Nothing Special   »   [go: up one dir, main page]

JPH0566497B2 - - Google Patents

Info

Publication number
JPH0566497B2
JPH0566497B2 JP61054033A JP5403386A JPH0566497B2 JP H0566497 B2 JPH0566497 B2 JP H0566497B2 JP 61054033 A JP61054033 A JP 61054033A JP 5403386 A JP5403386 A JP 5403386A JP H0566497 B2 JPH0566497 B2 JP H0566497B2
Authority
JP
Japan
Prior art keywords
temperature
cycle
defrosting
time
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61054033A
Other languages
Japanese (ja)
Other versions
JPS62213636A (en
Inventor
Takashi Deguchi
Kenichiro Miura
Tsutomu Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61054033A priority Critical patent/JPS62213636A/en
Publication of JPS62213636A publication Critical patent/JPS62213636A/en
Publication of JPH0566497B2 publication Critical patent/JPH0566497B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式空気調
和機の除霜制御装置に関するもので、特に室外側
熱交換器の着霜を室内側で検知し得るようにした
空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting control device for a separate heat pump type air conditioner. Regarding air conditioners.

従来の技術 従来、特公昭59−34255号公報に示されるよう
に、室内側熱交換器の温度変化と室内温度の変化
の両者に基づいて室外側熱交換器への着霜状態を
検知し、暖房運転と除霜運転を制御する技術が開
発されている。
Prior Art Conventionally, as shown in Japanese Patent Publication No. 59-34255, the state of frost on an outdoor heat exchanger is detected based on both the temperature change of the indoor heat exchanger and the indoor temperature change. Technologies have been developed to control heating and defrosting operations.

発明が解決しようとする問題点 しかしながら、かかる従来の構成は、温度検出
素子が複数必要となり、自と回路が複雑化する問
題がある。さらに、空気調和機においては、室内
側の送風量が任意に可変設定されることが常であ
り、そのためにも従来の技術に風量補正手段を加
味させることは、一層回路を複雑化にしてしま
う。しかも、かかる構成は熱交換器を流れている
途中の気液混合冷媒温度を検出しているため、着
霜時と未着霜時の温度変化が小さく、微小な範囲
で着霜判定を行わなければならず、検出精度が安
定しない問題がある。
Problems to be Solved by the Invention However, such a conventional configuration requires a plurality of temperature detection elements, and has the problem of complicating the circuit itself. Furthermore, in air conditioners, the amount of air blown inside the room is usually variably set arbitrarily, and for this reason, adding an air amount correction means to the conventional technology would further complicate the circuit. . Moreover, since this configuration detects the temperature of the gas-liquid mixed refrigerant flowing through the heat exchanger, the temperature change between frost and non-frost is small, and frost formation must be determined within a minute range. However, there is a problem that the detection accuracy is unstable.

また近年、マイクロコンピユータにて複雑な信
号処理を行わせ、制御装置を構成することが多い
が、従来技術のように入力信号源(温度検出素
子)が多いことは、そのプログラム作成に当つて
も弊害のもとであり、プログラムの簡素化にも限
界がある。
In addition, in recent years, control devices are often configured by using microcomputers to perform complex signal processing, but the fact that there are many input signal sources (temperature detection elements) as in conventional technology makes it difficult to create programs. This is a source of negative effects, and there are limits to the simplification of programs.

以上のように、従来の技術には問題点が多々あ
り、改善が要求されるものである。
As described above, the conventional technology has many problems, and improvements are required.

本発明は、上記従来の問題点に鑑み、従来技術
の利点を損うことなく、構成の簡素化がはかれる
除霜制御装置を提供するものである。
In view of the above-mentioned conventional problems, the present invention provides a defrosting control device that can be simplified in configuration without sacrificing the advantages of the prior art.

