attempt to specifically realize this three-dimensional element, as a method of manufacturing the semiconductor device, for example, an amorphous silicon film formed on an insulating film is solid-phase grown by heat treatment to be single-crystallized, or melted using an energy beam. A method of recrystallizing or implanting oxygen ions to form an insulating film in a wafer has been used. On the other hand, there was a method of pasting. However, in the former method, since the silicon substrate is used as a seed crystal when proceeding with single crystallization, only the underlying silicon substrate and the silicon single crystal film on the top can obtain only the same crystal orientation. In addition, the method of stacking layers in order from the bottom layer is a problem in that the yield rate is poor because the total defect rate is a multiplication of the defect rates of each layer. There was a problem of thermal history of the lower layer, a problem of crystallinity and interface such as mixing of crystal defects and impurities, and a problem of working process such that it takes time to manufacture devices one by one. Regarding the latter bonding, unfortunately, no consideration was given to the device in spite of the possibility of greatly improving these problems. Moreover, the degree of freedom in the cutting process for forming chips has been poor.

【0003】[0003]

【発明が解決しようとする課題】本発明は、多機能高速
3次元素子の具体的な手法を提示するもので、工程の制
約をはずし、各層を独立に平行して作製したり、それぞ
れ違う基板や結晶軸方向に素子を作る自由度を与えるこ
とによって、現在のシリコン基板上だけに素子を形成す
る方法では難しい集積度をあげ、新しい機能を持つシス
テムを一つのチップ上に積層化する方法を示したもので
ある。従来の固相成長や、溶融再結晶化など結晶成長に
よって積層化膜を形成する方法では、下地を種結晶とす
るため上下の結晶が同じ材料、結晶面、結晶方位のもの
しか得られず、また下の層から順々に作製するしかなか
った。そのため積層化しても歩留まりが悪く、下の層の
素子が熱履歴で劣化し、作業工程が長く時間がかかっ
た。多機能化についても各層の基板が限定されているた
め、自由度がまったく無かった。また、例えば、CMO
Sを例にあげると、P−ch,N−ch各々について基
板を適正化することができず十分な積層化効果が得られ
なかった。一つの例として上下のMOSの間にゲートを
作り込み同時に動作させるような構造を考えてみると、
上下の素子がPMOS,NMOSであればそれぞれ別の
結晶面に形成することができれば移動度などのバランス
をとることができ多機能化がしやすくなると考えられ
る。また、本発明が提供する要点としては、素子作製の
自由度のならず、チップとして仕上げるときの問題とな
る劈開面、劈開方向にもその示唆を与えるものである。
また、(110)面にPチャネル、NチャネルMOS素
子を作製した場合、Pチャネルのチャネル方向は<11
0>方向に、Nチャネルの方向は<100>方向にする
と移動度の点では有利であるなど素子にとって有利な方
向が異なるとき、素子のレイアウトに制約が生じ集積度
をあげる上で大きな障害となっていたが、このような点
も解決しようとする課題である。
DISCLOSURE OF THE INVENTION The present invention provides a concrete method of a multifunctional high-speed three-dimensional device, which removes the restriction on the process and manufactures each layer independently and in parallel. The degree of integration, which is difficult with the current method of forming devices only on a silicon substrate, is increased by giving the degree of freedom to create devices in the crystal axis direction, and a method of stacking a system with new functions on one chip It is shown. In the conventional method of forming a laminated film by solid phase growth or crystal growth such as melt recrystallization, since the base is a seed crystal, only upper and lower crystals can be obtained with the same material, crystal plane, and crystal orientation. In addition, there was no choice but to sequentially fabricate from the lower layer. Therefore, the yield was poor even when laminated, and the elements in the lower layer deteriorated due to thermal history, and the working process took a long time. Regarding the multi-functionalization, there was no degree of freedom because the substrate for each layer was limited. Also, for example, CMO
Taking S as an example, the substrate cannot be optimized for each of P-ch and N-ch, and a sufficient stacking effect cannot be obtained. As an example, consider a structure in which a gate is formed between upper and lower MOSs and operated at the same time.
If the upper and lower elements are PMOS and NMOS, if they can be formed on different crystal planes, it is considered that mobility and the like can be balanced and multi-functionalization is facilitated. Further, the main point provided by the present invention is that the degree of freedom in manufacturing an element is not provided, and a suggestion is also given to a cleavage plane and a cleavage direction which are problems when finishing as a chip.
Further, when P-channel and N-channel MOS devices are formed on the (110) plane, the channel direction of P-channel is <11.
When the directions that are advantageous to the device are different, such that the direction of 0> and the direction of the N channel are the direction of <100>, which is advantageous in terms of mobility, the layout of the device is restricted, which is a major obstacle to increasing the integration degree. However, it is a problem to solve such a point.

【0004】[0004]

【課題を解決するための手段】本発明は、結晶面の異な
る単結晶を貼り合わせることによって、各々の層に作製
する素子に適した結晶方位、結晶軸を用いることを可能
にした。また、多機能性を達成するため異なる機能の素
子を異なる材質の基板に形成しこれを貼り合わせた。ま
た、素子を作る基板とそれを支える基板の方位を変える
ことによって、チップの加工に有利な基板を用いること
を可能にした。さらに、工期の短縮、歩留まりの向上を
達成するために各々の素子を基板を貼り合わせる前に形
成することも可能にした。
The present invention makes it possible to use crystal orientations and crystal axes that are suitable for the device to be formed in each layer by bonding single crystals having different crystal planes. Further, in order to achieve multi-functionality, elements having different functions were formed on substrates made of different materials, and the substrates were bonded together. In addition, by changing the orientation of the substrate on which the device is made and the substrate that supports it, it has become possible to use a substrate that is advantageous for chip processing. Furthermore, in order to shorten the construction period and improve the yield, each element can be formed before the substrates are bonded together.

