Nothing Special   »   [go: up one dir, main page]

JPH057555B2 - - Google Patents

Info

Publication number
JPH057555B2
JPH057555B2 JP57200367A JP20036782A JPH057555B2 JP H057555 B2 JPH057555 B2 JP H057555B2 JP 57200367 A JP57200367 A JP 57200367A JP 20036782 A JP20036782 A JP 20036782A JP H057555 B2 JPH057555 B2 JP H057555B2
Authority
JP
Japan
Prior art keywords
intake
intake passage
fuel
valve
communication chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57200367A
Other languages
Japanese (ja)
Other versions
JPS5990717A (en
Inventor
Masaaki Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP57200367A priority Critical patent/JPS5990717A/en
Publication of JPS5990717A publication Critical patent/JPS5990717A/en
Publication of JPH057555B2 publication Critical patent/JPH057555B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は、1つの気筒に対して3個の互いに隣
接する吸気弁を有し、吸気通路に燃料を噴射する
4サイクル内燃機関の吸気装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake system for a four-stroke internal combustion engine that has three intake valves adjacent to each other for one cylinder and injects fuel into an intake passage.

1つの気筒に対して3個の互いに隣接する吸気
弁を設けた4サイクル内燃機関がある。この種の
機関で、1つの気筒に1つの燃料噴射弁を用いる
場合は、噴射弁の取付位置が燃焼に大きな影響を
与える。例えば1つの吸気通路の下流を3つの吸
気弁に連通させ、この吸気通路内に燃料を噴射さ
せることが考えられる。しかしこの場合吸気通路
の断面積が大きくなり、低負荷低速運転時には吸
気流速が小さくなるので、燃料が吸気通路内壁に
付着して壁面流となり易く、燃料の霧化が悪化す
るという問題が生じる。
There are four-stroke internal combustion engines in which three adjacent intake valves are provided for one cylinder. When one fuel injection valve is used for one cylinder in this type of engine, the mounting position of the injection valve has a large effect on combustion. For example, it is conceivable to connect the downstream side of one intake passage to three intake valves and inject fuel into this intake passage. However, in this case, the cross-sectional area of the intake passage becomes large and the intake flow velocity becomes small during low-load, low-speed operation, so fuel tends to adhere to the inner wall of the intake passage and form a wall flow, causing a problem that fuel atomization deteriorates.

そこで吸気弁毎に独立に3つの吸気通路を設
け、運転負荷、速度などの運転条件に応じて一部
の吸気通路を開閉することが考えられる。しかし
この場合1個の燃料噴射弁から燃料を供給しよう
とすると、低負荷低速用の1つの吸気通路のみに
燃料を噴射することになる。このため高速時に全
ての吸気通路が開くと燃焼室内に燃料は不均質に
分布することになり、燃焼が悪化するという問題
が生じる。
Therefore, it is conceivable to provide three intake passages independently for each intake valve, and to open and close some of the intake passages according to operating conditions such as operating load and speed. However, in this case, if fuel is to be supplied from one fuel injection valve, fuel will be injected only into one intake passage for low load and low speed. For this reason, if all the intake passages are opened at high speeds, the fuel will be distributed non-uniformly within the combustion chamber, resulting in a problem that combustion will deteriorate.

本発明はこのような事情に鑑みなされたもので
あり、1個の燃料噴射弁を用いたにもかかわらず
全ての運転領域で燃料の霧化を向上でき、燃焼を
良好にして安定化することが可能な4サイクル内
燃機関の吸気装置を提供することを目的とする。
The present invention has been made in view of these circumstances, and has an object to improve fuel atomization in all operating ranges, improve and stabilize combustion even though a single fuel injector is used. An object of the present invention is to provide an intake system for a four-stroke internal combustion engine that is capable of

