Nothing Special   »   [go: up one dir, main page]

JPH0568292B2 - - Google Patents

Info

Publication number
JPH0568292B2
JPH0568292B2 JP62114526A JP11452687A JPH0568292B2 JP H0568292 B2 JPH0568292 B2 JP H0568292B2 JP 62114526 A JP62114526 A JP 62114526A JP 11452687 A JP11452687 A JP 11452687A JP H0568292 B2 JPH0568292 B2 JP H0568292B2
Authority
JP
Japan
Prior art keywords
membrane
groups
group
anionic
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62114526A
Other languages
Japanese (ja)
Other versions
JPS63283707A (en
Inventor
Yasushi Maeda
Zenjiro Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62114526A priority Critical patent/JPS63283707A/en
Publication of JPS63283707A publication Critical patent/JPS63283707A/en
Publication of JPH0568292B2 publication Critical patent/JPH0568292B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/641Polyamide-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、有機物水溶液、又は、水/有機物混
合蒸気から水を分離する膜に関する。更に詳しく
は、有機物水溶液を浸透気化法によつて、あるい
は水/有機物混合蒸気を蒸気透過法によつて分
離、濃縮するための膜に関するものである。 (従来技術) 膜を用いた有機物水溶液の濃縮、分離に関して
は、一部の低濃度有機物水溶液の濃縮に対して、
逆浸透法が実用化されてきた。しかしながら、逆
浸透法は分離液の浸透圧以上の圧力を被分離液に
加える必要があるため、浸透圧が高くなる高濃度
水溶液に対しては、適用不可能であり、従つて、
分離できる溶液の濃度に限界がある。 これに対して、浸透圧の影響を受けない分離法
として浸透気化法及び蒸気透過法が新しい分離法
として脚光を浴びつつある。浸透気化法とは膜の
一次側に分離液を供給し、膜の二次側(透過側)
を減圧にするか、又はキヤリヤーガスを通気する
ことによつて、分離物質を気体状で膜透過させる
方法であり、蒸気透過法とは、膜の1次側への供
給が混合蒸気である点が浸透気化法と異なるもの
である。膜透過物質は、透過蒸気を冷却、凝縮す
る事によつて採取することができる。浸透気化法
については、これまでに多くの研究例が報告され
ている。例えば、エタノール水溶液の分離に関し
ては、米国特許2953502号にセルロースアセテー
ト均一膜を、米国特許3035060号にはポリビニル
アルコールの例がある。 又、特公昭54−10548、54−10549号及び特公昭
59−49041号にはイオン性基を導入した合成高分
子膜を用いて水−有機液体混合物を分離した実験
例が報告されている。 (発明が解決しようとする問題点) 液体や蒸気の膜透過は、溶解と拡散により支配
されているという理論に基づき、自由体積の小さ
な膜を使用し透過分子のサイズの差により分離を
行おうとする試みがなされてきた。 しかし、自由体積の小さな膜は分離係数は大き
いが、透過速度が小さいという欠点があつた。こ
のため、透過速度を増し、さらに選択性を上げる
ために、物質の溶解度の差を利用する試みがあつ
た。例えば、特開昭56−24007には芳香族ポリア
ミドイミドの分子鎖中にスルホン基を導入するこ
とにより透水速度を改善した透過膜が開示されて
いるが、ポリマー中にスルホン基の量が増えるに
従つて膜形成能に乏しく、又、得られる膜の機械
的強度の低下と共に膨潤により分子のサイズによ
る選択性が失われ、結果として水と有機物分離の
選択性が失われるという欠点があつた。 又、特開昭60−129104にはアニオン性多糖から
の膜が記載されているが、耐熱性、耐薬品性など
の点で問題があり、広範囲にわたる有機物の分離
に適しているとは言えない。 従つて、本発明の目的は、浸透気化法および蒸
気透過法による有機物水溶液、又は、有機物と水
の混合蒸気の分離に於いて種々の有機物質及び広
範囲な濃度領域に対して、十分な耐久性、耐熱性
と高い透過速度および分離係数を有する分離膜を
得ることにある。 (問題点を解決するための手段) 以上の点について鋭意検討した結果、本発明に
到達した。 即ち、本発明は複数のアニオン性基とカチオン
性基を同一分子内に有し、主鎖が主として芳香族
系高分子からなり、かつ共有結合による架橋構造
を有する、水/有機物混合物から水を選択的に透
過させる浸透気化用並びに蒸気透過用両性高分子
電解質分離膜である。 有機物水溶液、又は、水/有機物の蒸気混合物
から水を選択的に透過させるためには水の配位能
力の大きい官能基を膜に導入するのが好ましい。
そこで、本発明者らは、水の透過性と有機物に対
する分離性能を高めるために、水の配位能力の高
いアニオン性基を芳香族系高分子に導入すること
を試みた。 しかしながら、多量のアニオン性基を高分子鎖
中に導入すると膜形成能に乏しくなるのみなら
ず、膜としての選択分離性が著しく低下する。そ
こで、アニオン性基と共にカチオン性基を主とし
て芳香族系高分子へ導入することにより、高選択
性で、かつ高い透過性を有する分離膜を得た。さ
らに、これらの両性高分子膜と架橋剤により、3
次元化させることで、広範囲の有機物混合液に対
する耐性を強めることができた。 以下に本発明について、さらに詳細に説明す
る。 本発明において、アニオン性基としては、塩を
形成しうるものであれば特に限定されないが、実
用的には、スルホン酸残基、カルボン酸残基が好
ましく使用される。 又、該カチオン性基としては、塩を形成しうる
ものであれば特に限定されないが、実用的には、
種々の第1級から第4級までのアミノ基、及びピ
リジン残基が好ましく使用される。 これらのアニオン性基及びカチオン性基は、目
的とする分離対象物に応じて、各々、単独で使用
してもよく、2種以上を混合してもよい。 かかるアニオン性基、及びカチオン性基は、こ
れらを含有するモノマーを共重合することによ
り、又、重合後、あるいは製膜後公知の手法によ
りアニオン性基、並びにカチオン性基を導入する
ことにより達成される。カチオン性基及びアニオ
ン性基の割合は特に限定されないが、好ましく
は、 1/20<A/C<20(A:高分子鎖中のアニオン性基 の量meq/g、C:高分子鎖中のカチオン性基の
量meq/g)の範囲である。 又、繰り返し単位中のアニオン性基及びカチオ
ン性基の割合は、一般式(1)において、m/nは
100/0〜5/95好ましくは、100/0〜20/80で
ある。 (―XAaod/prcn――(―Xpo――(1) 〔上記芳香族系高分子において、XAaod/prcはアニ
オン性基及び/又はカチオン性基含有繰り返し単
位、Xpはアニオン性基、カチオン性基共に含ま
ない繰り返し単位である。〕 該両性高分子電解質において、アニオン性基及
びカチオン性基は一分子鎖内にランダム、ブロツ
ク状、又はグラフトとして存在してもよいし、又
繰り返し単位中にアニオン性基及びカチオン性基