【0005】[0005]

【作用】本発明ではまったく独立に各々の素子を適した
基板を用いて素子を形成した後、それを貼り合わせるこ
とによって、素子レイアウトを自由に行い、かつ種々の
素子に対して各々適正な半導体基板を用いることを可能
にし工期の短縮、歩留まりの向上、集積度、多機能性、
動作速度、加工性の向上が達成できた。
According to the present invention, each element is formed independently using a substrate suitable for each element, and the elements are attached to each other, whereby the element layout can be freely performed, and the semiconductors suitable for various elements can be appropriately selected. Enables the use of substrates, shortening the construction period, improving yield, integration, multifunctionality,
We were able to achieve improvements in operating speed and workability.

【0006】さらに、上下の結晶面、結晶方位を自由に
選べるようにすることによって、例えばPチャネル半導
体素子を0.1μm以下厚さの(110)面薄膜につく
り、N−chを(100)面に作り、両者の移動度を揃
えることができるなど回路構成上積層化のメリットが十
分に利用できるようになった。また回路構成上特にラッ
チアップ対策の必要な部分を上の層に作り、その時、N
−ch,P−chに合わせて結晶面を選ぶことも可能に
できた。また、同じ(110)面にPチャネル、Nチャ
ネルMOS素子を作製した場合、Pチャネルのチャネル
方向は<110>方向に、Nチャネルの方向は<100
>方向にすると各々移動度が大きくなる。このような素
子を<110>と<100>軸が重なるように上下の基
板を貼り合わせた基板に形成すると、チャネル方向が平
行になり素子のレイアウト上でデットスペースを減らす
ことができ集積度をあげることができた。一方、(11
0)面を上の基板に用いた場合、下を(100)ウェハ
あるいは(110)ウェハにする事によって半導体装置
を切り離す、いわゆるダイシング工程で結晶学的に安定
な劈開面を用いることができ、四角いチップを切り出す
ことも可能にできた。
Further, by freely selecting upper and lower crystal planes and crystal orientations, for example, a P-channel semiconductor device is formed into a (110) plane thin film having a thickness of 0.1 μm or less, and N-ch is (100). It is possible to make full use of the merit of stacking in terms of the circuit configuration, such as making it on the surface and making the mobilities of the two uniform. Also, in the circuit configuration, a part that requires latch-up measures is made in the upper layer, and at that time, N
It was possible to select a crystal plane according to -ch and P-ch. Further, when P-channel and N-channel MOS devices are formed on the same (110) plane, the P-channel direction is <110> and the N-channel direction is <100.
The mobility becomes larger in the> direction. When such an element is formed on a substrate in which upper and lower substrates are bonded so that the <110> and <100> axes are overlapped, the channel directions are parallel to each other, and the dead space in the element layout can be reduced and the integration degree can be improved. I was able to give it. On the other hand, (11
When the (0) plane is used as the upper substrate, a cleavage plane that is crystallographically stable can be used in a so-called dicing process in which the semiconductor device is cut off by forming the (100) wafer or the (110) wafer below. It was possible to cut out a square chip.

【0007】[0007]

【実施例】集積回路の微細化にともない半導体素子の大
きさは限界に近づき、LSIを基板面上に単に2次元的
に配置させるだけでなく、次世代高速素子あるいは多機
能素子として3次元的な配慮が現実的なものとして見え
てきた。この3次元的素子を具体的に実現する試みとし
て固相成長、溶融再結晶化、酸素イオン打ち込み絶縁膜
形成などの方法が用いられてきた。また、他方貼り合わ
せによる手法もある。しかし、前者らの方法では図1に
示すように、単結晶化を進める時にシリコン基板を種結
晶とするために、下地のシリコン基板と上のシリコン単
結晶膜は同じ結晶方位のものしか得られなかった。さら
に、下の層から順番に積み上げていく方法であるため、
全体の不良率は各層の不良率のかけ算になるため歩留ま
りが悪くなるという問題点や、上の層の単結晶及び素子
を作る時の下の層の熱履歴の問題、結晶欠陥及び不純物
の混入など結晶性や界面の問題、一層づつ素子を作るた
め時間がかかるといった作業工程上の問題があった。ま
た、後者の貼り合わせにしても、これらの問題に対して
大きく改善できる可能性を持っているにもかかわらず、
残念ながらデバイス的配慮やプロセスや工程上の配慮が
なされていなかった。
[Examples] With the miniaturization of integrated circuits, the size of semiconductor elements is approaching the limit, and not only LSIs are arranged two-dimensionally on the surface of a substrate but also three-dimensionally as next-generation high-speed elements or multifunctional elements. Considerations have become more realistic. Methods such as solid phase growth, melt recrystallization, and oxygen ion implantation insulating film formation have been used as attempts to specifically realize this three-dimensional element. In addition, there is also a method of attaching the other. However, in the former method, as shown in FIG. 1, since the silicon substrate is used as a seed crystal when proceeding with the single crystallization, only the underlying silicon substrate and the silicon single crystal film above have the same crystal orientation. There wasn't. Furthermore, because it is a method of stacking from the lower layer in order,
The overall defect rate is a product of the defect rates of each layer, resulting in poor yield, the problem of thermal history of the upper layer single crystal and the lower layer when making a device, and the inclusion of crystal defects and impurities. However, there are problems in the work process such as crystallinity and interface problems, and it takes time to fabricate devices one by one. In addition, even if the latter is bonded, there is a possibility that these problems can be greatly improved,
Unfortunately, no consideration was given to devices, processes, or processes.