問題点を解決するための手段 上記問題点を解決するために本発明は、第1図
に示すように冷凍サイクルを暖房サイクルから除
霜サイクルに制御する制御装置を、暖房運転開始
からの時間を計測する時間計測手段と、あらかじ
め設定された時間を記憶している設定時間記憶手
段と、前記時間計測手段により検出した時間と前
記設定時間記憶手段に設定された時間の一致を検
出し出力する第1の比較手段と、前記室内側熱交
換器の冷媒入口側に連結された配管の温度を検出
する温度検出手段と、暖房サイクルを除霜サイク
ルに切換える境界値温度を記憶した設定温度記憶
手段と、前記温度検出手段により検出した温度が
前記設定温度記憶手段に記憶された境界値温度よ
り低下したことを検出し出力する第2の比較手段
と、電源電流を検出する電流検出手段と、暖房サ
イクルを除霜サイクルに切換える境界値電流を記
憶した設定電流記憶手段と、前記電流検出手段に
より検出した電流が、前記設定電流記憶手段に記
憶された境界値電流より低下したことを検出し、
出力する第3の比較手段と、前記第1の比較手段
による設定時間経過信号と前記第2の比較手段に
よる境界値低下信号或いは前記第1の比較手段に
よる設定時間経過信号と前記第3の比較手段によ
る境界値低下信号により、暖房サイクルから除霜
サイクルへの切換えを判定する判定手段と、前記
判定手段の出力に応じて前記冷凍サイクルを暖房
運転から除霜運転へ制御する選択出力手段より構
成したものである。
Means for Solving the Problems In order to solve the above problems, the present invention, as shown in FIG. A time measuring means for measuring a time, a set time storing means for storing a preset time, and a second time measuring means for detecting and outputting a match between the time detected by the time measuring means and the time set in the set time storing means. 1, a temperature detection means for detecting the temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger, and a set temperature storage means for storing a boundary value temperature for switching a heating cycle to a defrosting cycle. , second comparison means for detecting and outputting that the temperature detected by the temperature detection means has fallen below the boundary value temperature stored in the set temperature storage means; a current detection means for detecting a power supply current; and a heating cycle. a set current storage means storing a boundary value current for switching to a defrosting cycle; and detecting that the current detected by the current detection means has decreased from the boundary value current stored in the set current storage means;
a third comparing means to output, and a comparison between a set time elapsed signal by the first comparing means and a boundary value decrease signal by the second comparing means or a set time elapsed signal from the first comparing means and the third comparison means; The apparatus is comprised of a determination means for determining switching from a heating cycle to a defrosting cycle based on a boundary value decrease signal from the means, and a selection output means for controlling the refrigeration cycle from heating operation to defrosting operation in accordance with the output of the determination means. This is what I did.

作 用 この構成により、暖房運転開始から所定時間が
経過するまでは暖房運転が確保され、その所定時
間経過後において温度検出手段の検出温度或いは
電流検出手段の検出電流により、除霜運転が制御
される。
Effect: With this configuration, the heating operation is ensured until a predetermined time has elapsed from the start of the heating operation, and after the elapse of the predetermined time, the defrosting operation is controlled by the temperature detected by the temperature detection means or the current detected by the current detection means. Ru.

実施例 以下、本発明の一実施例を第2図〜第6図を参
照にして説明する。第2図は、本発明の一実施例
を示す冷凍サイクル図である。同図において、冷
凍サイクルは圧縮機1、四方切換弁2、室内側熱
交換器3、減圧器4、室外側熱交換器5を順次連
結することにより構成されている。6は配管温度
検出素子であり、暖房時において室内側熱交換器
3(凝縮器)の冷媒入口側となる配管に取り付け
られている。この場合、冷房運転時は同図の実線
矢印の方向に冷媒が流れ、暖房運転時には四方切
換弁2が切換わることにより同図の破線矢印の方
向に冷媒が流れるようになつている。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 2 to 6. FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention. In the figure, the refrigeration cycle is constructed by sequentially connecting a compressor 1, a four-way switching valve 2, an indoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5. Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 (condenser) during heating. In this case, during cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during heating operation, the four-way switching valve 2 is switched so that the refrigerant flows in the direction of the broken line arrow in the figure.

さらに、上記圧縮機1、四方切換弁2、減圧器
4、室外側熱交換器5および室外送風機8によつ
て室外ユニツトAが構成されている。また上記室
内側熱交換器3および室内送風機7、さらに配管
温度検出素子6、電源電流を検出する電流検出素
子9、タイマ機能および温度調節機能などがプロ
グラムされたマイクロコンピユータ(以下、マイ
コンと略称する)を有する運転制御部(図示せ
ず)は室内ユニツトBに設けられている。ここ
で、配管温度検出素子6は、室内送風機7の送風
の影響を受けない風回路からはずれた箇所に取付
けられている。また、室内ユニツトBの近辺でも
よい。
Further, the compressor 1, the four-way switching valve 2, the pressure reducer 4, the outdoor heat exchanger 5, and the outdoor blower 8 constitute an outdoor unit A. In addition, a microcomputer (hereinafter abbreviated as microcomputer) is programmed with the indoor heat exchanger 3 and the indoor blower 7, a pipe temperature detection element 6, a current detection element 9 that detects the power supply current, a timer function, a temperature control function, etc. ) is provided in indoor unit B (not shown). Here, the pipe temperature detection element 6 is attached at a location away from the wind circuit where it is not affected by the air blowing from the indoor blower 7. Alternatively, the location may be near indoor unit B.