本発明によればこの目的は、1つの気筒に対
し、互いに隣接する3個の吸気弁を有する4サイ
クル内燃機関において、前記吸気弁に連通する複
数の吸気通路と、前記吸気弁付近で各吸気通路を
互いに連通する連通室と、平面視中央の吸気通路
を指向して前記連通室内に燃料を噴射する燃料噴
射弁とを備え、前記連通室の上流側の少なくとも
1つの吸気通路には運転条件に応じて開閉する制
御弁を設けたことを特徴とする4サイクル内燃機
関の吸気装置により構成される。以下図示の実施
例に基づき、本発明を詳細に説明する。
According to the present invention, this object is achieved in a four-stroke internal combustion engine having three intake valves adjacent to each other for one cylinder, with a plurality of intake passages communicating with the intake valve, and each intake air passage in the vicinity of the intake valve. It includes a communication chamber that communicates the passages with each other, and a fuel injection valve that injects fuel into the communication chamber toward the intake passage at the center in a plan view, and at least one intake passage on the upstream side of the communication chamber has an operating condition. The present invention is constituted by an intake system for a four-stroke internal combustion engine, which is characterized by being provided with a control valve that opens and closes depending on the timing. The present invention will be explained in detail below based on the illustrated embodiments.

第1図は本発明の第1実施例を一部断面した平
面図、第2図はその−線断面図、第3図はト
ルク特性図である。第1,2図において符号10
はシリンダボデー、12はシリンダヘツド、14
はピストンであり、これらにより燃焼室16が形
成される。シリンダヘツド12には1気筒につき
2個の排気弁18,18a,18bと、3個の互
いに隣接する吸気弁20,20a,20b,20
cが設けられている。これらの排・吸気弁18,
20は、それぞれ頭上カム軸22,24、ロツカ
アーム26,28などからなる公知の2頭上カム
軸式動弁機構により開閉される。30はシリンダ
ヘツドカバー、32は排気弁18に連通する排気
通路、また第1図で34は点火栓である。
FIG. 1 is a partially sectional plan view of a first embodiment of the present invention, FIG. 2 is a sectional view taken along the line 2, and FIG. 3 is a torque characteristic diagram. Number 10 in Figures 1 and 2
is the cylinder body, 12 is the cylinder head, 14
is a piston, and a combustion chamber 16 is formed by these pistons. The cylinder head 12 has two exhaust valves 18, 18a, 18b per cylinder and three mutually adjacent intake valves 20, 20a, 20b, 20.
c is provided. These exhaust/intake valves 18,
20 is opened and closed by a known double overhead camshaft type valve operating mechanism comprising overhead camshafts 22, 24, rocker arms 26, 28, etc., respectively. 30 is a cylinder head cover, 32 is an exhaust passage communicating with the exhaust valve 18, and 34 in FIG. 1 is a spark plug.

36はサージタンク、38は各気筒毎にサージ
タンク36とシリンダヘツド12とをつなぐ吸気
管である。吸気管38内には、第1吸気通路40
a、第2吸気通路40bが形成されている。第1
吸気通路40aと第2吸気通路40bとは略同径
で、またこれらの通路40a,40bを貫通する
弁軸42には、第2吸気通路40bを開閉する蝶
型の制御弁44が取付けられている。この制御弁
44は運転条件、例えば運転負荷や機関回転速度
の増減に対応して開閉するように制御される。
36 is a surge tank, and 38 is an intake pipe that connects the surge tank 36 and the cylinder head 12 for each cylinder. Inside the intake pipe 38, a first intake passage 40 is provided.
a, a second intake passage 40b is formed. 1st
The intake passage 40a and the second intake passage 40b have approximately the same diameter, and a butterfly-shaped control valve 44 that opens and closes the second intake passage 40b is attached to a valve shaft 42 that passes through these passages 40a and 40b. There is. This control valve 44 is controlled to open and close in response to operating conditions, such as increases and decreases in operating load and engine speed.

