Nothing Special   »   [go: up one dir, main page]

JPH0580187A - Intra-reactor structure maintaining method - Google Patents

Intra-reactor structure maintaining method

Info

Publication number
JPH0580187A
JPH0580187A JP3241688A JP24168891A JPH0580187A JP H0580187 A JPH0580187 A JP H0580187A JP 3241688 A JP3241688 A JP 3241688A JP 24168891 A JP24168891 A JP 24168891A JP H0580187 A JPH0580187 A JP H0580187A
Authority
JP
Japan
Prior art keywords
shroud
jet pump
reactor
core
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3241688A
Other languages
Japanese (ja)
Other versions
JP3127512B2 (en
Inventor
Koichi Kurosawa
孝一 黒沢
Kunio Enomoto
邦夫 榎本
Keiichi Urashiro
慶一 浦城
Kinya Aota
欣也 青田
Michiyoshi Yamamoto
道好 山本
Yasukata Tamai
康方 玉井
Isao Nemezawa
勲 根目沢
Keiichi Nomura
敬一 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03241688A priority Critical patent/JP3127512B2/en
Publication of JPH0580187A publication Critical patent/JPH0580187A/en
Application granted granted Critical
Publication of JP3127512B2 publication Critical patent/JP3127512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To secure the soundness of an intra-reactor structure comparatively easily by employing the replacement, partical repair, and preventive maintenance mothods in proper combination according to the degree of difficulty of the dismantling and remounting works from/to the intra-reactor structure. CONSTITUTION:The intra-reactor structure of a nuclear reactor is installed in a pressure vessel 3 and is composed of such apparatus as a shroud 1, shroud supporting cylinder 2, upper grating plate 5, core supporting plate 6, jet pump diffuser 8a, jet pump riser 8b, jet pump mixer 8c, shroud support leg 9, shroud support plate 12, fuel supporting metal piece 21, vapor dryer 22, air/water separator and shroud head 23, control rod 24, control rod guide pipe 25, core spray sparger/piping 26, low pressure water injection piping 27, differential pressure sensing/boric acid water infection piling 28, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電プラントの
供用期間中に原子炉圧力容器内の炉心支持板,上部格子
板,炉心スプレイスパージャ/配管,低圧注水配管,ジ
ェットポンプライザ,ジェットポンプミキサ等、ICM
案内管,ICMスタビライザ等の炉内構造物を新規製作
の物と取替え、シュラウド,シュラウドサポートおよび
ジェットポンプディフューザに表面改質,残留応力改善
および熱処理等を施すことによる炉内構造物の保全方法
に係り、特に保全作業後の信頼性が高く、作業者の被爆
低減に好適な炉内構造物の保全方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a core support plate, an upper lattice plate, a core sparger / pipe, a low pressure water injection pipe, a jet pump riser, a jet pump mixer in a reactor pressure vessel during a service period of a nuclear power plant. Etc., ICM
Guideline, ICM stabilizer and other internal structures are replaced with newly manufactured products, and shrouds, shroud supports and jet pump diffusers are subjected to surface modification, residual stress improvement, heat treatment, etc. In particular, the present invention relates to a method for maintaining the internal structure of a reactor, which has high reliability after maintenance work and is suitable for reducing exposure of workers.

【0002】[0002]

【従来の技術】オーステナイトステンレス鋼等の金属材
料は高温水中に置かれた場合その溶接部またはその近傍
において応力腐食割れ(以下、IGSCCと略す)が発
生することは、一般に知られている。IGSCCは発生
の要因は材料,応力,環境の因子が重畳した条件下で生
じるとされている。材料因子としてはCr炭化物が結晶
粒界へ析出してその周囲に耐食性の劣るCr欠乏層が形
成されることによる鋭敏化、応力因子は溶接や加工によ
って材料内部に残留する引張残留応力、環境因子は高温
水中の溶存酸素量などが挙げられる。IGSCCはこれ
らの三因子が重畳した条件下で発生するため、これらの
三因子の中から一つの因子を取り除くことにより防止す
ることが可能である。同様に、インコネル材においても
ある条件下でSCCが発生することは、一般に知られお
り、特に、隙間環境下において顕著である。
2. Description of the Related Art It is generally known that when a metallic material such as austenitic stainless steel is placed in high temperature water, stress corrosion cracking (hereinafter abbreviated as IGSCC) occurs at or near the welded portion. IGSCC is said to be generated under the condition that material, stress, and environmental factors are superposed. The material factor is sensitization due to the precipitation of Cr carbide at the grain boundaries and the formation of a Cr-deficient layer with inferior corrosion resistance around the grain boundary. The stress factor is the tensile residual stress remaining inside the material due to welding or working, and the environmental factor. Is the amount of dissolved oxygen in high temperature water. Since IGSCC occurs under the condition in which these three factors are superposed, it can be prevented by removing one factor from these three factors. Similarly, it is generally known that SCC also occurs in the Inconel material under a certain condition, and it is particularly remarkable in a gap environment.

【0003】このような溶接部のSCCを防止するため
に表面改質によって腐食に関係する部分の表面部のみを
脱鋭敏化する方法がとられており、高エネルギビームを
照射することによって部材表面の鋭敏化部を溶体化温度
以上に加熱し、脱鋭敏化を計る方法が考案されている。
エネルギ源は急熱急冷の熱サイクルによって冷却過程で
の炭化物の析出の抑止が可能な事からレーザビームが有
力視されている。インコネル材でも同様な表面改質が有
効であるが、隙間構造をなくすこともSCCを防止の一
手段と言える。
In order to prevent such SCC of the welded portion, a method of desensitizing only the surface portion of the portion related to corrosion by surface modification is adopted, and the member surface is irradiated by irradiating a high energy beam. A method has been devised to measure the desensitization by heating the sensitized part of the solution above the solution temperature.
A laser beam is regarded as a promising energy source because it can suppress the precipitation of carbides in the cooling process by a thermal cycle of rapid heating and rapid cooling. Similar surface modification is effective for Inconel material, but elimination of the gap structure can be said to be one means of preventing SCC.

【0004】公知例は、特開昭60−165323号公報,特開
昭61−52315号公報,特開昭61−96025 号公報に記載の
ように、部材表面を溶体化温度以上に加熱する事例や、
特開昭61−177325号公報に記載のように、表面を再溶融
する事例がある。いずれも鋭敏化部材の表面部に析出し
ている炭化物を加熱によって固溶し、その後の急冷によ
って炭化物の析出を抑止することで脱鋭敏化させる事例
である。
Known examples are cases in which the surface of a member is heated above the solutionizing temperature, as described in JP-A-60-165323, JP-A-61-52315 and JP-A-61-96025. Or
As described in JP-A-61-177325, there is a case where the surface is remelted. In each case, the carbide deposited on the surface of the sensitizing member is dissolved to form a solid solution by heating, and the subsequent rapid cooling suppresses the precipitation of the carbide, thereby desensitizing the material.

【0005】また、従来のシュラウド,上部格子板およ
び炉心支持板等の炉内構造物は、特開昭54−35589 号公
報に記載のようにシュラウドは、据付け部材であるシュ
ラウドサポートシリンダを介して原子炉圧力容器に溶接
により取り付けられている。炉内構造物の取替えについ
ては、特開昭57−8490号公報、および特開昭57−12394
号公報により公知となっている制御棒駆動機構ハウジン
グの取替え工法、特開平2−118499 号公報により公知と
なっている中性子束モニタハウジングの補修方法、およ
び特開昭63−36195 号公報により公知となっている原子
炉内部構造物の取替え工法等が有る。
Further, in the conventional reactor internal structures such as shroud, upper lattice plate and core support plate, the shroud is mounted via a shroud support cylinder which is an installation member as described in JP-A-54-35589. It is attached to the reactor pressure vessel by welding. Regarding the replacement of the internal structure of the furnace, see JP-A-57-8490 and JP-A-57-12394.
Control rod drive mechanism housing replacement method known from Japanese Patent Laid-Open No. 2-118499, neutron flux monitor housing repair method known from Japanese Patent Laid-Open No. 2-118499, and known from Japanese Patent Laid-Open No. 63-36195. There is a method for replacing internal reactor internal structures.

【0006】[0006]

【発明が解決しようとする課題】特開昭57−8490号公
報、および特開昭57−12394号公報,特開平2−118499号
公報による従来技術は、それぞれ個々の炉内構造物を対
象としており、上部格子板,炉心支持板,炉心スプレイ
スパージャ/配管,低圧注水配管,ジェットポンプディ
フューザ,ジェットポンプライザ,ジェットポンプミキ
サ等、ICM案内管,ICMスタビライザ等の機器につ
いては、直接、適用できず、また特開昭63−36195 号公
報ではシュラウドをも取替える大がかりな取替えとな
り、その取替え工事には長期を要し、万一これらの機器
にIGSCCが発生し取替え,補修工事が必要となった
場合、長期を要するという問題があった。
The prior arts disclosed in JP-A-57-8490, JP-A-57-12394, and JP-A-2-118499 target individual internal reactor structures. It is not directly applicable to equipment such as upper grid plate, core support plate, core sparger / piping, low pressure water injection pipe, jet pump diffuser, jet pump riser, jet pump mixer, ICM guide pipe, ICM stabilizer, etc. Also, in Japanese Patent Laid-Open No. 63-36195, the shroud is also replaced in a large scale, and it takes a long time for the replacement work, and when IGSCC occurs in these devices, replacement work or repair work becomes necessary. There was a problem that it took a long time.