【0008】図2のように従来例では素子の微細化によ
る集積度向上の限界を越えるために、素子を積層化し
た。しかし、下層と上層のシリコン基板の結晶方位が同
じであり、結晶構造によるP−chとN−chMOSの
特性の制御を利用せず、各々の性能を十分に引き出すこ
とや、特性を揃えることを行わず回路設計上大きな問題
を残していた。
As shown in FIG. 2, in the conventional example, the elements are laminated in order to exceed the limit of improvement in the degree of integration due to the miniaturization of the elements. However, since the crystal orientations of the lower and upper silicon substrates are the same, control of the characteristics of the P-ch and N-ch MOSs by the crystal structure is not utilized, and it is not possible to bring out the respective performances sufficiently or to make the characteristics uniform. Not doing it left a big problem in the circuit design.

【0009】本発明は、上下の基板の結晶面、結晶軸、
材料を自由に選べるようにすることによって、上記問題
を解決した。図1は第1の実施例の貼り合わせた基板で
ある。まずNチャネルMOSを(100)面を持つシリ
コンウェハに作製した。素子分離はLOCOS、ゲート
酸化膜250オングストローム、チャネル長0.5μ
m、ソース、ドレインはイオン注入によりAsを注入、
850℃30分の熱処理で活性化を行った。一方、(1
10)面を持つシリコンウェハにPチャネルMOSを同
様に作製した。このとき、結晶面により酸化膜の成長速
度が図3に示すように異なるためそれぞれ酸化時間は結
晶面に合わせて調節した。次に図1に示したようにPM
OS、NMOSを作製した基板を貼り合わせた。各々の
ウェハをまず純水中に浸し、水中で貼り合わせた後外に
取り出し850℃、N2 雰囲気で30分熱処理する事に
よって両ウェハは接着された。熱処理の前に炉内を真空
排気し水分を蒸発させても表面吸着水が残りその吸着効
果は維持された。水中に浸す工程を省いてもほぼ同様な
接着は得られたが位置ズレ、気泡の巻き込みなどの点で
一旦水中で貼り合わせた方が有利であった。次に、PM
OSを形成したウェハを裏側から機械研磨により研削し
た。この時、先に素子分離として用いたLOCOSの酸
化膜部分が表面に出た時点で研削の抵抗が変化すること
を利用して0.05μmの厚さの薄膜になるまで機械研
磨を行った。このように素子の活性層を極薄膜化し、ゲ
ートからの垂直電界を弱めることによる移動度の向上効
果をも利用して、両者の移動度を揃えることができた。
図4は、参考のため結晶面と移動度の関係を示したもの
である。これによって回路構成上積層化のメリットが十
分に利用できるようになった。
According to the present invention, the crystal planes, crystal axes of the upper and lower substrates,
The above problem was solved by allowing the materials to be freely selected. FIG. 1 shows a bonded substrate of the first embodiment. First, an N-channel MOS was manufactured on a silicon wafer having a (100) plane. Device isolation is LOCOS, gate oxide film 250 Å, channel length 0.5μ
m, source, and drain are ion-implanted As,
Activation was performed by heat treatment at 850 ° C. for 30 minutes. On the other hand, (1
A P-channel MOS was similarly formed on a silicon wafer having a 10) surface. At this time, since the growth rate of the oxide film varies depending on the crystal plane as shown in FIG. 3, the oxidation time is adjusted according to the crystal plane. Next, as shown in FIG.
The substrates on which the OS and the NMOS were manufactured were attached. The respective wafers were first bonded by immersing them in pure water, bonding them in water, taking them out, and then heat-treating them at 850 ° C. in a N 2 atmosphere for 30 minutes. Even if the inside of the furnace was evacuated to evaporate the water content before the heat treatment, the surface-adsorbed water remained and the adsorption effect was maintained. Almost the same adhesion was obtained even if the step of immersing in water was omitted, but it was advantageous to bond them once in water in terms of misalignment, entrapment of bubbles, and the like. Next, PM
The wafer on which the OS was formed was ground by mechanical polishing from the back side. At this time, mechanical polishing was performed until a thin film having a thickness of 0.05 μm was obtained by utilizing the fact that the grinding resistance was changed when the oxide film portion of LOCOS previously used for element isolation appeared on the surface. Thus, it was possible to make the mobilities of both devices uniform by utilizing the effect of improving the mobilities by thinning the active layer of the device and weakening the vertical electric field from the gate.
FIG. 4 shows the relationship between the crystal plane and the mobility for reference. As a result, the advantages of stacking can be fully utilized in terms of circuit configuration.

【0010】図5は、PMOSのゲートを形成せずにN
MOSを形成した基板と貼り合わせゲートを共有化した
本発明の第2の実施例である。PMOS形成のソースド
レインイオン注入は酸化膜マスクを用いて行い、貼り合
わせる前に一旦はがし、全面を再び酸化した。図6はこ
のような酸化膜のNssを示したものであり、結晶面に
よって異なるが(111)面においても特に大きく問題
となるレベルではなかった。このように上下のMOSの
間にゲートを作り込み同時に動作させるような回路では
上下の素子がPMOS,NMOSであればそれぞれ別の
結晶面に形成することによって特性のバランスをとるこ
とができ回路動作を安定することができた。微細素子に
おいてはもはやチャネルの不純物イオン注入ではこのよ
うな制御をする事ができず、基板の結晶方位、チャネル
の方向と結晶軸との関連においてのみ制御することが可
能となった。
FIG. 5 shows that N gate is formed without forming the gate of the PMOS.
It is a second embodiment of the present invention in which a substrate on which a MOS is formed and a bonding gate are shared. The source / drain ion implantation for PMOS formation was performed using an oxide film mask, and was peeled off before bonding and the whole surface was oxidized again. FIG. 6 shows the Nss of such an oxide film, and although it differs depending on the crystal plane, the level of (111) plane was not a particularly serious problem. In such a circuit in which a gate is formed between the upper and lower MOSs to operate simultaneously, the characteristics can be balanced by forming the upper and lower elements on different crystal planes if they are PMOS and NMOS, respectively. Was able to stabilize. In a fine device, such control can no longer be performed by impurity ion implantation of the channel, and it has become possible to control only in relation to the crystal orientation of the substrate, the channel direction and the crystal axis.