共に含んでいてもよい。 本発明における芳香族系高分子とは、主鎖が主
として芳香族化合物から成るもので、特に限定さ
れないが、例えば、ポリアミド、ポリアミドイミ
ド、ポリイミド、ポリ尿素、ポリウレタン、ポリ
スルホン、ホリエーテルなどを挙げることができ
る。 又、本発明においては、本発明の趣旨を逸脱し
ない範囲で該膜と相溶性のあるその他の高分子と
ブレンド、ブロツク及びグラフトしてもよい。こ
れらのブレンド、ブロツク及びグラフトに用いる
高分子はアニオン性基及び/又はカチオン性基を
必ずしも含まなくともよい。 本発明による分離膜は膜強度及び分離性能を改
善するために架橋により、3次元構造を形成させ
ることが好ましい。この目的のために共有結合を
使用した場合、例えば、水酸基、第1級アミノ
基、第2級アミノ基等の活性水素を有する高分子
化合物とエポキシ、酸塩化物、メラミン化合物、
イソシアネート、アルデヒト、酸無水物等の活性
水素と反応する官能基を有する化合物の組み合わ
せを用いて架橋することができる。さらに、紫外
線照射、電子線照射、プラズマ処理などによつて
も架橋することができる。 かかる架橋は、架橋点となりうる活性点を有す
るモノマーを共重合、並びに、アニオン性基やカ
チオン性基と共に活性点をも含むモノマーを重合
したり、架橋点となりうる結合を生じる高分子
(例えば、ポリ尿素の尿素結合)を合成後、製膜
時又は、製膜後架橋剤を添加並びに含浸させ、熱
処理、紫外線処理などにより行うことができる。
これらの架橋法は単独で行つてもよく、又は、こ
れらの架橋法を組み合わせて行つてもよい。この
他、水素結合による架橋なども用いることができ
る。この様にして作製された膜は、水/有機物混
合物、例えば、ギ酸、酢酸、プロピオン酸、酪酸
等の有機酸、メタノール、エタノール、1−プロ
パノール、2−プロパノール、n−ブタノール等
のアルコール類、アセトン、メチルエチルケトン
等のケトン類、テトラヒドロフラン、ジオキサン
等のエーテル類、アルデヒド、プロピオンアルデ
ヒド等のアルデヒド類、ピリジンやピコリン等の
アミン類の群からなる1又は2以上の化合物を含
む水溶液、又は水との蒸気混合物の分離に用いら
れる。 又、該両性高分子電解質分離膜は広範な水、イ
オン及び気体処理用選択透過膜としても用いるこ
とができる。これには、透析膜、逆透析膜、限外
過膜などが含まれる。 本発明になる膜は平膜、チユーブ膜、中空糸膜
のいずれでも可能である。平膜は、そのまま積層
するか、プリーツ型又は、渦巻状に成型してモジ
ユールとすることができる。又、複合膜として多
孔性支持体上に塗布することにより、膜厚を0.1μ
程度まで薄くすることが可能である。 (発明の効果) 本発明によるアニオン性基及びカチオン性基を
含有する芳香族系高分子膜は、これらの基を含ま
ない膜及びアニオン性基だけやカチオン性基のみ
を含む膜に比べ、水/有機物の混合物の分離に対
して透過速度及び分離係数共に優れた性能を示
し、かつ、耐溶剤性、耐熱性にも優れている。 (実施例) 次に、実施例による本発明をさらに具体的に説
明する。 実施例 1 2,5−ジアミノベンゼンスルホン酸ナトリウ
ム(0.01モル)と4,4′−ジアミノジフエニルア
ミン(0.01モル)をジメチルアセトアミド
(DMAC)50mlに溶かし、トリエチルアミン
(0.02モル)を酸捕捉剤として加えた後、冷却し
ながら無水トリメリト酸クロライド(0.02モル)
を一度に加え、3時間攪拌を続け、前駆体のポリ
アミド酸を得た。これを精製した後、ポリマーに
対し、10%の3官能エポキシ「テピツク」(日
産化学工業社製)を加え、ガラス板上にキヤス
ト、100℃で2時間乾燥した後、ガラス板よりは
がし、100℃で一晩、さらに200℃で6時間真空乾
燥することにより、ポリアミドイミド均一膜を得
た。80%酢酸を供給液とする70℃での浸透気化法
により膜の分離性能を測定した。得られた結果を
表1に示す。 比較例 1 実施例1における4,4′−ジアミノジフエニル
アミンが3,5ジアミノ安息香酸であること以外
は同じであるポリアミドイミド膜を得た。膜の分
離性能の測定結果を表1に示す。 比較例 2 実施例1において、ジアミンモノマーが2,5
ジアミノベンゼンスルホン酸ナトリウム(0.015
モル)及び2,4ジアミノフエノール(0.005モ
ル)であること以外は同じであるポリアミドイミ
ド膜を得た。膜の分離性能の測定結果を表1に示
す。 実施例 2 2,5ジアミノベンゼンスルホン酸ナトリウム
(0.008モル)、2,6ジアミノピリジン(0.008モ
ル)、3,5ジアミノ安息香酸(0.004モル)を
DMAc50mlに溶かした後、無水ピロメリト酸
(0.02モル)を一度に加え、3時間攪拌を続け、
前駆体のポリアミド酸を得た。 実施例1と同様にしてポリイミド均一膜を得
た。膜の分離性能を表1に示す。 比較例 3 実施例2において、ジアミンモノマーが4,
4′−ジアミノジフエルアミンのみからなること以
外は同じであるポリイミド均一膜を得た。膜の分
離性能を表1に示す。
(Industrial Application Field) The present invention relates to a membrane that separates water from an organic aqueous solution or a water/organic mixed vapor. More specifically, the present invention relates to a membrane for separating and concentrating an organic aqueous solution by pervaporation or a water/organic mixed vapor by vapor permeation. (Prior art) Regarding the concentration and separation of organic substance aqueous solutions using membranes, for the concentration of some low concentration organic substance aqueous solutions,
Reverse osmosis has been put into practical use. However, since the reverse osmosis method requires applying a pressure higher than the osmotic pressure of the separating liquid to the liquid to be separated, it is not applicable to highly concentrated aqueous solutions where the osmotic pressure is high.
There is a limit to the concentration of solutions that can be separated. In contrast, pervaporation and vapor permeation methods are attracting attention as new separation methods that are not affected by osmotic pressure. In the pervaporation method, a separated liquid is supplied to the primary side of the membrane, and the secondary side (permeation side) of the membrane is