【0007】また、特開昭60−165323号公報,特開昭61
−52315号公報,特開昭61−96025号公報,特開昭61−17
7325号公報等に記載のレーザビーム利用による表面改質
を適用しIGSCCについての予防保全を行う場合、炉
内構造物では機器と機器間の取合い部等狭隘部があり、
これら機器のIGSCC予防保全工法対象箇所全面にわ
たって適用できるとは言えない。更に、レーザビーム利
用による予防保全工法を炉内構造物の予防保全工法対象
箇所全域に適用するには長期を要するという問題があっ
た。
Further, JP-A-60-165323 and JP-A-61
-52315, JP 61-96025, JP 61-17
When performing the preventive maintenance for IGSCC by applying the surface modification using the laser beam described in 7325 gazette and the like, in the reactor internal structure, there is a narrow part such as a connecting part between devices,
It cannot be said that these devices can be applied to all areas covered by the IGSCC preventive maintenance method. Furthermore, there is a problem that it takes a long time to apply the preventive maintenance method using a laser beam to all areas of the preventive maintenance method of the internal structure of the reactor.

【0008】そこで、本発明の目的は、炉心支持板,上
部格子板,炉心スプレイスパージャ/配管,低圧注水配
管,ジェットポンプディフューザ,ジェットポンプライ
ザ,ジェットポンプミキサ等、ICM案内管,ICMス
タビライザシュラウド、およびシュラウドサポート等の
炉内の機器に対し機器間の取り合い、配置等を考慮し取
替え工法、および部分補修/予防保全工法を使いわける
事により、比較的容易に短期間で、しかも取替え工法,
部分補修工法および予防保全工法適用後の機器の信頼性
が高く、また作業に従事する作業者の被爆低減をも考慮
した炉内構造物の保全方法を提供することにある。
Therefore, an object of the present invention is to provide a core support plate, an upper lattice plate, a core sparger / pipe, a low pressure water injection pipe, a jet pump diffuser, a jet pump riser, a jet pump mixer, an ICM guide pipe, an ICM stabilizer shroud, By using the replacement method and the partial repair / preventive maintenance method for the equipment in the furnace such as a shroud support and the like in consideration of the arrangement and arrangement of the equipment, it is relatively easy and in a short period of time.
An object of the present invention is to provide a method for maintaining the internal structure of a reactor in which the reliability of the equipment after application of the partial repairing method and the preventive maintenance method is high, and the reduction of radiation exposure of workers engaged in the work is taken into consideration.

【0009】更に、ジェットポンプディフューザとシュ
ラウドサポートプレートの溶接部およびシュラウドとシ
ュラウドサポートの溶接部に対し比較的容易に短期間
で、しかも作業に従事する作業者の被爆低減をも考慮し
施工後の機器の信頼性が高い予防保全工法を提供する。
Further, the welded portion of the jet pump diffuser and the shroud support plate and the welded portion of the shroud and the shroud support can be relatively easily and in a short period of time, and in consideration of reduction of exposure of workers engaged in the work, Provide a preventive maintenance method with high equipment reliability.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の炉内構造物の保全方法は、通常の定期検査
で取外す機器を取外した後、炉水を保持した状態で遠隔
操作式の装置により、上部格子板,炉心支持板,炉心ス
プレイスパージャ/配管,低圧注水配管,ジェットポン
プライザ,ジェットポンプミキサ等、ICM案内管,I
CMスタビライザ等の機器を、順次、取外し、その後、
シュラウド,シュラウドサポートおよびジェットポンプ
ディフューザの表面改質,残留応力改善および熱処理等
を行い、次に既に取外した炉心支持板,上部格子板,炉
心スプレイスパージャ/配管,低圧注水配管,ジェット
ポンプライザ,ジェットポンプミキサ等,ICM案内
管,ICMスタビライザ等をそれぞれ新規製作の物と取
替えることで達成出来る。
In order to achieve the above object, a method for maintaining a reactor internal structure according to the present invention is a remote operation in which reactor water is retained after a device to be removed by a normal periodic inspection is removed. Type equipment, upper lattice plate, core support plate, core sparger / pipe, low pressure water injection pipe, jet pump riser, jet pump mixer, ICM guide pipe, I
Remove the CM stabilizer and other devices in sequence, and then
Surface modification of shroud, shroud support and jet pump diffuser, improvement of residual stress and heat treatment, etc., and then core support plate, upper lattice plate, core sparger / pipe, low pressure injection pipe, jet pump riser, jet This can be achieved by replacing pump mixers, ICM guide tubes, ICM stabilizers, etc. with newly manufactured products.

【0011】また、ジェットポンプディフューザとシュ
ラウドサポートプレートの溶接部およびシュラウドとシ
ュラウドサポートの溶接部に対しては溶接部外表面を一
定の深さで機械的手段、または熱的手段等により取除
き、その後、取除いた部分にC,Ti,Nb等の科学成
分を調整した耐食性に優れたインコネル溶接材により肉
盛り溶接を行い更に、肉盛り溶接の熱影響部に表面改
質,残留応力改善等の処理を行うことで達成出来る。
For the welded portion of the jet pump diffuser and the shroud support plate and the welded portion of the shroud and the shroud support, the outer surface of the welded portion is removed at a constant depth by mechanical means or thermal means, After that, the removed portion is subjected to overlay welding by using Inconel welding material having excellent chemical resistance such as C, Ti, Nb and other chemical components adjusted, and surface modification and residual stress improvement in the heat affected zone of overlay welding. This can be achieved by performing the process of.

【0012】[0012]

【作用】本発明の炉内構造物の保全方法によれば、炉心
支持板,上部格子板,炉心スプレイスパージャ/配管,
低圧注水配管,ジェットポンプライザ,ジェットポンプ
ミキサ等、ICM案内管,ICMスタビライザ等の取外
し再据付けが比較的容易な炉内構造物に対しては新規製
作の物と取替え、シュラウド、シュラウドサポートおよ
びジェットポンプディフューザ等の取外し再据付けが困
難な炉内構造物に対しては部分補修、および表面改質,
残留応力改善,熱処理等の予防保全工法を適用すること
により炉内構造物の耐応力腐食割れ性の向上,健全性の
向上が図れる。
According to the method for maintaining the internal structure of the present invention, the core support plate, the upper lattice plate, the core sparger / piping,
For low pressure water injection pipes, jet pump risers, jet pump mixers, ICM guide tubes, ICM stabilizers, etc., which are relatively easy to remove and re-install, replace them with newly manufactured ones, such as shrouds, shroud supports and jets. Partial repair and surface modification for internal structures that are difficult to remove and re-install such as pump diffusers
Applying preventive maintenance methods such as residual stress improvement and heat treatment can improve the stress corrosion cracking resistance and soundness of the internal structure.

【0013】更に、ジェットポンプディフューザとシュ
ラウドサポートプレートの溶接部およびシュラウドとシ
ュラウドサポートの溶接部に対しては溶接部の外表面を
一定の深さで機械的手段、または熱的手段等により取除
く、またはその後取除いた部分にC,Ti,Nb等の科
学成分を調整した耐食性に優れたインコネル溶接材によ
り肉盛り溶接を行い更に、肉盛り溶接の熱影響部に表面
改質,残留応力改善等の処理を行うことにより炉内構造
物の耐応力腐食割れ性の向上,健全性の向上が図れる。
Further, for the welded portion of the jet pump diffuser and the shroud support plate and the welded portion of the shroud and the shroud support, the outer surface of the welded portion is removed at a constant depth by mechanical means or thermal means. , Or the portion removed afterwards, is subjected to overlay welding with Inconel welding material with excellent corrosion resistance in which chemical components such as C, Ti, Nb are adjusted, and surface modification and residual stress improvement in the heat affected zone of overlay welding. It is possible to improve the stress corrosion cracking resistance and the soundness of the internal structure by performing such treatments.

【0014】[0014]

【実施例】以下、本発明の一実施例を図1ないし図18
により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.
Will be explained.

【0015】図7は、沸騰水型原子炉の原子炉圧力容器
および原子炉炉内構造物を示し、原子炉炉内構造物は原
子炉圧力容器3内に据え付けられ、シュラウド1,シュ
ラウドサポートシリンダ2,上部格子板5,炉心支持板
6,ジェットポンプディフューザ8a,ジェットポンプ
ライザ8b,ジェットポンプミキサ8c,シュラウドサ
ポートレグ9,シュラウドサポートプレート12,燃料
支持金具21,蒸気乾燥器22,気水分離器兼シュラウ
ドヘッド23,制御棒24,制御棒案内管25,炉心ス
プレイスパージャ/配管26,低圧注水配管27,差圧
検出/ホウ酸水注入配管28等の機器より構成されてい
る。
FIG. 7 shows a reactor pressure vessel and a reactor internal structure of a boiling water reactor. The reactor internal structure is installed in the reactor pressure vessel 3, and the shroud 1 and the shroud support cylinder are installed. 2, upper grid plate 5, core support plate 6, jet pump diffuser 8a, jet pump riser 8b, jet pump mixer 8c, shroud support leg 9, shroud support plate 12, fuel support fitting 21, steam dryer 22, steam separation It comprises equipment such as a vessel / shroud head 23, a control rod 24, a control rod guide pipe 25, a core sparger / pipe 26, a low pressure water injection pipe 27, and a differential pressure detection / boric acid water injection pipe 28.