【0011】図7は、(110)面にPチャネル、Nチ
ャネルMOS素子を作製する時に、<110>と<10
0>軸が重なるように上下に(110)面の基板を貼り
合わせ、チャネル方向を平行にし素子のレイアウト上で
のデットスペースを減らし集積度をあげることができた
本発明第3の実施例である。図4に示すように、同じ
(110)面にPチャネル、NチャネルMOS素子を作
製した場合、Pチャネルのチャネル方向は<110>方
向に、Nチャネルの方向は<100>方向にすると各々
移動度が大きくなる。しかしこのように素子をレイアウ
トすると互いに45度傾いて素子が配置されるため三角
領域のデットスペースができてしまう。そこで、(11
0)面を持ち、オリフラを(110)にしたウェハにP
MOSを形成し、(110)面を持ち、オリフラを(1
00)にしたウェハにNMOSを形成した。この2枚の
ウェハをオリフラを重ねて850℃、30分の熱工程で
貼り合わせた。その後、PMOSの形成した基板を裏側
から研磨して薄膜化した。さらに、PMOSの形成され
ていない領域を反応性イオンエッチングにより除去し、
NMOSとの配線を形成した。配線にはスパッタ法によ
るA1−Cu合金を用いた。この工程は、さきに(11
0)面を持ち、オリフラを<110>にしたウェハと、
(110)面を持ち、オリフラを<100>にしたウェ
ハの表面を酸化し、950℃、30分の熱工程で貼り合
わせてから一方を薄膜化、反応性イオンエッチングによ
り薄い方の基板を一部除去し、それぞれ適した結晶軸の
ところにPMOS、NMOSを形成しても同様のものを
作ることができた。このときLOCOS素子分離だけは
先に行っておくと位置合わせ、薄膜化の研磨時のストッ
パーなどの点で有利であった。同様の効果は図8に示す
ように(311)面のウェハを用いたときにも適用され
る。また、図9に示すようPチャネルとNチャネルでは
移動度の早いチャネル方向が違いに90度ずれている。
すなわち、Pチャンは<110>と平行でNチャンは垂
直つまり<001>に平行である。これは(011)ウ
ェハの場合その法線を軸に互いに45度回転した位置関
係になる。
FIG. 7 shows <110> and <10 when manufacturing P-channel and N-channel MOS devices on the (110) plane.
In the third embodiment of the present invention, the (110) plane substrates are attached to each other so that the 0> axis is overlapped, and the channel directions are made parallel to reduce the dead space in the layout of the device and to increase the integration degree. is there. As shown in FIG. 4, when P-channel and N-channel MOS devices are formed on the same (110) plane, the P-channel moves in the <110> direction and the N-channel moves in the <100> direction, respectively. The degree increases. However, when the elements are laid out in this way, the elements are arranged at an angle of 45 ° with respect to each other, so that a dead space in a triangular region is formed. Therefore, (11
A wafer with a (0) plane and an orientation flat of (110)
A MOS is formed and has a (110) plane.
An NMOS was formed on the wafer prepared as (00). These two wafers were laminated with an orientation flat and bonded by a heating process at 850 ° C. for 30 minutes. Then, the substrate on which the PMOS was formed was polished from the back side to form a thin film. Furthermore, the region where the PMOS is not formed is removed by reactive ion etching,
The wiring with the NMOS was formed. A1-Cu alloy produced by the sputtering method was used for the wiring. This process was previously (11
A wafer having a (0) surface and an orientation flat of <110>,
The surface of a wafer having a (110) plane and an orientation flat of <100> is oxidized, and one of them is thinned by a thermal process at 950 ° C. for 30 minutes, and then one of them is thinned by reactive ion etching. Similar parts could be produced by removing parts and forming PMOS and NMOS at suitable crystal axes. At this time, if only the LOCOS element is separated, it is advantageous in terms of positioning and a stopper during polishing for thinning. The same effect is applied when a (311) plane wafer is used as shown in FIG. Further, as shown in FIG. 9, in the P channel and the N channel, the channel directions with high mobility are different from each other by 90 degrees.
That is, P-chan is parallel to <110> and N-chan is vertical, that is, parallel to <001>. In the case of the (011) wafer, this has a positional relationship in which the normal line is rotated by 45 degrees with respect to each other.