第3図は運転制御部における主要回路図であ
る。同図において、マイコン11内には運転時間
を判定するタイムカウント値を記憶する記憶部1
2、この記憶部12に記憶されたタイムカウント
値と入力値との比較により適宜出力信号を発生す
る駆動信号発生手段13を有している。このマイ
コン11の入力側にはコンパレータ14を介して
温度検出手段である配管温度検出素子6(例えば
配管サーミスタあるいは熱電対素子等)と必要に
応じて抵抗値が変えられる温度設定用抵抗15,
16,17と、コンパレータ18を介して電流検
出手段である電流検出素子9(例えば電流変成
器)と電流値を電圧値に変換する電流−電圧変換
回路21と必要に応じて抵抗値が変えられる電流
設定用抵抗19,20が接続されている。また出
力側には、スイツチ用トランジスタTR1〜TR4
介して駆動手段である四方切換弁コイルを駆動す
るリレーR1、室内送風機7を駆動するリレーR2
室外送風機8を駆動するリレーR3、圧縮機1を
駆動するリレーR4が接続されている。
FIG. 3 is a main circuit diagram of the operation control section. In the same figure, a storage unit 1 that stores a time count value for determining operating time is included in a microcomputer 11.
2. It has a drive signal generating means 13 which generates an appropriate output signal by comparing the time count value stored in the storage section 12 with the input value. On the input side of this microcomputer 11, via a comparator 14, a piping temperature detection element 6 (for example, a piping thermistor or thermocouple element, etc.) serving as a temperature detection means, and a temperature setting resistor 15 whose resistance value can be changed as necessary.
16, 17, a current detection element 9 (for example, a current transformer) which is a current detection means via a comparator 18, a current-voltage conversion circuit 21 which converts a current value into a voltage value, and the resistance value can be changed as necessary. Current setting resistors 19 and 20 are connected. Furthermore, on the output side, there are a relay R 1 that drives a four-way switching valve coil, which is a driving means, via the switch transistors TR 1 to TR 4 , a relay R 2 that drives the indoor blower 7,
A relay R 3 that drives the outdoor blower 8 and a relay R 4 that drives the compressor 1 are connected.

ここで、第3図の構成と第1図の構成を対比す
ると、配管温度検出素子6および抵抗15は第1
図の温度検出手段に相当し、コンパレータ14は
第1図の第2の比較手段に相当し、抵抗16,1
7と配管温度検出素子6によつて作られる電圧は
第1図の設定温度記憶手段の信号に相当し、電流
検出素子9及び電流電圧変換回路21は第1図の
電流検出手段に相当し、コンパレータ18は第1
図の第3の比較手段に相当し、抵抗19,20に
よつて作られる電圧は第1図の設定電流記憶手段
の信号に相当し、記憶部12を含むマイコン11
は第1図の設定時間記憶手段、時間計測手段、第
1の比較手段、判定手段、選択出力手段に相当
し、中でも駆動信号発生手段13は判定手段、選
択出力手段に相当する。
Here, when comparing the configuration of FIG. 3 with the configuration of FIG. 1, the piping temperature detection element 6 and the resistor 15 are
The comparator 14 corresponds to the second comparison means in FIG. 1, and the resistors 16, 1
The voltage generated by 7 and the pipe temperature detection element 6 corresponds to the signal of the set temperature storage means in FIG. 1, and the current detection element 9 and the current-voltage conversion circuit 21 correspond to the current detection means in FIG. Comparator 18 is the first
The voltage generated by the resistors 19 and 20 corresponds to the signal of the set current storage means shown in FIG.
corresponds to the set time storage means, time measurement means, first comparison means, determination means, and selection output means in FIG. 1, and among them, the drive signal generation means 13 corresponds to the determination means and selection output means.

次に、暖房運転の開始から除霜運転に至るまで
の動作について説明する。
Next, the operation from the start of heating operation to defrosting operation will be explained.