吸気通路40の下流側はシリンダヘツド12に
設けた連通室46に接続され、この連通室46は
3つの吸気弁20に連通する。
The downstream side of the intake passage 40 is connected to a communication chamber 46 provided in the cylinder head 12, and this communication chamber 46 communicates with the three intake valves 20.

48は電磁式燃料噴射弁である。この噴射弁4
8は第2図に示すように、吸気管38の上部に配
設した分配管50と、シリンダヘツド12の連通
室46上部との間に位置し、その噴射口は中央の
吸気弁20bを指向する。この噴射弁48は制御
器(図示せず)が出力する電気信号により所定の
タイミングで開弁し、所定圧に加圧された分配管
50内の燃料を連通室46内へ間欠的に噴射す
る。
48 is an electromagnetic fuel injection valve. This injection valve 4
As shown in FIG. 2, 8 is located between the distribution pipe 50 disposed at the upper part of the intake pipe 38 and the upper part of the communication chamber 46 of the cylinder head 12, and its injection port is directed toward the central intake valve 20b. do. The injection valve 48 opens at a predetermined timing in response to an electric signal output by a controller (not shown), and intermittently injects fuel in the distribution pipe 50 pressurized to a predetermined pressure into the communication chamber 46. .

この第1実施例の動作は次のとおりである。低
負荷・低速運転時には、制御弁44は閉じ第1吸
気通路40aから吸気は連通室46へ導かれる。
低速運転では吸気の脈動が大きく、また第1吸気
通路40aは小径なので吸気慣性も大きい。この
ため吸気弁20が閉じた時には吸気は第1吸気通
路40aから連通室46に入つて強い乱流を生成
する。連通室4に間欠的に噴射された燃料は、吸
気の乱流によつて速やかにかつ良好に霧化され、
均一化した混合気となつて吸気弁20の開弁に伴
い燃焼室16に流入する。この際連通室46内の
乱流がスワールを強化することにもなり、燃焼安
定化も図れる。
The operation of this first embodiment is as follows. During low load/low speed operation, the control valve 44 is closed and intake air is guided from the first intake passage 40a to the communication chamber 46.
During low-speed operation, the pulsation of the intake air is large, and since the first intake passage 40a has a small diameter, the intake inertia is also large. Therefore, when the intake valve 20 is closed, the intake air enters the communication chamber 46 from the first intake passage 40a, creating a strong turbulent flow. The fuel injected intermittently into the communication chamber 4 is quickly and well atomized by the turbulent flow of intake air.
The mixture becomes homogenized and flows into the combustion chamber 16 as the intake valve 20 opens. At this time, the turbulent flow within the communication chamber 46 also strengthens the swirl, and combustion can be stabilized.

高負荷・高速運転時には制御弁44が開き、吸
気は第1,第2吸気通路40a,40bから連通
室46に入る。噴射弁48から噴射された燃料は
或る程度の広がりを持つているばかりでなく比較
的広い連通室46内を長い距離の間内壁に当たる
ことなく拡散する。このため内壁に付着する燃料
が減り、燃料の霧化が促進される。
During high load/high speed operation, the control valve 44 opens and intake air enters the communication chamber 46 from the first and second intake passages 40a, 40b. The fuel injected from the injection valve 48 not only has a certain degree of spread, but also spreads over a long distance within the relatively wide communication chamber 46 without hitting the inner wall. This reduces the amount of fuel adhering to the inner wall and promotes atomization of the fuel.

第3図で実線Aは制御弁44を開き続けた場合
のトルク特性であり、中低速での吸気慣性効果の
減少によりトルク低下が著しいことを示してい
る。同図鎖線Bは制御弁44を閉じた場合のトル
ク特性である。制御弁44を中速域で開閉させる
ことによりこれらの2つの特性A,Bを組合わ
せ、トルク特性の改善を図ることができる。
In FIG. 3, the solid line A represents the torque characteristic when the control valve 44 is kept open, and shows that the torque decreases significantly due to the decrease in the intake inertia effect at medium and low speeds. The dashed line B in the figure is the torque characteristic when the control valve 44 is closed. By opening and closing the control valve 44 in the medium speed range, these two characteristics A and B can be combined to improve the torque characteristics.