【0012】図10は、Nチャネルにとって(110)
面より移動度が大きい(111)面を上の基板に用いた
場合、あるいはGaAs基板を上の基板に用いた場合、
下のウェハを(100)ウェハあるいは(110)ウェ
ハにする事によって半導体装置を切り離す、いわゆるダ
イシング工程で結晶学的に安定な劈開面を用いることが
でき、四角いチップを切り出すことを可能にした本発明
の第4の実施例である。ウェハの接着には熱酸化膜を間
に挟み加熱する方法を例にとって説明したが、熱酸化膜
とシリコンあるいはシリコンとシリコンでも同様に接着
できる。また、シリコン系の接着剤シラノール(SiH
3 OH)などや、有機系の接着剤を用いても同様の効果
を得ることができた。また、本発明の主旨を逸脱しない
範囲でウェハを接着する方法であれば同様の効果を得る
ことができる。
FIG. 10 shows (110) for the N channel.
When the (111) plane having a higher mobility than the plane is used as the upper substrate, or when the GaAs substrate is used as the upper substrate,
A semiconductor device is separated by making the lower wafer a (100) wafer or a (110) wafer, a cleavage plane that is crystallographically stable can be used in a so-called dicing process, and a square chip can be cut out. It is a fourth embodiment of the invention. Although the method of heating by sandwiching the thermal oxide film between the wafers has been described as an example for bonding the wafers, the thermal oxide film and the silicon or the silicon and the silicon can be similarly bonded. In addition, the silicon-based adhesive silanol (SiH
The same effect could be obtained by using ( 3 OH) or the like or an organic adhesive. Further, the same effect can be obtained as long as it is a method of bonding a wafer without departing from the scope of the present invention.

【0013】また、ウェハとしてシリコンを例に上げて
説明したが、シリコン以外でも、Ge,GaAs,In
PなどIV族、III−V族、II−VI族などの基板
を組み合わせても同様の効果を得ることができる。
Further, although silicon has been taken as an example of the wafer for description, other than silicon, Ge, GaAs, In may be used.
Similar effects can be obtained by combining substrates of group IV, group III-V, group II-VI, etc. such as P.

【0014】[0014]

【発明の効果】この発明では素子レイアウトを自由に行
い、かつ種々の素子に対して各々適正な半導体基板を用
いることを可能にし、また、各々の基板の素子をあらか
じめ形成してから組み合わせることも可能であり、集積
度、多機能性、動作速度、加工性の向上を達成できる。
例えば、半導体装置において、P−ch,N−chMO
Sの素子特性を必要に応じた値に揃えることができ、ま
た、各々の動作に適した基板を用いるなど良好な回路素
子の構成が可能になった。また、積層化による単純な集
積度の向上のみならず、P−ch,N−chMOSをそ
れぞれ適した結晶軸にチャネルの方向を合わせ、各々の
チャネルの向きを揃えることが可能になり、デットスペ
ースを無くし、集積度を向上させることができた。さら
に(111)基板など直行する切断面で切り出すことが
難しい基板を用いた場合でも、四角いチップに切り出す
ことを可能にした。
According to the present invention, it is possible to freely perform element layout and use appropriate semiconductor substrates for various elements, and it is also possible to form elements on each substrate in advance and then combine them. It is possible, and it is possible to improve the degree of integration, multifunctionality, operation speed, and workability.
For example, in a semiconductor device, P-ch, N-ch MO
The element characteristics of S can be made equal to a required value, and a good circuit element configuration can be achieved by using a substrate suitable for each operation. Further, not only the integration degree is simply improved by stacking, but also the channel directions of the P-ch and N-ch MOSs can be aligned with the respective suitable crystal axes to align the directions of the respective channels. It was possible to improve the degree of integration. Furthermore, even when a substrate such as a (111) substrate that is difficult to cut with a perpendicular cutting surface is used, it is possible to cut into a square chip.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例を説明する斜視図。FIG. 1 is a perspective view illustrating a first embodiment of the present invention.

【図2】 従来の方法を説明する斜視図。FIG. 2 is a perspective view illustrating a conventional method.

【図3】 結晶方位による酸化速度の一例を示す曲線
図。
FIG. 3 is a curve diagram showing an example of an oxidation rate depending on crystal orientation.

【図4】 結晶方位と移動度の関係を示す曲線図。FIG. 4 is a curve diagram showing the relationship between crystal orientation and mobility.

【図5】 本発明の第2の実施例を示す断面斜視図。FIG. 5 is a sectional perspective view showing a second embodiment of the present invention.

【図6】 結晶面とNssの関係を示す曲線図。FIG. 6 is a curve diagram showing a relationship between a crystal plane and Nss.

【図7】 本発明の第3の実施例を示す斜視図。FIG. 7 is a perspective view showing a third embodiment of the present invention.

【図8】 結晶軸とチャネル方向と移動度の関係を示す
特性図。
FIG. 8 is a characteristic diagram showing the relationship between the crystal axis, the channel direction, and the mobility.

【図9】 結晶軸とチャネル方向と移動度の関係を示す
特性図。
FIG. 9 is a characteristic diagram showing a relationship between crystal axes, channel directions, and mobilities.

【図10】 本発明の第4の実施例を示す斜視図。FIG. 10 is a perspective view showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…(100)シリコン基板 2…絶縁膜 3…(11
0)基板 4…(100)シリコン基板 5…絶縁膜
6…(100)基板 7…(211)基板 8…絶縁膜 9…NMOS 10
…PMOS 11…ゲート 12…(011)基板
1 ... (100) Silicon substrate 2 ... Insulating film 3 ... (11
0) Substrate 4 ... (100) Silicon substrate 5 ... Insulating film
6 ... (100) substrate 7 ... (211) substrate 8 ... Insulating film 9 ... NMOS 10
... PMOS 11 ... Gate 12 ... (011) substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/784 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 29/784