【0016】図3ないし図6は、プラント建設時におけ
るシュラウド1と上部格子板5、および炉心支持板6の
原子炉圧力容器3に対する据付け状況を示した図で、シ
ュラウド1は据付け部材であるシュラウドサポートシリ
ンダ2を介して原子炉圧力容器内に溶接により取り付け
られている。シュラウド1の内側には燃料集合体4を挿
荷するための上部格子板5と炉心支持板6が組み込ま
れ、これにより燃料集合体4は上下方向から支持されて
いる。シュラウド1の下端でシュラウドサポートシリン
ダ2の上端とが溶接7により結合されている。シュラウ
ドサポートシリンダ2の下端とシュラウドサポートレグ
9の上端とは溶接10により接続され、シュラウドサポ
ートレグ9の下端は溶接11により原子炉圧力容器3に
固定されている。このようにシュラウド1は溶接部を介
して原子炉圧力容器3と不離一体となっている。さら
に、シュラウド1の外側と原子炉圧力容器3の間にはシ
ュラウドサポートプレート12が溶接14、および溶接
14′によりそれぞれ原子炉圧力容器3およびシュラウ
ドサポートシリンダ2に結合されている。シュラウドサ
ポートプレート12にはジェットポンプディフューザ8
aが溶接13により固定されている。また、上部格子板
5はくさび15,ストッパ16,ボルト17によりシュ
ラウド1に固定されている。また、炉心支持板6はボル
ト18によりシュラウド1に固定されている。上部格子
板5および炉心支持板6は、原子炉の出力を制御する制
御棒の挿入,引き抜きを円滑に行えるようにすると共
に、原子炉緊急停止時に制御棒を高速度で挿入できるよ
ううにするため、原子炉圧力容器3の下鏡に溶接19に
より取り付けられたスタブチューブ20の穴芯にたいし
て非常に厳しい公差内(0.76Dia)に据え付けるこ
とが要求される。図6にプラント建設時の炉心支持板6
の据付け状況を示す。スタブチューブ20および炉心支
持板6の制御棒案内管貫通孔にそれぞれターゲット7
1,72を設置し、炉心支持板6上に設定した芯測定装
置73により芯測定を行う。芯測定の詳細ステップは、
特開昭63−36195 号公報に記載の通りである。
3 to 6 are views showing the installation of the shroud 1, the upper lattice plate 5, and the core support plate 6 on the reactor pressure vessel 3 during the construction of the plant. The shroud 1 is a shroud which is an installation member. It is mounted by welding in the reactor pressure vessel via the support cylinder 2. Inside the shroud 1, an upper lattice plate 5 for loading the fuel assembly 4 and a core support plate 6 are incorporated, whereby the fuel assembly 4 is supported from the up and down direction. The lower end of the shroud 1 is joined to the upper end of the shroud support cylinder 2 by welding 7. The lower end of the shroud support cylinder 2 and the upper end of the shroud support leg 9 are connected by welding 10, and the lower end of the shroud support leg 9 is fixed to the reactor pressure vessel 3 by welding 11. In this way, the shroud 1 is fixedly integrated with the reactor pressure vessel 3 via the welded portion. Further, between the outside of the shroud 1 and the reactor pressure vessel 3, a shroud support plate 12 is connected to the reactor pressure vessel 3 and the shroud support cylinder 2 by welding 14 and welding 14 ', respectively. The shroud support plate 12 has a jet pump diffuser 8
a is fixed by welding 13. The upper lattice plate 5 is fixed to the shroud 1 by a wedge 15, a stopper 16 and a bolt 17. The core support plate 6 is fixed to the shroud 1 with bolts 18. The upper lattice plate 5 and the core support plate 6 enable smooth insertion and extraction of control rods for controlling the output of the reactor, and also enable high-speed insertion of control rods during an emergency reactor shutdown. , The stub tube 20 attached by welding 19 to the lower mirror of the reactor pressure vessel 3 is required to be installed within a very tight tolerance (0.76 Dia). Fig. 6 shows the core support plate 6 at the time of plant construction.
Shows the installation status of. The target 7 is provided in each of the control rod guide tube through holes of the stub tube 20 and the core support plate 6.
1, 72 are installed, and core measurement is performed by the core measuring device 73 set on the core support plate 6. Detailed steps of core measurement are
As described in JP-A-63-36195.

【0017】図1は、本発明による炉内構造物の保全方
法の手順図を示し、図2は、本発明による炉内構造物の
保全方法の他の手順図を示す。図8ないし図12は、そ
れぞれの炉内構造物の保全作業を示す。特開昭63−3619
5 号公報に記載の作業ステップ図については、図示しな
いが図1に示す様に、まず、通常の定期検査時に原子炉
圧力容器3より取り外す原子炉圧力容器上蓋(RPV上
蓋)42,蒸気乾燥器22を原子炉建屋の天井クレーン
により取り外す。RPV上蓋42,蒸気乾燥器22の取
り外しは作業者の被爆低減を考慮し、原子炉圧力容器3
フランジ下部で炉水を保持した状態で行う。次に、作業
者の被爆低減を考慮し原子炉ウェル36を満水とし天井
クレーンにより気水分離器兼シュラウドヘッド23のと
りはずしを行う。次に、燃料を全数燃料プールに移動
し、次に、制御棒24,制御棒案内管25を取り外す。
次に、図示しないが制御棒駆動機構およびサーマルスリ
ーブの取外しを行う。次に、シュラウド1と溶接で接続
されている炉心スプレースパージャ/配管26、および
低圧注水配管27を遠隔操作式切断装置により取り外
す。次に、図4に示す上部格子板5をシュラウド1に固
定しているくさび15,ストッパ16,ボルト17の取
外しを行い、特開昭63−36195 号公報に記載の様に上部
格子板5をシュラウド1より取り外す。次に、図5に示
す炉心支持板6をシュラウド1に固定しているボルト1
8の取外しを行い、特開昭63−36195 号公報に記載の様
に炉心支持板6をシュラウド1より取り外す。次に、差
圧検出/ホウ酸水注入配管28をシュラウド1に支持し
ているサポート29の切断を遠隔操作式切断装置により
水中で行う。次に、ICM案内管30、およびICMス
タビライザ31の切断を遠隔操作式切断装置により水中
で行う。以上の上部格子板5,炉心支持板6の取外しは
いずれも専用つかみ治具で行う。さらに、ジェットポン
プライザ8bおよびジェットポンプミキサ8cの切断,
取外しを遠隔操作式切断装置により水中で行う。以上の
作業は、いずれも作業者の被爆低減を考慮し原子炉ウェ
ル36を満水にした状態で行なう。
FIG. 1 shows a procedure diagram of a method for maintaining a core internal structure according to the present invention, and FIG. 2 shows another procedure diagram of a method for maintaining a core internal structure according to the present invention. FIG. 8 to FIG. 12 show maintenance work of each internal structure of the reactor. JP-A-63-3619
Regarding the work step diagram described in Japanese Patent Publication No. 5, although not shown, as shown in FIG. 1, first, the reactor pressure vessel upper lid (RPV upper lid) 42 and the steam dryer to be detached from the reactor pressure vessel 3 at the time of a regular periodical inspection. 22 is removed by the overhead crane of the reactor building. The removal of the RPV upper lid 42 and the steam dryer 22 is performed in consideration of reduction of worker's exposure to radiation.
Perform with the reactor water held under the flange. Next, the reactor well 36 is filled with water in order to reduce the exposure of the worker, and the steam-water separator / shroud head 23 is removed by an overhead crane. Next, the fuel is moved to the total fuel pool, and then the control rod 24 and the control rod guide pipe 25 are removed.
Next, although not shown, the control rod drive mechanism and the thermal sleeve are removed. Next, the core spray sparger / pipe 26, which is connected to the shroud 1 by welding, and the low-pressure water injection pipe 27 are removed by a remote control cutting device. Next, the wedges 15, the stoppers 16 and the bolts 17 fixing the upper grid plate 5 shown in FIG. 4 to the shroud 1 are removed to remove the upper grid plate 5 as described in JP-A-63-36195. Remove from shroud 1. Next, the bolt 1 for fixing the core support plate 6 shown in FIG. 5 to the shroud 1
8 is removed, and the core support plate 6 is removed from the shroud 1 as described in JP-A-63-36195. Next, the support 29 supporting the differential pressure detection / boric acid water injection pipe 28 on the shroud 1 is cut in water by a remote control cutting device. Next, the ICM guide tube 30 and the ICM stabilizer 31 are cut in water by a remote control cutting device. All of the above removal of the upper lattice plate 5 and the core support plate 6 is performed with a dedicated gripping jig. Furthermore, cutting of the jet pump riser 8b and the jet pump mixer 8c,
Removal is performed in water by a remote control cutting device. All of the above operations are performed in a state where the reactor well 36 is filled with water in consideration of the reduction of radiation exposure of workers.