第4図は第2実施例を一部断面した平面図であ
る。この実施例は、前記第1実施例における第1
吸気通路40aを第2吸気通路40bより小径に
形成したものである。この実施例によれば噴射弁
48の噴射口が第1,第2吸気通路40a,40
b間の壁より第2吸気通路40b側に偏位してい
る。この結果高負荷・高速時に制御弁44が開く
と第2吸気通路40bから連通室46に流入した
吸気は、第1実施例に比べ、噴射弁48から噴射
された燃料に一層よく当たり、燃料の霧化がさら
に促進される。また第2吸気通路40bが小径な
ので、第1実施例に比べて一層低速から吸気慣性
によるトルク増加を図ることができる。さらに第
1吸気通路40aの連通室46に対する偏位量
は、第1実施例に比べて大きくなるから、制御弁
44が閉じている低速時に連通室46に生成され
る渦流が一層強くなり、吸気弁20の開弁時には
この渦流により燃焼室16内に一層強いスワール
(吸入渦流)が発生する。このため低速時の燃焼
が安定化され、低速運転が円滑になる効果が一層
顕著になる。
FIG. 4 is a partially sectional plan view of the second embodiment. This embodiment is based on the first embodiment in the first embodiment.
The intake passage 40a is formed to have a smaller diameter than the second intake passage 40b. According to this embodiment, the injection port of the injection valve 48 is connected to the first and second intake passages 40a, 40.
It is deviated toward the second intake passage 40b side from the wall between b. As a result, when the control valve 44 opens under high load and high speed, the intake air flowing into the communication chamber 46 from the second intake passage 40b hits the fuel injected from the injection valve 48 more effectively than in the first embodiment, and Atomization is further promoted. Furthermore, since the second intake passage 40b has a small diameter, it is possible to increase the torque due to intake inertia from a lower speed than in the first embodiment. Furthermore, since the amount of deviation of the first intake passage 40a with respect to the communication chamber 46 is larger than that in the first embodiment, the vortex generated in the communication chamber 46 at low speeds when the control valve 44 is closed becomes even stronger, and the intake air When the valve 20 is opened, an even stronger swirl (suction vortex) is generated within the combustion chamber 16 due to this vortex. Therefore, combustion at low speeds is stabilized, and the effect of smoothing low speed operation becomes even more pronounced.

第5図は第3実施例の一部断面した平面図であ
り、この実施例は第1吸気通路40aを中央に配
置する一方第2吸気通路40bを2つに分割し、
それぞれに制御弁44,44を設けたものであ
る。
FIG. 5 is a partially sectional plan view of the third embodiment, in which the first intake passage 40a is arranged in the center, while the second intake passage 40b is divided into two.
Control valves 44, 44 are provided respectively.

この実施例によれば、制御弁44が閉じる低負
荷・低速時に第1吸気通路を通る吸気は、噴射弁
48から噴射された燃料に良好に当たり、特に低
負荷・低速時の霧化が前記第1,2実施例に比べ
て一層改善される。
According to this embodiment, the intake air passing through the first intake passage when the control valve 44 is closed at low load and low speed hits the fuel injected from the injection valve 48 well, and the atomization is particularly good at low load and low speed. This is further improved compared to the first and second embodiments.

第6図は第4実施例の一部断面した平面図であ
り、この実施例は第1,第2,第3吸気通路40
a,40b,40cを備え、第1吸気通路40a
を挾む第2,第3吸気通路40b,40cには、
開閉時が互いに異なる制御弁44a,44bを配
設した。
FIG. 6 is a partially sectional plan view of the fourth embodiment, which shows the first, second, and third intake passages 40.
a, 40b, 40c, the first intake passage 40a
The second and third intake passages 40b and 40c sandwiching the
Control valves 44a and 44b are provided which open and close at different times.