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 異なる結晶方位を持つウェハを2枚以上
接着し、これらのウェハ上に素子を形成してなることを
特徴とする単結晶薄膜半導体装置。
1. A single crystal thin film semiconductor device comprising two or more wafers having different crystal orientations bonded to each other, and elements being formed on these wafers.
【請求項2】 前記ウェハの面方位及びその上に接着す
るウェハの面方位のうち少なくとも一つは(100)面
であり、かつ少なくとも一つは(111)面であること
を特徴とする請求項1記載の単結晶薄膜半導体装置。
2. At least one of the plane orientation of the wafer and the plane orientation of the wafer adhered thereon is a (100) plane, and at least one is a (111) plane. Item 1. A single crystal thin film semiconductor device according to item 1.
【請求項3】 前記ウェハの面方位及びその上に接着す
るウェハの面方位のうち少なくとも一つは(100)面
であり、かつ少なくとも一つは(110)面であること
を特徴とする請求項1記載の単結晶薄膜半導体装置。
3. The surface orientation of the wafer and the surface orientation of the wafer adhered thereon are at least one (100) plane and at least one is a (110) plane. Item 1. A single crystal thin film semiconductor device according to item 1.
【請求項4】 前記ウェハの面方位及びその上に接着す
るウェハの面方位のうち少なくとも一つは(110)面
であり、かつ少なくとも一つは(111)面であること
を特徴とする請求項1記載の単結晶薄膜半導体装置。
4. The at least one of the plane orientation of the wafer and the plane orientation of the wafer adhered thereon is a (110) plane, and at least one is a (111) plane. Item 1. A single crystal thin film semiconductor device according to item 1.
【請求項5】 前記ウェハの面方位及びその上に接着す
るウェハの面方位を(110)とし、この面に対する法
線の結晶軸を回転軸とし互いに43〜48度の範囲で回
転位置にあることを特徴とする請求項1記載の単結晶薄
膜半導体装置。
5. The plane orientation of the wafer and the plane orientation of the wafer adhered thereon are set to (110), and the crystal axes of the normal line to this plane are the rotation axes, and they are in rotation positions within the range of 43 to 48 degrees. The single crystal thin film semiconductor device according to claim 1.
【請求項6】 前記ウェハの上に接着するウェハの厚み
を0.1μm以下にすることを特徴とする請求項1記載
の単結晶薄膜半導体装置。
6. The single crystal thin film semiconductor device according to claim 1, wherein the thickness of the wafer bonded onto the wafer is 0.1 μm or less.
【請求項7】 前記ウェハの接着に熱処理を用いること
を特徴とする請求項1記載の単結晶薄膜半導体装置。
7. The single crystal thin film semiconductor device according to claim 1, wherein heat treatment is used for bonding the wafer.
【請求項8】 前記接着ウェハの接着は、純水など粘性
の低い液体に浸し、その後乾燥させて行うことを特徴と
する請求項1記載の単結晶薄膜半導体装置。
8. The single crystal thin film semiconductor device according to claim 1, wherein the bonding wafer is bonded by immersing it in a liquid having a low viscosity such as pure water and then drying it.
【請求項9】 前記ウェハの接着は、粘性の低いシリコ
ン系接着剤を用い、接着するウェハを接着剤に浸し液中
で貼り合わせた後、乾燥凝固させて行うことを特徴とす
る請求項1記載の単結晶薄膜半導体装置。
9. The wafer is adhered by using a silicon-based adhesive having a low viscosity, immersing the wafer to be adhered in the adhesive, adhering the wafers in a liquid, and then drying and solidifying the wafers. The single crystal thin film semiconductor device described.
【請求項10】 前記ウェハの接着は、粘性の低い有機
系接着剤を用い、接着するウェハを接着剤に浸し液中で
貼り合わせた後、乾燥凝固させて行うことを特徴とする
請求項1記載の単結晶薄膜半導体装置。
10. The wafer is adhered by using an organic adhesive having a low viscosity, immersing the wafer to be adhered in the adhesive, bonding them in a liquid, and then drying and solidifying the wafer. The single crystal thin film semiconductor device described.
JP24817091A 1991-09-27 1991-09-27 Single crystal thin film semiconductor device Pending JPH0590117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24817091A JPH0590117A (en) 1991-09-27 1991-09-27 Single crystal thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24817091A JPH0590117A (en) 1991-09-27 1991-09-27 Single crystal thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPH0590117A true JPH0590117A (en) 1993-04-09