【0018】以上は、特開昭63−36195号 公報に記載と
同様にして行なえる。この様にして原子炉圧力容器3内
のほとんどの炉内構造物を原子炉圧力容器3外に搬出
後、シュウラウド1,シュラウドサポートレグ9,シュ
レウドサポートプレート12,シュラウドサポートシリ
ンダ2、およびジェットポンプデイフューザ8aの予防
保全、および必要に応じ部分補修を行い、その後、取替
え機器であるジェットポンプライザ8b,ジェットポン
プミキサ8c,ICM案内管30,ICMスタビライザ
31,差圧検出/ホウ酸水注入配管28,炉心支持板
6,上部格子板5,低圧注水配管27、および炉心スプ
レースパージャ/配管26をそれぞれ復旧する。上部格
子板5、および炉心支持板6の再据付けは、特開昭63−
36195 号公報に記載の芯だしおよび据付け方法を採用す
ることとする。以上の取替え機器は、いずれも耐SCC
性に優れた新規製作のものとする。また、ICM案内管
30等の復旧据付け時に、形状記憶合金等の結合手段も
利用する。
The above can be carried out in the same manner as described in JP-A-63-36195. In this way, most of the reactor internals in the reactor pressure vessel 3 are carried out of the reactor pressure vessel 3, and then the shroud 1, the shroud support leg 9, the shroud support plate 12, the shroud support cylinder 2, and the jet pump are used. Preventive maintenance of the diffuser 8a and partial repair as necessary, and then the jet pump riser 8b, the jet pump mixer 8c, the ICM guide pipe 30, the ICM stabilizer 31, the differential pressure detection / boric acid water injection pipe, which are replacement devices. 28, the core support plate 6, the upper lattice plate 5, the low pressure water injection pipe 27, and the core spray sparger / pipe 26 are restored. Reinstallation of the upper lattice plate 5 and the core support plate 6 is described in JP-A-63-
The centering and installation method described in Japanese Patent No. 36195 shall be adopted. All the above replacement devices are SCC resistant
Newly manufactured with excellent properties. Further, when the ICM guide tube 30 or the like is restored and installed, a coupling means such as a shape memory alloy is also used.

【0019】図8は、取替え機器の取外しが全て終了
し、その後、シュラウド1に予防保全工法を適用する場
合の一例を示す。図8の例は、予防保全工法として熱処
理を行う例を示す。
FIG. 8 shows an example in which the preventive maintenance method is applied to the shroud 1 after all the replacement devices have been removed. The example of FIG. 8 shows an example of performing heat treatment as a preventive maintenance method.

【0020】本実施例は、シュラウド1の内面より誘導
加熱し加熱後、シュラウド1の内外面に冷却水をスプレ
イし急速冷却する場合であり、同図では、原子炉圧力容
器3を断面とし示したものである。本実施例の熱処理装
置は、誘導加熱及び加熱後の冷却をする熱処理装置ヘッ
ド32,熱処理装置ヘッド32を保持する開閉マスト3
1,開閉マスト31を保持する上部マスト30,上部マ
スト30を上下・回転移動させる駆動装置43,誘導加
熱用のトランス44,電源制御装置45およびケーブル
46,誘導加熱後の冷却用の冷却水供給ポンプ47,冷
却水供給ホース48より構成されている。また、水シー
ルチャンバは、円盤形状の本体39,シュラウドフラン
ジ部と水シールチャンバ本体39をシールするシール4
0,原子炉圧力容器内面に水シールチャンバ本体39を
シールするシール41を備えている。水シールチャンバ
には、熱処理装置ヘッド32を搬入するための搬入口、
水シールチャンバより下部を気中雰囲気とするためのガ
ス供給口および冷却水供給口が設けられた構造となって
いる。水シールチャンバ本体39をシュラウドフランジ
部に設定後図示しないがドレンノズルおよび再循環水出
口ノズルより水シールチャンバ本体39より下部の炉水
を抜き、ドライガス供給ライン35を介しドライガス供
給ノズル34よりドライガスを供給し炉心シュラウドの
内外面を気中雰囲気とする。次に、水シールチャンバ本
体39に設けた熱処理装置を搬入するための搬入口よ
り、炉心シュラウド熱処理装置の熱処理装置ヘッド3
2,開閉マスト31及び上部マスト30を搬入する。開
閉マスト31の開閉機構33が水シールチャンバ本体3
9通過後に図示のように開閉マスト31を開く。開閉機
構33についての詳細記述は省くが、例えば傘のような
構造を採用することにより目的は達せられる。開閉マス
ト31を開いた後に、誘導加熱を行なう。誘導加熱は、
駆動装置43により熱処理装置ヘッド32を上下・回転
することによりシュラウド1の任意な熱処理対象部の加
熱を行なうことが可能である。加熱後熱処理装置ヘッド
32および冷却水スプレイライン37を介した冷却水ス
プレイノズル38より冷却水をシュラウド1の内外面に
スプレイし急速冷却をおこなう。加熱時間,温度および
冷却速度を制御することにより溶体化処理,表面残留応
力の改善を行なうことが可能である。駆動装置43は、
原子炉圧力容器フランジ上に設置したサービスプラット
ホーム49上に設置し操作は何れも遠隔にて行なう。炉
心スプレイスパージャ/配管26,上部格子板5、およ
び炉心支持板6を取り外した後に熱処理を行うので、シ
ュラウド1の全面に本熱処理が適用出来る。炉心スプレ
イスパージャ/配管26,上部格子板5、および炉心支
持板6を取り外さない場合、これらの機器の近傍への適
用は困難である。
In this embodiment, induction heating is performed from the inner surface of the shroud 1, and after heating, cooling water is sprayed on the inner and outer surfaces of the shroud 1 to rapidly cool the shroud 1. In the same figure, the reactor pressure vessel 3 is shown as a cross section. It is a thing. The heat treatment apparatus of this embodiment includes a heat treatment apparatus head 32 for induction heating and cooling after heating, and an opening / closing mast 3 for holding the heat treatment apparatus head 32.
1, an upper mast 30 that holds the open / close mast 31, a drive device 43 that vertically and rotationally moves the upper mast 30, a transformer 44 for induction heating, a power supply control device 45 and a cable 46, a cooling water supply for cooling after induction heating It is composed of a pump 47 and a cooling water supply hose 48. Further, the water seal chamber includes a disc-shaped body 39, a seal 4 for sealing the shroud flange portion and the water seal chamber body 39.
A seal 41 for sealing the water seal chamber body 39 is provided on the inner surface of the reactor pressure vessel. The water seal chamber has a carry-in port for carrying in the heat treatment apparatus head 32,
It has a structure in which a gas supply port and a cooling water supply port for providing an atmosphere in the air below the water seal chamber are provided. After setting the water seal chamber main body 39 to the shroud flange portion, although not shown, drain the reactor water below the water seal chamber main body 39 from the drain nozzle and the recirculation water outlet nozzle, and dry it from the dry gas supply nozzle 34 via the dry gas supply line 35. Gas is supplied to make the inner and outer surfaces of the core shroud into an air atmosphere. Next, the heat treatment apparatus head 3 of the core shroud heat treatment apparatus is introduced from the carry-in port for carrying in the heat treatment apparatus provided in the water seal chamber body 39.
2. The open / close mast 31 and the upper mast 30 are carried in. The opening / closing mechanism 33 of the opening / closing mast 31 has the water seal chamber body 3
After passing 9, the opening / closing mast 31 is opened as shown in the figure. A detailed description of the opening / closing mechanism 33 is omitted, but the purpose can be achieved by adopting a structure such as an umbrella. After opening the opening / closing mast 31, induction heating is performed. Induction heating
By rotating the heat treatment device head 32 up and down by the drive device 43, it is possible to heat an arbitrary heat treatment target portion of the shroud 1. After heating, the cooling water is sprayed from the cooling water spray nozzle 38 through the heat treatment device head 32 and the cooling water spray line 37 to the inner and outer surfaces of the shroud 1 to perform rapid cooling. By controlling the heating time, temperature and cooling rate, solution treatment and surface residual stress can be improved. The drive device 43 is
It is installed on the service platform 49 installed on the reactor pressure vessel flange, and all operations are performed remotely. Since the heat treatment is performed after removing the core sparger / pipe 26, the upper lattice plate 5, and the core support plate 6, the main heat treatment can be applied to the entire surface of the shroud 1. If the core sparger / pipe 26, the upper grid plate 5, and the core support plate 6 are not removed, it is difficult to apply these devices in the vicinity of them.

【0021】図9は、取替え機器の取外しが全て終了
し、その後シュラウド1に予防保全工法を適用する場合
の一例を示す。図9の例は、予防保全工法として表面改
質をレーザビーム等の高密度エネルギ照射利用により行
う例を示す。本図では、水中でレーザビームを照射し溶
体化処理を行う例を示すが、シュラウド1の表面に耐食
性に優れたCr,Nb,Mo,Ti等の粉末を塗布しこ
の塗布面をレーザビームを利用した高密度エネルギ照射
により溶融し耐食性に優れた合金層を形成することも出
来る。また、原子炉圧力容器3内の炉水をぬき遮蔽体を
原子炉圧力容器フランジ部に設置する等の手段により気
中雰囲気で施工することも出来る。本実施例による、表
面改質は、原子炉圧力容器フランジ部にザービスプラッ
トホーム49を設置し、レーザビーム発振器54,レー
ザトーチ移動機構50,レーザトーチ保持マスト51,
流体ジェット形成用水供給ポンプ55,シールドガス供
給ボンベ56,ケーブル58、およびホース59等によ
り構成されるレーザ装置を利用したもので、シュラウド
1の任意の熱処理対象個所にレーザトーチ移動機構50
により接近し、その後、高速流体ジェット52を利用し
熱処理対象個所を局部的に気中雰囲気とし、レーザビー
ム53を照射するものである。
FIG. 9 shows an example in which the preventive maintenance method is applied to the shroud 1 after all the replacement devices have been removed. The example of FIG. 9 shows an example in which surface modification is performed by using high-density energy irradiation such as a laser beam as a preventive maintenance method. In this figure, an example of performing solution treatment by irradiating a laser beam in water is shown. The surface of the shroud 1 is coated with a powder of Cr, Nb, Mo, Ti or the like having excellent corrosion resistance, and the coated surface is irradiated with the laser beam. It is also possible to form an alloy layer that is melted by the high-density energy irradiation used and has excellent corrosion resistance. It is also possible to carry out the work in an air atmosphere by means such as removing the reactor water in the reactor pressure vessel 3 and installing a shield on the flange portion of the reactor pressure vessel. In the surface modification according to the present embodiment, the Zervis platform 49 is installed on the flange portion of the reactor pressure vessel, the laser beam oscillator 54, the laser torch moving mechanism 50, the laser torch holding mast 51,
A laser torch moving mechanism 50 is used at an arbitrary heat treatment target portion of the shroud 1 by using a laser device including a fluid jet forming water supply pump 55, a shield gas supply cylinder 56, a cable 58, a hose 59, and the like.
After that, the high-speed fluid jet 52 is used to locally make the heat treatment target part an atmospheric atmosphere and irradiate the laser beam 53.