この実施例によれば第3実施例(第5図)と同
様に低速時の霧化が促進されるだけでなく、トル
ク特性の改善も同時に図れる。すなわち第7図は
この第4実施例のトルク特性図であり、この図の
実線Aは制御弁44a,44bを開き続けた場合
の特性、破線Bは低速域で制御弁44a,44b
の両方を閉じた場合の特性、また鎖線Cは中速域
で制御弁44bのみを開いた場合の特性である。
制御弁44a,44bを異なる運転速度で開閉さ
せてこれら特性A,B,Cを組み合わせることに
より、前記第1〜3実施例に比べ中速域でのトル
ク改善を図ることができる。
According to this embodiment, like the third embodiment (FIG. 5), not only atomization at low speeds is promoted, but also torque characteristics can be improved at the same time. That is, FIG. 7 is a torque characteristic diagram of this fourth embodiment. In this figure, the solid line A indicates the characteristic when the control valves 44a, 44b are kept open, and the broken line B indicates the characteristic when the control valves 44a, 44b are kept open in the low speed range.
The chain line C shows the characteristic when only the control valve 44b is opened in the medium speed range.
By opening and closing the control valves 44a and 44b at different operating speeds and combining these characteristics A, B, and C, it is possible to improve the torque in the medium speed range compared to the first to third embodiments.

第8図は第5実施例の一部断面した平面図であ
り、この実施例は第4実施例(第6図)における
第1吸気通路40aと第2吸気通路40bとの位
置を入れ換えたものである。
FIG. 8 is a partially sectional plan view of the fifth embodiment, and this embodiment is obtained by swapping the positions of the first intake passage 40a and the second intake passage 40b in the fourth embodiment (FIG. 6). It is.

この実施例によれば前記第4実施例(第6図)
と同様に、中速域でのトルクを増加できるだけで
なく、前記第2実施例(第4図)と同様に低速域
でスワールが強化されるので、低速運転時の回転
転が一層円滑になる。
According to this embodiment, the fourth embodiment (FIG. 6)
Similarly, not only can the torque be increased in the medium speed range, but also the swirl can be strengthened in the low speed range as in the second embodiment (Fig. 4), making rotation even smoother during low speed operation. .

なお、第4,5,6,8図では第1図と同一部
分に同一符号を付したので、その説明は繰り返え
さない。
In addition, in FIGS. 4, 5, 6, and 8, the same parts as in FIG. 1 are given the same reference numerals, so the description thereof will not be repeated.

本発明は以上のように、複数の吸気通路を3つ
の吸気弁付近に設けた連通室で互いに連通させ、
中央の吸気通路を指向して連通室内へ燃料を噴射
させる一方、連通室上流側の少なくとも1つの吸
気通路には制御弁を設けて運転負荷や運転速度の
増減によつてこの制御弁を開閉するように構成し
た。このため低負荷・低速時には制御弁が閉じ一
部の吸気通路のみを吸気は通るので、吸気慣性を
有効に利用して給気効率の向上と出力の増大が図
れる。この時吸気脈動により連通室内には強い乱
流が生成され、ここに噴射される燃料はこの乱流
により吸気と良好に混合され、燃料の霧化が促進
される。このため燃焼が改善され燃費向上が図れ
る。なお連通室の乱流は、燃焼室へ流入する吸気
の乱れ(スワール)を強化することにもなり、サ
イクル毎の燃焼の変動が減り運転が滑らかにな
る。
As described above, the present invention allows a plurality of intake passages to communicate with each other in a communication chamber provided near three intake valves,
While fuel is injected into the communication chamber toward the central intake passage, at least one intake passage upstream of the communication chamber is provided with a control valve, and this control valve is opened and closed according to increases and decreases in operating load and operating speed. It was configured as follows. Therefore, when the load is low and the engine speed is low, the control valve closes and the intake air passes through only a portion of the intake passage, making it possible to effectively utilize intake inertia to improve air supply efficiency and increase output. At this time, a strong turbulent flow is generated in the communication chamber due to the intake pulsation, and the fuel injected into the communication chamber is mixed well with the intake air due to this turbulence, and atomization of the fuel is promoted. This improves combustion and improves fuel efficiency. Note that the turbulent flow in the communication chamber also strengthens the turbulence (swirl) of the intake air flowing into the combustion chamber, reducing fluctuations in combustion from cycle to cycle and smoothing the operation.