Family

ID=17174256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24817091A Pending JPH0590117A (en) 1991-09-27 1991-09-27 Single crystal thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPH0590117A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297377A (en) * 1994-04-21 1995-11-10 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH09223667A (en) * 1996-02-16 1997-08-26 Hitachi Ltd Laminated substrate and its manufacturing method
WO2001084633A1 (en) * 2000-04-28 2001-11-08 Sumitomo Mitsubishi Silicon Corporation Method and apparatus for producing bonded dielectric separation wafer
FR2815772A1 (en) * 2000-10-25 2002-04-26 Mitsubishi Electric Corp Integrated circuit semiconductor slice manufacture/method apparatus having support substitute/slice crystalline structure having structure orientation window assembled with viewing sections separated.
JP2002185080A (en) * 2000-12-15 2002-06-28 Fujitsu Ltd Semiconductor device and its manufacturing method
WO2003049189A1 (en) * 2001-12-04 2003-06-12 Shin-Etsu Handotai Co.,Ltd. Pasted wafer and method for producing pasted wafer
JP2004104128A (en) * 2002-09-04 2004-04-02 Samsung Electronics Co Ltd Sram device formed on soi substrate
EP1624488A1 (en) * 2003-05-15 2006-02-08 Shin-Etsu Handotai Company Limited Soi wafer and process for producing the same
WO2006059586A1 (en) * 2004-11-30 2006-06-08 Shin-Etsu Handotai Co., Ltd. Method for manufacturing direct bond wafer, and direct bond wafer
WO2006114999A1 (en) * 2005-04-18 2006-11-02 Kyoto University Compound semiconductor device and method for fabricating compound semiconductor device
JP2007194247A (en) * 2006-01-17 2007-08-02 Sony Corp Semiconductor light emitting device and its fabrication process
US7291542B2 (en) 2002-09-30 2007-11-06 Renesas Technology Corp. Semiconductor wafer and manufacturing method thereof
JP2008513973A (en) * 2004-06-21 2008-05-01 インターナショナル・ビジネス・マシーンズ・コーポレーション Hybrid substrate for high mobility planar and multi-gate MOSFET, substrate structure and method for forming the substrate
JP2008521229A (en) * 2004-11-18 2008-06-19 インターナショナル・ビジネス・マシーンズ・コーポレーション SOI substrate material and method of forming Si-containing SOI and lower substrate having different orientations
JP2008523620A (en) * 2004-12-08 2008-07-03 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor device including a plurality of stacked hybrid orientation layers and method for forming the semiconductor device
US7459720B2 (en) * 2000-07-10 2008-12-02 Shin-Etsu Handotai Co., Ltd. Single crystal wafer and solar battery cell
JP2008311638A (en) * 2007-05-17 2008-12-25 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2009004736A (en) * 2007-03-16 2009-01-08 Semiconductor Energy Lab Co Ltd Semiconductor device, semiconductor display device, and manufacturing method of semiconductor display device
JP2009054705A (en) * 2007-08-24 2009-03-12 Toshiba Corp Semiconductor substrate, semiconductor device, and manufacturing method thereof
WO2009031392A1 (en) * 2007-09-07 2009-03-12 Sumco Corporation Bonding wafer manufacturing method
WO2009035063A1 (en) * 2007-09-14 2009-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic appliance
JP2009253237A (en) * 2008-04-11 2009-10-29 Sumco Corp Bonded wafer manufacturing method
US7829431B2 (en) 2007-07-13 2010-11-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a SOI with plurality of single crystal substrates
US7829396B2 (en) 2007-08-24 2010-11-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device and manufacturing apparatus of the same
US7981766B2 (en) 2007-08-17 2011-07-19 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method and manufacturing apparatus of semiconductor
US8044464B2 (en) 2007-09-21 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8232598B2 (en) 2007-09-20 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US8470648B2 (en) 2007-08-24 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8653568B2 (en) 2007-11-19 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate with stripes of different crystal plane directions and semiconductor device including the same
JP2014186264A (en) * 2013-03-25 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of optical function element
WO2021024654A1 (en) * 2019-08-06 2021-02-11 信越半導体株式会社 Substrate for electronic device and production method therefor