【0022】図10は、取替え機器の取外しが全て終了
し、その後、シュラウド1に予防保全工法を適用する場
合の一例を示す。図10の例は、予防保全工法としてウ
ォータージェット利用による残留応力の改善を行う例を
示す。
FIG. 10 shows an example in which the preventive maintenance method is applied to the shroud 1 after the removal of the replacement device is completed. The example of FIG. 10 shows an example of improving residual stress by using a water jet as a preventive maintenance method.

【0023】本実施例による、残留応力改善は、原子炉
圧力容器フランジ部にザービスプラットホーム49を設
置し、ザービスプラットホーム49上に駆動機構64を
設置、上部マスト60,開閉マスト61,開閉機構6
2,ウォータージェット噴出ヘッド63,ウォータージ
ェット制御装置68,高圧ポンプ67,制御信号ケーブ
ル66、および高圧ホース65等より構成されるウォー
タージェットピーニング装置を使用する例を示す。開閉
マスト61は、シュラウド1内で開閉機構62により図
示のように開かれ、駆動機構64によりウォータージェ
ット噴出ヘッド63は上下、および回転されシュラウド
1内の任意の個所のピーニングが可能となる。
In order to improve the residual stress according to the present embodiment, the Zervis platform 49 is installed on the flange of the reactor pressure vessel, the drive mechanism 64 is installed on the Zervis platform 49, the upper mast 60, the opening / closing mast 61, and the opening / closing mechanism 6 are installed.
2, an example of using a water jet peening device including a water jet jet head 63, a water jet control device 68, a high pressure pump 67, a control signal cable 66, a high pressure hose 65, and the like will be shown. The opening / closing mast 61 is opened in the shroud 1 by the opening / closing mechanism 62 as illustrated, and the water jet jet head 63 is moved up and down and rotated by the drive mechanism 64 to enable peening at any position in the shroud 1.

【0024】図8ないし図10の例は、いずれもシュラ
ウド1を対象としているが、シュラウドサポートシリン
ダ2,シュラウドサポートレグ9、およびシュラウドサ
ポートプレート12への適用についても基本的には可能
である。
Although the examples of FIGS. 8 to 10 are all directed to the shroud 1, the application to the shroud support cylinder 2, the shroud support leg 9, and the shroud support plate 12 is basically possible.

【0025】図11は、シュラウド1外面、およびジェ
ットポンプディフューザ8a外面に残留応力改善として
ウォータージェットピーニングを行う一例を示す。図1
0に示すシュラウド1内面への適用例と同様、装置構成
は基本的に同じで、本実施例においても原子炉圧力容器
フランジ部にザービスプラットホーム49を設置し、ザ
ービスプラットホーム49の上に駆動機構64を設置し
施工する。本実施例では、下部マスト69を下部駆動機
構70により上下させウォータージェット噴出ヘッド6
3をピーニング対象箇所に接近させ施工を行う。本実施
例では、シュラウド1の外面、およびジェットポンプデ
ィフューザ8a外面への適用を示しているが、シュラウ
ド1の内面およびシュラウドサポートレグ9よりウォー
タージェット噴出ヘッド63をジェットポンプディフュ
ーザ8aの内面側に接近させ施工することも可能であ
る。
FIG. 11 shows an example in which water jet peening is performed on the outer surface of the shroud 1 and the outer surface of the jet pump diffuser 8a to improve the residual stress. Figure 1
Similar to the application example to the inner surface of the shroud 1 shown in FIG. 0, the device configuration is basically the same, and in this embodiment as well, the Zervis platform 49 is installed on the flange portion of the reactor pressure vessel, and the drive mechanism 64 is mounted on the Zervis platform 49. Install and install. In the present embodiment, the lower mast 69 is moved up and down by the lower drive mechanism 70 and the water jet ejection head 6 is moved.
3 is brought close to the peening target site and construction is performed. In this embodiment, the application to the outer surface of the shroud 1 and the outer surface of the jet pump diffuser 8a is shown. However, the water jet jet head 63 is closer to the inner surface side of the jet pump diffuser 8a than the inner surface of the shroud 1 and the shroud support leg 9. It is also possible to carry out construction.

【0026】図11の例は、ウォータージェットピーニ
ングの例を示すが、ジェットポンプディフューザ8aへ
のレーザ利用による表面改質も同様に適用可能である。
The example of FIG. 11 shows an example of water jet peening, but surface modification by using a laser for the jet pump diffuser 8a is also applicable.

【0027】図12は、シュラウド1の部分補修を行う
場合の一実施例を示したものである。部分補修の主要手
順は、点検により部分補修個所の確認、欠陥の除
去、補修溶接、補修溶接部の仕上げ加工、補修部
の検査である。図12では、欠陥の除去を示してい
る。すなわち、加工機本体74を原子炉圧力容器上方よ
り搬入し補修対象部に設置し機械的に欠陥を除去する例
である。本例では、加工部の近傍のみを示しているが、
加工機本体74は原子炉圧力容器フランジ部に設置した
サービスプラットホームに設置し、また、下端はスタブ
チューブに設置,位置決めするものとする。本例では機
械的加工法を示しているが、放電加工、その他熱的手段
による加工法も適用できる。点検,補修溶接,補修溶接
部の仕上げ加工、および補修部の検査も同様な装置によ
り可能である。また、補修溶接止端部の熱影響部につい
ては、低入熱による鋭敏化領域の改善,レーザビーム利
用による鋭敏化領域の表面改質、または、ウォータージ
ェット利用による残留応力の改善等の処理を行うことと
する。
FIG. 12 shows an embodiment in which the shroud 1 is partially repaired. The main procedures for partial repair are confirmation of partial repair points by inspection, removal of defects, repair welding, finishing of repair welds, and inspection of repair parts. In FIG. 12, defect removal is shown. That is, this is an example in which the processing machine main body 74 is carried in from above the reactor pressure vessel and installed in the repair target portion to mechanically remove defects. In this example, only the vicinity of the processed portion is shown,
The processing machine main body 74 is installed on the service platform installed on the flange part of the reactor pressure vessel, and the lower end is installed and positioned on the stub tube. Although a mechanical processing method is shown in this example, an electric discharge processing method or a processing method using other thermal means can also be applied. Inspection, repair welding, finishing of repair welds, and inspection of repair parts can be performed with the same equipment. In addition, regarding the heat affected zone of the repair weld toe, treatment such as improvement of the sensitized area by low heat input, surface modification of the sensitized area by using laser beam, or improvement of residual stress by using water jet is performed. I will do it.

【0028】図8ないし図12に示す例は、いずれも上
部格子板5,炉心支持板6,炉心スプレースパージャ/
配管26,低圧注水配管27,差圧検出/ホウ酸水注入
配管28,ジェットポンプライザ8b,ジェットポンプ
ミキサ8cおよび図示しないがICM案内管/スタビラ
イザ等の炉内機器を取外した後にシュラウド1,シュラ
ウドサポートプレート12,シュラウドサポートレグ
9,シュラウドサポートシリンダ2、およびジェットポ
ンプディフューザ8aに予防保全工法,部分補修工法を
適用するため、これら各機器を取り外さずに適用する場
合に比し、適用範囲が拡大出来る。
The examples shown in FIGS. 8 to 12 are all upper lattice plate 5, core support plate 6, core spray sparger /
After removing the pipe 26, the low-pressure water injection pipe 27, the differential pressure detection / boric acid water injection pipe 28, the jet pump riser 8b, the jet pump mixer 8c, and ICM guide pipes / stabilizers (not shown), the shroud 1 and the shroud. Since the preventive maintenance method and the partial repair method are applied to the support plate 12, the shroud support leg 9, the shroud support cylinder 2, and the jet pump diffuser 8a, the applicable range is expanded compared to the case where these devices are not removed. I can.

【0029】図2,図13ないし図18は第二の発明の
実施例で、シュラウド1とシュラウドサポートシリンダ
2の溶接部7、およびジェットポンプディフューザ8a
とシュラウドサポートプレート12の溶接部13に対し
て補修,予防保全工法を適用する例である。
FIGS. 2 and 13 to 18 show an embodiment of the second invention, which is a welded portion 7 of the shroud 1 and the shroud support cylinder 2 and a jet pump diffuser 8a.
And the preventive maintenance method is applied to the welded portion 13 of the shroud support plate 12.