一方燃料は連通室内に噴射されることになるか
ら、噴射された燃料は比較的長い距離を内壁に当
たることなく拡散でき、全ての運転条件下で燃料
の霧化が向上し、燃焼の改善、燃費の向上を図る
ことができる。
On the other hand, since the fuel is injected into the communication chamber, the injected fuel can spread over a relatively long distance without hitting the inner wall, improving fuel atomization under all operating conditions, improving combustion, and fuel efficiency. It is possible to improve the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例の一部を断面した平面図、
第2図はその−線断面図、第3図はトルク特
性図、第4,5,6図はそれぞれ第2,第3,第
4実施例の一部断面した平面図、第7図は第4実
施例のトルク特性図、第8図は第5実施例の一部
断面した平面図である。 20…吸気弁、40…吸気通路、44…制御
弁、46…連通室、48…燃料噴射弁。
FIG. 1 is a partially sectional plan view of the first embodiment;
Fig. 2 is a sectional view taken along the - line, Fig. 3 is a torque characteristic diagram, Figs. 4, 5, and 6 are partially sectional plan views of the second, third, and fourth embodiments, respectively, and Fig. The torque characteristic diagram of the fourth embodiment, and FIG. 8 is a partially sectional plan view of the fifth embodiment. 20...Intake valve, 40...Intake passage, 44...Control valve, 46...Communication chamber, 48...Fuel injection valve.

Claims (1)

【特許請求の範囲】 1 1つの気筒に対し、互いに隣接する3個の吸
気弁を有する4サイクル内燃機関において、 前記吸気弁に連通する複数の吸気通路と、前記
吸気弁付近で各吸気通路を互いに連通する連通室
と、平面視中央の吸気通路を指向して前記連通室
内に燃料を噴射する燃料噴射弁とを備え、前記連
通室の上流側の少なくとも1つの吸気通路には運
転条件に応じて開閉する制御弁を設けたことを特
徴とする4サイクル内燃機関の吸気装置。
[Scope of Claims] 1. In a four-stroke internal combustion engine having three intake valves adjacent to each other for one cylinder, a plurality of intake passages communicate with the intake valve, and each intake passage is connected near the intake valve. It includes communication chambers that communicate with each other, and a fuel injection valve that injects fuel into the communication chamber toward an intake passage at the center in a plan view, and at least one intake passage on the upstream side of the communication chamber is provided with a fuel injection valve according to operating conditions. An intake system for a four-stroke internal combustion engine, characterized in that it is provided with a control valve that opens and closes at the same time.
JP57200367A 1982-11-17 1982-11-17 Intake device for 4-cycle internal-combustion engine Granted JPS5990717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200367A JPS5990717A (en) 1982-11-17 1982-11-17 Intake device for 4-cycle internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200367A JPS5990717A (en) 1982-11-17 1982-11-17 Intake device for 4-cycle internal-combustion engine

Related Child Applications (8)