This is a method in which the separated substance is passed through the membrane in a gaseous state by reducing the pressure or passing a carrier gas through the membrane.The vapor permeation method is characterized by the fact that mixed vapor is supplied to the primary side of the membrane. This is different from the pervaporation method. The membrane-permeable substance can be collected by cooling and condensing the permeated vapor. Regarding the pervaporation method, many research examples have been reported so far. For example, regarding the separation of aqueous ethanol solutions, there are examples of cellulose acetate homogeneous membranes in US Pat. No. 2,953,502 and polyvinyl alcohol in US Pat. No. 3,035,060. Also, Special Publication No. 54-10548, No. 54-10549 and Special Publication No.
No. 59-49041 reports an experimental example in which a water-organic liquid mixture was separated using a synthetic polymer membrane into which ionic groups were introduced. (Problem to be solved by the invention) Based on the theory that membrane permeation of liquids and vapors is controlled by dissolution and diffusion, an attempt was made to use a membrane with a small free volume to perform separation based on the size difference of permeating molecules. Attempts have been made to do so. However, membranes with a small free volume have a large separation coefficient but have the disadvantage of a low permeation rate. For this reason, attempts have been made to utilize the difference in solubility of substances in order to increase the permeation rate and further increase the selectivity. For example, JP-A-56-24007 discloses a permeable membrane with improved water permeation rate by introducing sulfone groups into the molecular chain of aromatic polyamideimide, but as the amount of sulfone groups in the polymer increases, Therefore, the membrane-forming ability is poor, and the resulting membrane has the disadvantage that its mechanical strength decreases and the selectivity based on molecular size is lost due to swelling, resulting in a loss of selectivity in separating water and organic matter. In addition, JP-A-60-129104 describes a membrane made from anionic polysaccharide, but it has problems with heat resistance, chemical resistance, etc., and cannot be said to be suitable for separating a wide range of organic substances. . Therefore, an object of the present invention is to provide sufficient durability for various organic substances and a wide range of concentration ranges in the separation of organic substance aqueous solutions or mixed vapors of organic substances and water by pervaporation and vapor permeation methods. The object of the present invention is to obtain a separation membrane having heat resistance, high permeation rate, and separation coefficient. (Means for Solving the Problems) As a result of intensive study on the above points, the present invention has been arrived at. That is, the present invention is capable of removing water from a water/organic substance mixture that has a plurality of anionic groups and cationic groups in the same molecule, whose main chain is mainly composed of an aromatic polymer, and which has a crosslinked structure by covalent bonds. This is an amphoteric polymer electrolyte separation membrane for pervaporation and vapor permeation that allows selective permeation. In order to selectively permeate water from an aqueous organic solution or a water/organic vapor mixture, it is preferable to introduce into the membrane a functional group that has a large ability to coordinate water.