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297377A (en) * 1994-04-21 1995-11-10 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH09223667A (en) * 1996-02-16 1997-08-26 Hitachi Ltd Laminated substrate and its manufacturing method
US6830985B2 (en) 2000-04-28 2004-12-14 Sumitomo Mitsubishi Silicon Corporation Method and apparatus for producing bonded dielectric separation wafer
WO2001084633A1 (en) * 2000-04-28 2001-11-08 Sumitomo Mitsubishi Silicon Corporation Method and apparatus for producing bonded dielectric separation wafer
US7459720B2 (en) * 2000-07-10 2008-12-02 Shin-Etsu Handotai Co., Ltd. Single crystal wafer and solar battery cell
FR2815772A1 (en) * 2000-10-25 2002-04-26 Mitsubishi Electric Corp Integrated circuit semiconductor slice manufacture/method apparatus having support substitute/slice crystalline structure having structure orientation window assembled with viewing sections separated.
US6864534B2 (en) 2000-10-25 2005-03-08 Renesas Technology Corp. Semiconductor wafer
JP2002185080A (en) * 2000-12-15 2002-06-28 Fujitsu Ltd Semiconductor device and its manufacturing method
US7315064B2 (en) 2001-12-04 2008-01-01 Shin-Etsu Handotai Co., Ltd. Bonded wafer and method of producing bonded wafer
EP1453096A1 (en) * 2001-12-04 2004-09-01 Shin-Etsu Handotai Co., Ltd Pasted wafer and method for producing pasted wafer
JPWO2003049189A1 (en) * 2001-12-04 2005-04-21 信越半導体株式会社 Bonded wafer and method for manufacturing bonded wafer
CN100403543C (en) * 2001-12-04 2008-07-16 信越半导体株式会社 Pasted wafer and method for producing pasted wafer
US7052974B2 (en) 2001-12-04 2006-05-30 Shin-Etsu Handotai Co., Ltd. Bonded wafer and method of producing bonded wafer
WO2003049189A1 (en) * 2001-12-04 2003-06-12 Shin-Etsu Handotai Co.,Ltd. Pasted wafer and method for producing pasted wafer
EP1453096A4 (en) * 2001-12-04 2009-10-28 Shinetsu Handotai Kk Pasted wafer and method for producing pasted wafer
JP2004104128A (en) * 2002-09-04 2004-04-02 Samsung Electronics Co Ltd Sram device formed on soi substrate
US7291542B2 (en) 2002-09-30 2007-11-06 Renesas Technology Corp. Semiconductor wafer and manufacturing method thereof
EP1624488A1 (en) * 2003-05-15 2006-02-08 Shin-Etsu Handotai Company Limited Soi wafer and process for producing the same
EP1624488A4 (en) * 2003-05-15 2009-10-28 Shinetsu Handotai Kk Soi wafer and process for producing the same
JP2013084982A (en) * 2004-06-21 2013-05-09 Microsoft Corp Hybrid substrate for high-mobility planar and multiple-gate mosfets, substrate structure, and method of forming said substrate
JP2008513973A (en) * 2004-06-21 2008-05-01 インターナショナル・ビジネス・マシーンズ・コーポレーション Hybrid substrate for high mobility planar and multi-gate MOSFET, substrate structure and method for forming the substrate
JP2008521229A (en) * 2004-11-18 2008-06-19 インターナショナル・ビジネス・マシーンズ・コーポレーション SOI substrate material and method of forming Si-containing SOI and lower substrate having different orientations
WO2006059586A1 (en) * 2004-11-30 2006-06-08 Shin-Etsu Handotai Co., Ltd. Method for manufacturing direct bond wafer, and direct bond wafer
JP2006156770A (en) * 2004-11-30 2006-06-15 Shin Etsu Handotai Co Ltd Direct junction wafer and method for manufacturing the same
US7521334B2 (en) 2004-11-30 2009-04-21 Shin-Etsu Handotai Co., Ltd. Method for producing direct bonded wafer and direct bonded wafer
JP2008523620A (en) * 2004-12-08 2008-07-03 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor device including a plurality of stacked hybrid orientation layers and method for forming the semiconductor device
WO2006114999A1 (en) * 2005-04-18 2006-11-02 Kyoto University Compound semiconductor device and method for fabricating compound semiconductor device
JP2007194247A (en) * 2006-01-17 2007-08-02 Sony Corp Semiconductor light emitting device and its fabrication process
KR101441941B1 (en) * 2007-03-16 2014-09-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, semiconductor display device, and manufacturing method of semiconductor device
JP2009004736A (en) * 2007-03-16 2009-01-08 Semiconductor Energy Lab Co Ltd Semiconductor device, semiconductor display device, and manufacturing method of semiconductor display device
US8592907B2 (en) 2007-05-17 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2008311638A (en) * 2007-05-17 2008-12-25 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
US7923781B2 (en) 2007-05-17 2011-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7829431B2 (en) 2007-07-13 2010-11-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a SOI with plurality of single crystal substrates
US8445359B2 (en) 2007-08-17 2013-05-21 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method and manufacturing apparatus of semiconductor device
US7981766B2 (en) 2007-08-17 2011-07-19 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method and manufacturing apparatus of semiconductor
JP2009054705A (en) * 2007-08-24 2009-03-12 Toshiba Corp Semiconductor substrate, semiconductor device, and manufacturing method thereof
US8268701B2 (en) 2007-08-24 2012-09-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing of semiconductor device
US7829396B2 (en) 2007-08-24 2010-11-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device and manufacturing apparatus of the same
US8039843B2 (en) 2007-08-24 2011-10-18 Kabushiki Kaisha Toshiba Semiconductor wafer, semiconductor device and method of fabricating the same
US8470648B2 (en) 2007-08-24 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2009031392A1 (en) * 2007-09-07 2009-03-12 Sumco Corporation Bonding wafer manufacturing method
JP2009065039A (en) * 2007-09-07 2009-03-26 Sumco Corp Method of manufacturing laminated wafer
US8003494B2 (en) 2007-09-07 2011-08-23 Sumco Corporation Method for producing a bonded wafer
WO2009035063A1 (en) * 2007-09-14 2009-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic appliance
US8232598B2 (en) 2007-09-20 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US8044464B2 (en) 2007-09-21 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8581309B2 (en) 2007-09-21 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8653568B2 (en) 2007-11-19 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate with stripes of different crystal plane directions and semiconductor device including the same
JP2009253237A (en) * 2008-04-11 2009-10-29 Sumco Corp Bonded wafer manufacturing method
JP2014186264A (en) * 2013-03-25 2014-10-02 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of optical function element
WO2021024654A1 (en) * 2019-08-06 2021-02-11 信越半導体株式会社 Substrate for electronic device and production method therefor
JP2021027186A (en) * 2019-08-06 2021-02-22 信越半導体株式会社 Substrate for electronic device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JPH0590117A (en) Single crystal thin film semiconductor device
KR100643746B1 (en) Semiconductor substrate, semiconductor device, and manufacturing methods for them
US5426072A (en) Process of manufacturing a three dimensional integrated circuit from stacked SOI wafers using a temporary silicon substrate
CN101266982B (en) Semiconductor device, semiconductor display device
CN100367500C (en) Integrated circuit structure and its forming method
CN101140933B (en) Semiconductor device and method of manufacture thereof
US7763915B2 (en) Three-dimensional integrated C-MOS circuit and method for producing same
JPH0656882B2 (en) Method for manufacturing stacked MOS device
JPH05198739A (en) Laminated semiconductor device and its manufacture
JP2003282885A (en) Semiconductor device and its fabricating method
JPH01722A (en) Manufacturing method of semiconductor base material
US8846487B2 (en) Reduction of STI corner defects during SPE in semiconductor device fabrication using DSB substrate and hot technology
JPH063837B2 (en) Method for manufacturing three-dimensional semiconductor integrated circuit
JPH04206766A (en) Manufacture of semiconductor device
JP2005268662A (en) Method of manufacturing three-dimensional device
JP2961522B2 (en) Substrate for semiconductor electronic device and method of manufacturing the same
US7521735B2 (en) Multiple layer and crystal plane orientation semiconductor substrate
JP4515525B2 (en) Semiconductor device
JP2004079645A (en) Semiconductor device and its manufacturing method
JPH06310427A (en) Manufacture of semiconductor device
JPH0341984B2 (en)
JPH03104276A (en) Manufacture of semiconductor device
JP2603623B2 (en) Manufacturing method of three-dimensional semiconductor integrated circuit
JPS60178661A (en) Manufacture of semiconductor device
JPH0448618A (en) Manufacture of semiconductor device