【0030】図2は、手順図を示し原子炉圧力容器上蓋
42,蒸気乾燥機22,気水分離器兼シュラウドヘッド
23,燃料集合体,制御棒24,制御棒案内管25,制
御棒駆動機構/サーマルスリーブ等の機器を順に取外
し、その後、シュラウド1とシュラウドサポートシリン
ダ2の溶接部7、およびジェットポンプディフューザ8
aとシュラウドサポートプレート12の溶接部13に対
して補修,予防保全工法を適用、さらに取外し機器の復
旧を行い終了するものである。
FIG. 2 is a flow chart showing the reactor pressure vessel upper lid 42, steam dryer 22, steam separator / shroud head 23, fuel assembly, control rod 24, control rod guide tube 25, control rod drive mechanism. / The devices such as the thermal sleeve are sequentially removed, and then the welded portion 7 of the shroud 1 and the shroud support cylinder 2 and the jet pump diffuser 8
The welding and the welding portion 13 of the shroud support plate 12 are repaired, the preventive maintenance method is applied, and the detached device is restored to complete the process.

【0031】図13ないし図15は、シュラウド1とシ
ュラウドサポートシリンダ2の溶接部7を対象とした予
防保全工法を示す。図13に示すように、シュラウド1
とシュラウドサポートシリンダ2の溶接部7は、バッキ
ングリング75を用いており、シュラウドサポートシリ
ンダ2とバッキングリング75の取合い部において隙間
を残さないとは言えない構造である。シュラウドサポー
トシリンダ2、および、溶接部7はインコネル材であ
り、インコネル材の場合隙間は耐SCC上好ましいとは
言えない。そこで、予防保全として、図14に示すよう
に隙間が残る可能性のある部分を、機械的手段、または
熱的手段により除くことは有効と言える。図15は、図
14での除去部分に成分を調整した耐SCC性に優れた
材料を肉盛溶接76を行い、さらに図示しないが肉盛溶
接76による熱影響部にレーザビーム照射の表面改質、
ウォータージェットピーニングによる残留応力改善処理
を施す例である。図14,図15は予防保全として施工
する例を示すが、補修の場合も同様にして施工すること
が出来る。
FIGS. 13 to 15 show a preventive maintenance method for the welded portion 7 of the shroud 1 and the shroud support cylinder 2. As shown in FIG. 13, shroud 1
The backing ring 75 is used for the welded portion 7 of the shroud support cylinder 2 and the welded portion 7 of the shroud support cylinder 2 has a structure in which it cannot be said that no gap is left in the joint portion of the shroud support cylinder 2 and the backing ring 75. The shroud support cylinder 2 and the welded portion 7 are made of Inconel material, and in the case of Inconel material, the gap is not preferable in terms of SCC resistance. Therefore, as preventive maintenance, it can be said that it is effective to remove a portion where a gap may remain as shown in FIG. 14 by a mechanical means or a thermal means. In FIG. 15, a material having excellent SCC resistance in which components have been adjusted is subjected to overlay welding 76 in the removed portion in FIG. 14, and although not shown, surface modification of laser beam irradiation on the heat-affected zone by overlay welding 76 is not shown. ,
This is an example of performing residual stress improvement processing by water jet peening. Although FIG. 14 and FIG. 15 show an example of construction for preventive maintenance, the construction can be performed in the same manner in the case of repair.

【0032】図16ないし図18は、ジェットポンプデ
ィフューザ8aとシュラウドサポートプレート12の溶
接部13を対象とした予防保全工法を示す。図16に示
すように、ジェットポンプディフューザ8aとシュラウ
ドサポートプレート12の溶接部13は、突合溶接構造
となっており、基本的には隙間は残らないが、万一の場
合を想定し、予防保全として図17に示すように隙間が
残る可能性のある部分を、機械的手段、または熱的手段
により除くことは有効である。図18は、図17での除
去部分に成分を調整した耐SCC性に優れた材料を肉盛
溶接77を行い、さらに図示しないが肉盛溶接77によ
る熱影響部にレーザビーム照射の表面改質、ウォーター
ジェットピーニングによる残留応力改善処理を施す例で
ある。図17,図18は予防保全として施工する例を示
すが、補修の場合も同様にして施工出来る。
16 to 18 show a preventive maintenance method for the welded portion 13 of the jet pump diffuser 8a and the shroud support plate 12. As shown in FIG. As shown in FIG. 16, the welded portion 13 of the jet pump diffuser 8a and the shroud support plate 12 has a butt welded structure, and basically there is no gap, but in case of emergency, preventive maintenance is assumed. As shown in FIG. 17, it is effective to remove a portion where a gap may remain by mechanical means or thermal means. In FIG. 18, a material having excellent SCC resistance in which components are adjusted in the removed portion in FIG. 17 is subjected to overlay welding 77. Further, although not shown, surface modification of laser beam irradiation on the heat affected zone by overlay welding 77 is performed. This is an example of performing residual stress improvement processing by water jet peening. Although FIG. 17 and FIG. 18 show an example of construction as preventive maintenance, it can be constructed in the same manner in the case of repair.

【0033】[0033]

【発明の効果】本発明によれば、炉内構造物に対し取外
し、再据付けの難易度に応じ取替え、部分補修、および
予防保全工法を組み合わせて採用することにより全ての
炉内構造物の健全性確保が、比較的容易に行える。ま
た、狭隘部に対する予防保全工法の適用についても、一
部の器機を取外した後に施工することにより、適用が可
能となる。
EFFECTS OF THE INVENTION According to the present invention, the soundness of all in-core structures can be improved by adopting a combination of removal, re-installation, replacement, partial repair, and preventive maintenance construction methods for the in-core structures. It is relatively easy to secure the sex. Moreover, the application of the preventive maintenance method to narrow spaces can also be applied by constructing after removing some equipment.

【0034】施工は、基本的に全て水中での遠隔操作に
より行うことにより、作業者の被爆低減が図れる。
Basically, all construction is performed by remote control under water, so that the worker can be reduced in exposure to radiation.

【図面の簡単な説明】[Brief description of drawings]

【図1】作業手順図。FIG. 1 is a work procedure diagram.

【図2】作業手順図。FIG. 2 is a work procedure diagram.

【図3】原子炉圧力容器および炉内構造物の縦断面図。FIG. 3 is a vertical cross-sectional view of a reactor pressure vessel and a reactor internal structure.

【図4】シュラウド/上部格子板取り合い図。FIG. 4 is a shroud / upper lattice plate diagram.

【図5】シュラウド/炉心支持板取り合い図。FIG. 5 is a shroud / core support plate engagement diagram.

【図6】炉心支持板芯測定図。FIG. 6 is a core support plate core measurement diagram.

【図7】原子炉圧力容器および炉内構造物の縦断面図。FIG. 7 is a vertical cross-sectional view of a reactor pressure vessel and a reactor internal structure.

【図8】シュラウドを熱処理する説明図。FIG. 8 is an explanatory diagram for heat-treating the shroud.

【図9】シュラウドの表面改質を行う説明図。FIG. 9 is an explanatory diagram for performing surface modification of the shroud.

【図10】シュラウドの残留応力改善を行う説明図。FIG. 10 is an explanatory diagram for improving the residual stress of the shroud.

【図11】ジェットポンプディフューザの残留応力改善
を行う断面図。
FIG. 11 is a cross-sectional view for improving the residual stress of the jet pump diffuser.

【図12】シュラウドの補修例を示す斜視図。FIG. 12 is a perspective view showing an example of repairing the shroud.

【図13】シュラウドとシュラウドサポートシリンダの
取り合いを示す断面図。
FIG. 13 is a cross-sectional view showing the connection between the shroud and the shroud support cylinder.

【図14】シュラウドとシュラウドサポートシリンダ溶
接部の予防保全断面図。
FIG. 14 is a preventive maintenance cross-sectional view of a shroud and a shroud support cylinder weld.

【図15】シュラウドとシュラウドサポートシリンダ溶
接部の予防保全断面図。
FIG. 15 is a preventive maintenance cross-sectional view of the shroud and the shroud support cylinder weld.

【図16】ジェットポンプディフューザとシュラウドサ
ポートプレートの取り合いを示す断面図。
FIG. 16 is a cross-sectional view showing the connection between the jet pump diffuser and the shroud support plate.

【図17】ジェットポンプディフューザとシュラウドサ
ポートプレート溶接部の予防保全断面図。
FIG. 17 is a preventive maintenance cross-sectional view of a jet pump diffuser and a shroud support plate weld.

【図18】ジェットポンプディフューザとシュラウドサ
ポートプレート溶接部の予防保全断面図。
FIG. 18 is a preventive maintenance sectional view of the jet pump diffuser and the shroud support plate welded portion.