Therefore, the present inventors attempted to introduce an anionic group having a high ability to coordinate water into an aromatic polymer in order to improve water permeability and separation performance for organic substances. However, when a large amount of anionic groups are introduced into the polymer chain, not only the membrane forming ability becomes poor, but also the selective separation property of the membrane is significantly reduced. Therefore, by introducing cationic groups together with anionic groups into mainly aromatic polymers, a separation membrane with high selectivity and high permeability was obtained. Furthermore, with these amphoteric polymer membranes and crosslinking agents, 3
By increasing the dimensionality, we were able to strengthen the resistance to a wide range of organic mixtures. The present invention will be explained in more detail below. In the present invention, the anionic group is not particularly limited as long as it can form a salt, but for practical purposes, sulfonic acid residues and carboxylic acid residues are preferably used. Further, the cationic group is not particularly limited as long as it can form a salt, but for practical purposes,
Various primary to quaternary amino groups and pyridine residues are preferably used. These anionic groups and cationic groups may be used alone, or two or more types may be mixed, depending on the target separation target. Such anionic groups and cationic groups can be achieved by copolymerizing monomers containing them, or by introducing anionic groups and cationic groups by a known method after polymerization or after film formation. be done. The ratio of cationic groups and anionic groups is not particularly limited, but is preferably 1/20<A/C<20 (A: amount meq/g of anionic groups in the polymer chain, C: amount of anionic groups in the polymer chain). The amount of cationic groups (meq/g) is within the range of In addition, the ratio of anionic groups and cationic groups in the repeating unit is m/n in general formula (1).
100/0 to 5/95, preferably 100/0 to 20/80. (-X Aaod/prc ) n --(-X p ) o --(1) [In the above aromatic polymer, X Aaod/prc is a repeating unit containing an anionic group and/or a cationic group, X p is a repeating unit containing neither an anionic group nor a cationic group. ] In the amphoteric polymer electrolyte, the anionic group and the cationic group may be present in a single molecule chain in a random, block form, or as a graft, and the repeating unit may contain both an anionic group and a cationic group. It's okay to stay. The aromatic polymer in the present invention is one whose main chain is mainly composed of an aromatic compound, and examples include, but are not limited to, polyamide, polyamideimide, polyimide, polyurea, polyurethane, polysulfone, and polyether. I can do it. Further, in the present invention, it may be blended, blocked, or grafted with other polymers that are compatible with the membrane without departing from the spirit of the present invention. The polymers used in these blends, blocks and grafts do not necessarily have to contain anionic and/or cationic groups. The separation membrane according to the present invention is preferably crosslinked to form a three-dimensional structure in order to improve membrane strength and separation performance. When a covalent bond is used for this purpose, for example, a polymer compound having active hydrogen such as a hydroxyl group, a primary amino group, or a secondary amino group and an epoxy, acid chloride, or melamine compound,