Application Number Title Priority Date Filing Date
JP1297624A Division JPH0781544B2 (en) 1989-11-17 1989-11-17 Intake device for 4-cycle internal combustion engine
JP1297627A Division JP2576905B2 (en) 1989-11-17 1989-11-17 Intake device for 4-cycle internal combustion engine
JP1297625A Division JPH02161168A (en) 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine
JP1297628A Division JPH02161125A (en) 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine
JP1297631A Division JPH0759922B2 (en) 1989-11-17 1989-11-17 Intake device for 4-cycle internal combustion engine
JP1297630A Division JPH02161124A (en) 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine
JP29762989A Division JPH02161169A (en) 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine
JP29762689A Division JPH02161111A (en) 1989-11-17 1989-11-17 Suction system of four-cycle internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5990717A JPS5990717A (en) 1984-05-25
JPH057555B2 true JPH057555B2 (en) 1993-01-29

Family

ID=16423120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200367A Granted JPS5990717A (en) 1982-11-17 1982-11-17 Intake device for 4-cycle internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5990717A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119632U (en) * 1984-07-10 1986-02-04 トヨタ自動車株式会社 double intake valve engine
JP2666135B2 (en) * 1986-07-17 1997-10-22 ヤマハ発動機株式会社 Intake system for fuel injection engine
US4856473A (en) * 1987-08-25 1989-08-15 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with multiple intake valves and EGR arrangement
JPH0759922B2 (en) * 1989-11-17 1995-06-28 ヤマハ発動機株式会社 Intake device for 4-cycle internal combustion engine
JPH02161169A (en) * 1989-11-17 1990-06-21 Yamaha Motor Co Ltd Intake device for four-cycle internal combustion engine
JP2576905B2 (en) * 1989-11-17 1997-01-29 ヤマハ発動機株式会社 Intake device for 4-cycle internal combustion engine
JPH02161168A (en) * 1989-11-17 1990-06-21 Yamaha Motor Co Ltd Intake device for four-cycle internal combustion engine
JP2556420B2 (en) * 1992-07-20 1996-11-20 ヤマハ発動機株式会社 Intake device for 4-cycle internal combustion engine
JPH05209581A (en) * 1992-07-20 1993-08-20 Yamaha Motor Co Ltd Air intake device for four-cycle internal combustion engine
JPH0666233A (en) * 1992-07-20 1994-03-08 Yamaha Motor Co Ltd Intake device of four-cycle internal combustion engine
JP2556419B2 (en) * 1992-07-20 1996-11-20 ヤマハ発動機株式会社 Intake device for 4-cycle internal combustion engine
JP2553013B2 (en) * 1993-07-19 1996-11-13 ヤマハ発動機株式会社 Intake system for fuel injection engine
JP2020033901A (en) * 2018-08-28 2020-03-05 ダイハツ工業株式会社 cylinder head

Also Published As

Publication number Publication date
JPS5990717A (en) 1984-05-25

Similar Documents

Publication Publication Date Title
US5852994A (en) Induction control system for multi-valve engine
US4512311A (en) Intake control system for multi-valve type internal combustion engine
US4877004A (en) Internal combustion engine for a vehicle
JPH057555B2 (en)
US5487365A (en) Induction system for engine
US6253729B1 (en) Induction control for direct injected engine
US5636613A (en) Cylinder head porting arrangement for multi-valve engine
US4660530A (en) Intake system for internal combustion engine
US5462027A (en) Induction system for engine
US7273032B2 (en) Engine induction system
US5060616A (en) Intake system for multiple-valve engine
US5651344A (en) Induction and injection system for multi-valve engine
JPH0781544B2 (en) Intake device for 4-cycle internal combustion engine
JP2576905B2 (en) Intake device for 4-cycle internal combustion engine
JPH021967B2 (en)
JPH0433970B2 (en)
JPH02161111A (en) Suction system of four-cycle internal combustion engine
JPH0433969B2 (en)
JP2556419B2 (en) Intake device for 4-cycle internal combustion engine
JPH048295Y2 (en)
JPH02161169A (en) Intake device for four-cycle internal combustion engine
JPH0759922B2 (en) Intake device for 4-cycle internal combustion engine
JPH0148379B2 (en)
JPH02161168A (en) Intake device for four-cycle internal combustion engine
JPH0415945Y2 (en)