【符号の説明】[Explanation of symbols]

1…シュラウド、2…シュラウドサポートシリンダ、3
…原子炉圧力容器、5…上部格子板、6…炉心支持板、
8a…ジェットポンプディフューザ、8b…ジェットポ
ンプライザ、8c…ジェットポンプミキサ、9…シュラ
ウドサポートレグ、12…シュラウドサポートプレー
ト、20…スタブチューブ、21…燃料支持金具、22
…蒸気乾燥機、23…気水分離器兼シュラウドヘッド、
24…制御棒、25…制御棒案内管、26…炉心スプレ
イスパージャ/配管、27…低圧注水配管、28…差圧
検出/ホウ酸水注入配管、29…サポート、36…原子
炉ウェル。
1 ... Shroud, 2 ... Shroud support cylinder, 3
... Reactor pressure vessel, 5 ... Upper lattice plate, 6 ... Core support plate,
8a ... Jet pump diffuser, 8b ... Jet pump riser, 8c ... Jet pump mixer, 9 ... Shroud support leg, 12 ... Shroud support plate, 20 ... Stub tube, 21 ... Fuel support fitting, 22
… Steam dryer, 23… Steam separator and shroud head,
24 ... Control rod, 25 ... Control rod guide pipe, 26 ... Core sparger purger / pipe, 27 ... Low pressure water injection pipe, 28 ... Differential pressure detection / boric acid water injection pipe, 29 ... Support, 36 ... Reactor well.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青田 欣也 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 山本 道好 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 玉井 康方 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 根目沢 勲 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 野村 敬一 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kinya Aota 4026 Kujicho, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Michiyoshi Yamamoto 3-1-1, Saiwaicho, Hitachi City, Ibaraki Hitachi Ltd., Hitachi Plant (72) Inventor Yasukata Tamai 3-1-1, Sachimachi, Hitachi City, Ibaraki Hitachi Ltd., Hitachi Ltd. (72) Inventor Isao Nemezawa Yuchi, Hitachi City, Ibaraki Prefecture 3-1-1, Machi Hitachi Ltd., Hitachi factory (72) Inventor Keiichi Nomura 3-1-1, Saiwaicho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi factory

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】既設の原子炉圧力容器内面にシュラウドサ
ポートレグ、シュラウドサポートシリンダを介し、前記
シュラウドサポートシリンダ上端に円周溶接部により固
定され周溶接及び縦溶接により形成された円筒状の炉心
シュラウド、前記炉心シュラウドに機械的手段にて固定
されている炉心支持板および上部格子板、前記炉心シュ
ラウドに溶接で接合固定されている炉心スプレイスパー
ジャ/配管、および低圧注水配管、前記シュラウドサポ
ートシリンダの外周側に前記シュラウドサポートシリン
ダおよび前記原子炉圧力容器の内壁に溶接で固定された
シュラウドサポートプレートに溶接で取り付けられたジ
ェットポンプディフューザ、前記ジェットポンプディフ
ューザおよび前記原子炉圧力容器に機械的手段および溶
接にて接合固定されたジェットポンプライザおよびジェ
ットポンプミキサ等、前記原子炉圧力容器下鏡に溶接で
接合されたICMハウジングに溶接で取り付けられたIC
M案内管および前記ICM案内管同士を溶接および機械
的手段にて固定するICMスタビライザ等の炉内構造物
の保全方法において、原子炉炉水を前記原子炉圧力容器
内に保持した状態で、前記原子炉圧力容器内の前記炉心
シュラウド上に取付けられた蒸気乾燥器、シュラウドヘ
ッド兼気水分離器等の機器を順次取外し、さらに前記炉
心シュラウド内の燃料集合体,制御棒案内管等を取外
し、次に、前記炉心スプレイスパージャ/配管、および
低圧注水配管を機械的手段または熱的手段等により前記
炉心シュラウドおよび前記原子炉圧力容器より切断取外
し、次に前記上部格子板を機械的手段または熱的手段等
により前記炉心シュラウドより取外し、次に前記炉心支
持板を機械的手段または熱的手段等により前記炉心シュ
ラウドより取外し、次に前記ICM案内管およびICM
スタビライザを機械的手段または熱的手段等により前記
ICMハウジングより取外し、更に前記ジェットポンプ
ライザおよびジェットポンプミキサ等を機械的手段また
は熱的手段等により前記原子炉圧力容器およびジェット
ポンプディフューザより取外し、その後、前記シュラウ
ド,シュラウドサポートおよびジェットポンプディフュ
ーザの表面改質,残留応力改善および熱処理等の予防保
全を行い、次に既に取外した炉心支持板,上部格子板,
炉心スプレイスパージャ/配管,低圧注水配管,ジェッ
トポンプディフューザ,ジェットポンプライザ,ジェッ
トポンプミキサ等、ICM案内管、ICMスタビライザ
等をそれぞれ新規製作の物と取替えることを特徴とする
炉内構造物の保全方法。
1. A cylindrical core shroud formed on the inner surface of an existing reactor pressure vessel via a shroud support leg and a shroud support cylinder, and fixed to the upper end of the shroud support cylinder by a circumferential welding portion by circumferential welding and vertical welding. , A core support plate and an upper lattice plate fixed to the core shroud by mechanical means, a core sparger / pipe connected to the core shroud by welding, and a low pressure water injection pipe, an outer periphery of the shroud support cylinder Jet pump diffuser welded to a shroud support plate welded to the inner wall of the shroud support cylinder and the reactor pressure vessel on the side, to the jet pump diffuser and the reactor pressure vessel for mechanical means and welding Fixed by joining Jet pump riser and a jet pump mixer or the like, IC mounted by welding to the ICM housing joined by welding to said reactor pressure vessel under mirror
In a method for preserving internal structures of an ICM stabilizer or the like, in which the M guide pipe and the ICM guide pipes are fixed by welding and mechanical means, in a state where reactor water is held in the reactor pressure vessel, Steam dryer attached on the core shroud in the reactor pressure vessel, equipment such as shroud head and steam separator are sequentially removed, and further fuel assemblies in the core shroud, control rod guide tubes, etc. are removed, Next, the core sparger / pipe and the low-pressure water injection pipe are cut and removed from the core shroud and the reactor pressure vessel by mechanical means or thermal means, and then the upper lattice plate is mechanically or thermally removed. And remove the core support plate from the core shroud by mechanical means, thermal means, or the like. To the ICM guide tube and ICM
The stabilizer is removed from the ICM housing by mechanical means or thermal means, and the jet pump riser and jet pump mixer are removed from the reactor pressure vessel and jet pump diffuser by mechanical means or thermal means. , The shroud, shroud support, jet pump diffuser surface modification, residual stress improvement and preventive maintenance such as heat treatment, and then the core support plate, upper grid plate,
Core sparger / piping, low-pressure water injection piping, jet pump diffuser, jet pump riser, jet pump mixer, ICM guide tube, ICM stabilizer, etc. are replaced with newly manufactured ones, respectively. ..
【請求項2】請求項1において、既設の炉内構造物の取
外し、および新規炉内構造物の据付けを水中にて遠隔操
作の装置により行う炉内構造物の保全方法。
2. The method for maintaining an internal reactor structure according to claim 1, wherein the existing internal reactor structure is removed and a new internal reactor structure is installed in water by a remote control device.
【請求項3】請求項1において、シュラウド、およびシ
ュラウドサポートおよびジェットポンプディフューザの
表面改質は、レーザビーム等の高密度エネルギ照射によ
る溶体化処理、または前記シュラウド、およびシュラウ
ドサポートの表面に耐食性に優れたCr,Nb,Mo,
Ti等の粉末を塗布し該塗布面をレーザビーム等の高密
度エネルギ照射により溶融し耐食性に優れた合金層を形
成する炉内構造物の保全方法。
3. The shroud, and the surface modification of the shroud support and the jet pump diffuser according to claim 1, wherein the surface treatment of the shroud and the shroud support is performed by a solution treatment by irradiation with high-density energy such as a laser beam. Excellent Cr, Nb, Mo,
A method for preserving the internal structure of a furnace, which comprises applying a powder of Ti or the like and melting the applied surface by irradiation with high-density energy such as a laser beam to form an alloy layer having excellent corrosion resistance.
【請求項4】請求項1において、シュラウド,シュラウ
ドサポートおよびジェットポンプディフューザの残留応
力改善は、ウォータージェットを用いたピーニング、ま
たは電磁誘導加熱,冷却水スプレイ等による急速加熱,
急速冷却法を用いた炉内構造物の保全方法。
4. The shroud, shroud support and jet pump diffuser according to claim 1, wherein residual stress is improved by peening using a water jet, or rapid heating by electromagnetic induction heating, cooling water spraying, or the like.
Preservation method of reactor internals using rapid cooling method.
【請求項5】請求項1において、シュラウドの熱処理
は、電磁誘導加熱等を用いた炉内構造物の保全方法。
5. The method of claim 1, wherein the shroud is heat-treated by using electromagnetic induction heating or the like.
【請求項6】ジェットポンプディフューザとシュラウド
サポートプレートの溶接部外表面を一定の深さで機械的
手段、または熱的手段等により取除くことを特徴とする
炉内構造物の保全方法。
6. A method for preserving the internal structure of a reactor, characterized in that the outer surface of the welded portion of the jet pump diffuser and the shroud support plate is removed at a constant depth by mechanical means or thermal means.
【請求項7】ジェットポンプディフューザとシュラウド
サポートプレートの溶接部外表面を一定の深さで機械的
手段、または熱的手段等により取除き、その後前記取除
いた部分にC,Ti,Nb等の科学成分を調整した耐食
性に優れたインコネル溶接材により肉盛り溶接を行い更
に、前記肉盛り溶接の熱影響部に表面改質,残留応力改
善等の処理を行うことを特徴とする炉内構造物の保全方
法。
7. The outer surface of the welded portion of the jet pump diffuser and the shroud support plate is removed at a certain depth by mechanical means or thermal means, and then the removed portion is covered with C, Ti, Nb, etc. Internal structure characterized by performing build-up welding with Inconel welding material with adjusted chemical composition and excellent corrosion resistance, and further subjecting the heat-affected zone of the build-up welding to surface modification, residual stress improvement, etc. Conservation method.
【請求項8】シュラウドとシュラウドサポートシリンダ
の溶接部外表面を一定の深さで機械的手段、または熱的
手段等により取除くことを特徴とする炉内構造物の保全
方法。
8. A method for maintaining the internal structure of a reactor, wherein the outer surface of the welded portion of the shroud and the shroud support cylinder is removed at a constant depth by mechanical means or thermal means.
【請求項9】シュラウドとシュラウドサポートシリンダ
の溶接部外表面を一定の深さで機械的手段、または熱的
手段等により取除き、その後前記取除いた部分にC,T
i,Nb等の科学成分を調整した耐食性に優れたインコ
ネル溶接材により肉盛り溶接を行い更に、前記肉盛り溶
接の熱影響部に表面改質,残留応力改善等の処理を行う
ことを特徴とする炉内構造物の保全方法。
9. An outer surface of a welded portion of a shroud and a shroud support cylinder is removed at a constant depth by a mechanical means, a thermal means, or the like, and then the removed portions are C, T.
It is characterized in that overlay welding is performed using Inconel welding material having excellent corrosion resistance in which scientific components such as i and Nb are adjusted, and further, the heat-affected zone of the overlay welding is subjected to surface modification, residual stress improvement, and the like. Method for maintaining internal furnace structure.
【請求項10】請求項7または9において、前記表面改
質は、レーザビーム等の高密度エネルギ照射による溶体
化処理、または前記シュラウド、およびシュラウドサポ
ートの表面に耐食性に優れたCr,Nb,Mo,Ti等
の粉末を塗布し該塗布面をレーザビーム等の高密度エネ
ルギ照射により溶融し耐食性に優れた合金層を形成する
ことを特徴とする炉内構造物の保全方法。
10. The surface modification according to claim 7, wherein the surface treatment is solution treatment by irradiation with high-density energy such as a laser beam, or Cr, Nb, Mo having excellent corrosion resistance on the surfaces of the shroud and the shroud support. , Ti or the like is applied, and the applied surface is melted by high-density energy irradiation such as a laser beam to form an alloy layer having excellent corrosion resistance.
【請求項11】請求項7または9にける残留応力改善
に、ウォータージェットを用いたピーニング、または電
磁誘導加熱,冷却水スプレイ等による急速加熱、急速冷
却法を用いた炉内構造物の保全方法。
11. A method for preserving the internal structure of a reactor using a peening method using a water jet, a rapid heating method such as electromagnetic induction heating, a cooling water spray method, or a rapid cooling method for improving the residual stress according to claim 7 or 9. ..
JP03241688A 1991-09-20 1991-09-20 Maintenance method for furnace internals Expired - Lifetime JP3127512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03241688A JP3127512B2 (en) 1991-09-20 1991-09-20 Maintenance method for furnace internals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03241688A JP3127512B2 (en) 1991-09-20 1991-09-20 Maintenance method for furnace internals