Crosslinking can be carried out using a combination of compounds having functional groups that react with active hydrogen, such as isocyanates, aldehydes, and acid anhydrides. Furthermore, crosslinking can also be achieved by ultraviolet irradiation, electron beam irradiation, plasma treatment, or the like. In such a crosslinking bridge, a molecular molecular that can be a multi -molecules that can be a crosslinking point, co -polygap, as well as a monomer that can be a crosslinking point, as well as an anion or an anionic group. After synthesizing (urea bond of polyurea), a crosslinking agent may be added or impregnated during film formation or after film formation, and heat treatment, ultraviolet treatment, etc. may be performed.
These crosslinking methods may be performed alone or in combination. In addition, cross-linking by hydrogen bonding can also be used. The membrane prepared in this way can contain water/organic mixtures, such as organic acids such as formic acid, acetic acid, propionic acid, butyric acid, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, n-butanol, etc. An aqueous solution containing one or more compounds from the group of ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran and dioxane, aldehydes such as aldehyde and propionaldehyde, and amines such as pyridine and picoline, or aqueous solution containing one or more compounds from the group of amines such as pyridine and picoline. Used for separation of vapor mixtures. The ampholyte polymer electrolyte separation membrane can also be used as a selectively permeable membrane for a wide variety of water, ion, and gas treatments. This includes dialysis membranes, reverse dialysis membranes, ultrafiltration membranes, etc. The membrane of the present invention can be a flat membrane, a tube membrane, or a hollow fiber membrane. The flat membranes can be laminated as they are, or can be formed into a module by pleating or spiraling. In addition, by coating it on a porous support as a composite membrane, the film thickness can be reduced to 0.1μ.
It is possible to make it as thin as possible. (Effects of the Invention) The aromatic polymer membrane containing anionic groups and cationic groups according to the present invention has a higher water resistance than membranes containing no such groups and membranes containing only anionic groups or only cationic groups. / It shows excellent performance in both permeation rate and separation coefficient for separation of mixtures of organic substances, and also has excellent solvent resistance and heat resistance. (Example) Next, the present invention will be described in more detail using examples. Example 1 Sodium 2,5-diaminobenzenesulfonate (0.01 mol) and 4,4'-diaminodiphenylamine (0.01 mol) were dissolved in 50 ml of dimethylacetamide (DMAC), and triethylamine (0.02 mol) was used as an acid scavenger. Add trimellitic anhydride chloride (0.02 mol) while cooling.
was added all at once and stirring was continued for 3 hours to obtain a precursor polyamic acid. After refining this, 10% trifunctional epoxy "Tepik" (manufactured by Nissan Chemical Industries, Ltd.) was added to the polymer, cast on a glass plate, dried at 100℃ for 2 hours, peeled off from the glass plate, A uniform polyamide-imide film was obtained by vacuum drying at 200° C. overnight and then for 6 hours at 200° C. The separation performance of the membrane was measured by pervaporation at 70°C using 80% acetic acid as the feed liquid. The results obtained are shown in Table 1. Comparative Example 1 A polyamideimide membrane was obtained which was the same as in Example 1 except that 4,4'-diaminodiphenylamine was 3,5 diaminobenzoic acid. Table 1 shows the measurement results of the separation performance of the membrane. Comparative Example 2 In Example 1, the diamine monomer was 2,5
Sodium diaminobenzenesulfonate (0.015
A polyamide-imide membrane was obtained which was identical except that 2,4 diaminophenol (0.005 mole) and 2,4 diaminophenol (0.005 mole) were used. Table 1 shows the measurement results of the separation performance of the membrane. Example 2 Sodium 2,5 diaminobenzenesulfonate (0.008 mol), 2,6 diaminopyridine (0.008 mol), and 3,5 diaminobenzoic acid (0.004 mol)
After dissolving in 50 ml of DMAc, add pyromellitic anhydride (0.02 mol) at once and continue stirring for 3 hours.
A precursor polyamic acid was obtained. A uniform polyimide film was obtained in the same manner as in Example 1. Table 1 shows the separation performance of the membrane. Comparative Example 3 In Example 2, the diamine monomer was 4,
A homogeneous polyimide film was obtained which was identical except that it consisted only of 4'-diaminodiphelamine. Table 1 shows the separation performance of the membrane.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 複数のアニオン性基とカチオン性基を同一分
子内に有し、主鎖が主として芳香族系高分子から
なり、かつ共有結合による架橋構造を有する、
水/有機物混合物から水を選択的に透過させる浸
透気化用並びに蒸気透過用両性高分子電解質分離
膜。 2 アニオン性基が、スルホン酸残基、カルボン
酸残基、又はこれらの基の混合物である特許請求
の範囲第1項記載の両性高分子電解質分離膜。 3 カチオン性基が、第1〜4級アミノ基、ピリ
ジン残基、又はこれらの基の混合物である特許請
求の範囲第1項記載の両性高分子電解質分離膜。 4 該芳香族系高分子が、ポリアミド、ポリアミ
ドイミド、ポリイミド、ポリ尿素、ポリウレタ
ン、ポリスルホン、ポリエーテルの群から選定さ
れた少なくとも一種である特許請求の範囲第1
項、第2項、又は第3項記載の両性高分子電解質
分離膜。
[Scope of Claims] 1. Having a plurality of anionic groups and cationic groups in the same molecule, the main chain mainly consisting of an aromatic polymer, and having a crosslinked structure by covalent bonds.
Ampholytic polymer electrolyte separation membrane for pervaporation and vapor permeation that selectively permeates water from a water/organic mixture. 2. The ampholytic polymer electrolyte separation membrane according to claim 1, wherein the anionic group is a sulfonic acid residue, a carboxylic acid residue, or a mixture of these groups. 3. The ampholytic polymer electrolyte separation membrane according to claim 1, wherein the cationic group is a primary to quaternary amino group, a pyridine residue, or a mixture of these groups. 4. Claim 1, wherein the aromatic polymer is at least one selected from the group consisting of polyamide, polyamideimide, polyimide, polyurea, polyurethane, polysulfone, and polyether.
The ampholytic polymer electrolyte separation membrane according to item 1, 2, or 3.
JP62114526A 1987-05-13 1987-05-13 Semipermeable membrane of polymer ampholyte Granted JPS63283707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114526A JPS63283707A (en) 1987-05-13 1987-05-13 Semipermeable membrane of polymer ampholyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114526A JPS63283707A (en) 1987-05-13 1987-05-13 Semipermeable membrane of polymer ampholyte