Publications (2)

Publication Number Publication Date
JPH0580187A true JPH0580187A (en) 1993-04-02
JP3127512B2 JP3127512B2 (en) 2001-01-29

Family

ID=17078041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03241688A Expired - Lifetime JP3127512B2 (en) 1991-09-20 1991-09-20 Maintenance method for furnace internals

Country Status (1)

Country Link
JP (1) JP3127512B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246483A (en) * 1994-03-09 1995-09-26 Toshiba Corp Laser peening method
JPH07248397A (en) * 1994-03-09 1995-09-26 Toshiba Corp Repairing method for nuclear reactor inside structure and device therefor
JPH0868889A (en) * 1994-08-31 1996-03-12 Hitachi Ltd Replacing method for reactor internal structure
JPH08206869A (en) * 1995-02-06 1996-08-13 Toshiba Corp Underwater laser beam processing method and device therefor
FR2750790A1 (en) * 1996-07-08 1998-01-09 Framatome Sa NUCLEAR REACTOR COMPRISING A VESSEL IN WHICH THE REACTOR CORE IS AVAILABLE AND METHOD FOR COOLING THE REACTOR CORE ON STOP
WO2002011151A1 (en) * 2000-07-28 2002-02-07 Hitachi, Ltd. Maintenance method for reactor core internals
JP2007206026A (en) * 2006-02-06 2007-08-16 Babcock Hitachi Kk Repairing method for structure in inside of nuclear pressure vessel
JP2010038842A (en) * 2008-08-07 2010-02-18 Toshiba Corp Boiling water reactor
JP2010043995A (en) * 2008-08-15 2010-02-25 Toshiba Corp Method of repairing shroud head
JP2010256289A (en) * 2009-04-28 2010-11-11 Toshiba Corp Method of repairing shroud head, and repair structure of the same
JP2011127925A (en) * 2009-12-15 2011-06-30 Toshiba Corp Welded structure of structural body in nuclear reactor, and method for welding the welded structure
JP2015072149A (en) * 2013-10-02 2015-04-16 株式会社東芝 Nuclear reactor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246483A (en) * 1994-03-09 1995-09-26 Toshiba Corp Laser peening method
JPH07248397A (en) * 1994-03-09 1995-09-26 Toshiba Corp Repairing method for nuclear reactor inside structure and device therefor
JPH0868889A (en) * 1994-08-31 1996-03-12 Hitachi Ltd Replacing method for reactor internal structure
JPH08206869A (en) * 1995-02-06 1996-08-13 Toshiba Corp Underwater laser beam processing method and device therefor
FR2750790A1 (en) * 1996-07-08 1998-01-09 Framatome Sa NUCLEAR REACTOR COMPRISING A VESSEL IN WHICH THE REACTOR CORE IS AVAILABLE AND METHOD FOR COOLING THE REACTOR CORE ON STOP
WO1998001864A1 (en) * 1996-07-08 1998-01-15 Framatome Nuclear reactor comprising a vessel in which is located the reactor core and method for cooling the reactor core after the reactor has stopped
WO2002011151A1 (en) * 2000-07-28 2002-02-07 Hitachi, Ltd. Maintenance method for reactor core internals
JP4178027B2 (en) * 2000-07-28 2008-11-12 日立Geニュークリア・エナジー株式会社 Reactor internal structure maintenance method
JP2007206026A (en) * 2006-02-06 2007-08-16 Babcock Hitachi Kk Repairing method for structure in inside of nuclear pressure vessel
JP2010038842A (en) * 2008-08-07 2010-02-18 Toshiba Corp Boiling water reactor
JP2010043995A (en) * 2008-08-15 2010-02-25 Toshiba Corp Method of repairing shroud head
JP2010256289A (en) * 2009-04-28 2010-11-11 Toshiba Corp Method of repairing shroud head, and repair structure of the same
JP2011127925A (en) * 2009-12-15 2011-06-30 Toshiba Corp Welded structure of structural body in nuclear reactor, and method for welding the welded structure
JP2015072149A (en) * 2013-10-02 2015-04-16 株式会社東芝 Nuclear reactor

Also Published As

Publication number Publication date
JP3127512B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
JP3127512B2 (en) Maintenance method for furnace internals
JPH0775893A (en) Method for repairing structure and preventive maintenance method
WO2007063401A1 (en) System and method for multiple usage tooling for pressurized water reactor
JP3679823B6 (en) How to replace the core shroud
JPH085773A (en) Preventive maintenance device and method for jet pump
KR101842356B1 (en) Maintenance method for welding part of small pipe for nuclear reactor
JP4494737B2 (en) Method for sealing and repairing elongated hollow member of reactor pressure vessel, reactor pressure vessel and control rod drive housing
JPH0886896A (en) Shroud in nuclear reactor, and method for installing and replacing it
JP2005326417A (en) Method for repairing leaking slender hollow member in boiling water reactor
Yoo Recent study of materials and welding methods for nuclear power plant
JP3074838B2 (en) Shroud maintenance method and heat treatment apparatus therefor
JP2766195B2 (en) Reactor internal structure replacement method
JPH10153682A (en) Method for exchanging reactor core shroud
JP4316130B2 (en) Core spray system piping replacement method
JP3425217B2 (en) Sealing device for repairing pressure vessel penetration housing
JP2766179B2 (en) Maintenance method for furnace internals
Bridger Modular In-Chamber Electron Beam Welding–Process Planning: Welding, Cladding, Inspection, and Manufacturing
Cavagna et al. Phenix steam generator module repair: Sodium removal process, ultrasonic controls, and repair method
JP4393011B2 (en) Replacement method of core spray system equipment
Cattant BWRs Cracking
Sugimoto et al. Development of outer surface irradiated laser stress improvement Process (L-SIP)
JP4469520B2 (en) Reactor piping seal device, its handling tool, and reactor piping seal method
Ueda et al. Application of Outer Surface Irradiated Laser Stress Improvement Process (L-SIP) to Pressurizer as Residual Stress Improvement Method for Alloy 600 PWSCC Mitigation
JP4488591B2 (en) Maintenance method of core spare purger
Rosborg Corrosion problems in boiling water reactors and their remedies

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071110

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

EXPY Cancellation because of completion of term