Publications (2)

Publication Number Publication Date
JPS63283707A JPS63283707A (en) 1988-11-21
JPH0568292B2 true JPH0568292B2 (en) 1993-09-28

Family

ID=14639958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114526A Granted JPS63283707A (en) 1987-05-13 1987-05-13 Semipermeable membrane of polymer ampholyte

Country Status (1)

Country Link
JP (1) JPS63283707A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1924334A4 (en) * 2005-09-13 2009-11-11 Rasirc Method of producing high purity steam
US8926731B2 (en) 2005-09-13 2015-01-06 Rasirc Methods and devices for producing high purity steam
JP4911417B2 (en) * 2009-05-20 2012-04-04 独立行政法人産業技術総合研究所 Hollow fiber carbon membrane introduced with metal ions and dehydration method of aqueous alcohol solution using the same
JP2014159023A (en) * 2013-01-25 2014-09-04 Sumitomo Bakelite Co Ltd Pervaporation membrane and phenol concentration method
CN109180936A (en) * 2018-09-28 2019-01-11 天津市天缘电工材料股份有限公司 A kind of intrinsic black polyamide thin film and preparation method thereof and purposes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814272A (en) * 1981-07-17 1983-01-27 Tokyo Electric Co Ltd On-line cash register device
JPS5814242A (en) * 1981-07-20 1983-01-27 Fujitsu Ltd Japanese language input device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814272A (en) * 1981-07-17 1983-01-27 Tokyo Electric Co Ltd On-line cash register device
JPS5814242A (en) * 1981-07-20 1983-01-27 Fujitsu Ltd Japanese language input device

Also Published As

Publication number Publication date
JPS63283707A (en) 1988-11-21

Similar Documents

Publication Publication Date Title
JP2694341B2 (en) Improved oxidation resistant film and method of manufacturing the same
US6325218B1 (en) Polyion complex separation membrane with a double structure
JPH0568292B2 (en)
JPH0516291B2 (en)
JP2984716B2 (en) Aromatic separation membrane
JPH0790152B2 (en) Composite reverse osmosis membrane
JPH0516290B2 (en)
JPH0910565A (en) Semipermeable composite membrane
JP2900184B2 (en) Aromatic copolymer separation membrane
JPH0214725A (en) Hollow yarn composite membrane for separation of organic material
CN114749035B (en) Low-pressure large-flux hollow fiber nanofiltration membrane, and preparation method and application thereof
US5221482A (en) Polyparabanic acid membrane for selective separation
JPH0427893B2 (en)
JPS63182005A (en) Polyion complex separation membrane
JPH0559777B2 (en)
JPH0910566A (en) Semipermeable composite membrane
JPH0589B2 (en)
JPH0220290B2 (en)
JP2942787B2 (en) Composite membrane and method for separating liquid mixture using the same
JP3114985B2 (en) Separation membrane for water-soluble organic substances
JPH0516289B2 (en)
JPS5934163B2 (en) Method for separating organic substances with carboxylic acid groups
JPH0567331B2 (en)
JPH01299606A (en) Separation film for pervaporation
JPS595145B2 (en) Sentaku Ukasei Makuyouno Soseibutsu

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term