圧縮機1の吐出冷媒温度をTd、圧縮機1の吸
入冷媒温度をTs、圧縮機1の吐出圧力をPd、圧
縮機1の吸入圧力をPsとし、ポリトロープ指数
をn(ただし1<n<Kの関係で、Kは断熱圧縮
指数)とすると、吐出冷媒温度Tdは次式で表わ
される。(ただし配管による熱損) Td=Ts・(Pd/Ps)n−1/n したがつて、室外側熱交換器5が未着霜時は吸
入冷媒温度Tsが高く、又吐出冷媒温度Tdも高
い。そして外気が下がり、着霜が成長するにつれ
て、吸入冷媒温度Tsは低下し、吐出冷媒温度Td
も下がる。本発明における配管温度検出素子6
は、室内側熱交換器3の入口配管に設けられ、圧
縮機1から吐出された高温高圧の過熱域冷媒ガス
が流れる部分の温度を検出するが、実際その温度
は吐出ガスに比べて内外接続配管等での熱損失に
より所定温度低下した温度である。したがつて第
4図に示したように、室外側熱交換器5が未着霜
時は圧縮機1の吸入冷媒温度Ts、室内側熱交換
器3の入口配管温度tはともに高く、着霜が進む
につれて徐々に低下し、そして暖房能力を大幅に
低下させる着霜に至ると、室内側熱交換器3の入
口配管温度tは極端に低下する。また、空気調和
機の電源電流は、概ね、吐出冷媒温度Tdに比例
追随する値となり、第4図に示すように、配管温
度検出素子6の検出温度に概ね追随した値とな
る。
The discharge refrigerant temperature of compressor 1 is Td, the suction refrigerant temperature of compressor 1 is Ts, the discharge pressure of compressor 1 is Pd, the suction pressure of compressor 1 is Ps, and the polytropic index is n (where 1<n<K In the relationship, K is the adiabatic compression index), then the discharge refrigerant temperature Td is expressed by the following equation. (However, heat loss due to piping) Td=Ts・(Pd/Ps)n-1/n Therefore, when the outdoor heat exchanger 5 is not frosted, the suction refrigerant temperature Ts is high, and the discharge refrigerant temperature Td is also high. expensive. As the outside air drops and frost grows, the suction refrigerant temperature Ts decreases and the discharge refrigerant temperature Td
It also goes down. Piping temperature detection element 6 in the present invention
is installed in the inlet pipe of the indoor heat exchanger 3, and detects the temperature of the part through which the high-temperature, high-pressure superheated refrigerant gas discharged from the compressor 1 flows, but the temperature is actually lower than that of the discharged gas. This is the temperature that has decreased by a predetermined temperature due to heat loss in piping, etc. Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 is not frosted, both the suction refrigerant temperature Ts of the compressor 1 and the inlet piping temperature t of the indoor heat exchanger 3 are high; As the temperature progresses, the temperature t of the inlet pipe of the indoor heat exchanger 3 gradually decreases, and when frost formation occurs which significantly reduces the heating capacity, the temperature t of the inlet pipe of the indoor heat exchanger 3 decreases extremely. Further, the power supply current of the air conditioner generally has a value that proportionally follows the discharge refrigerant temperature Td, and as shown in FIG. 4, has a value that approximately follows the temperature detected by the pipe temperature detection element 6.

しかし、空気調和機の冷凍サイクルに於ける冷
媒量が減少した場合には相対的に低い電流値とな
る傾向がある。すなわち、入口配管温度tが設定
配管温度t1以下になるか、或いは電流値Iが設定
電流I1以下になれば暖房能力は低下し、着霜が進
んでいるので除霜する必要がある。このように、
室内側熱交換器3の入口配管温度tは、過熱域冷
媒ガスの温度であるため、室内送風機7の風量の
影響を受けにくく、室内側熱交換器3の入口配管
温度、又は電流値にて適確な除霜運転の判断を行
うことができる。
However, when the amount of refrigerant in the refrigeration cycle of an air conditioner decreases, the current value tends to be relatively low. That is, if the inlet pipe temperature t becomes less than the set pipe temperature t 1 or the current value I becomes less than the set current I 1 , the heating capacity decreases, and since frost formation has progressed, it is necessary to defrost. in this way,
Since the inlet pipe temperature t of the indoor heat exchanger 3 is the temperature of the refrigerant gas in the superheated region, it is not easily affected by the air volume of the indoor blower 7, and is determined by the inlet pipe temperature of the indoor heat exchanger 3 or the current value. Appropriate defrosting operation decisions can be made.

次に冷凍サイクル内の冷媒量が、不足した場合
及び、長期間使用により徐々に洩れた場合の挙動
につき、第6図を用いて説明する。
Next, the behavior when the amount of refrigerant in the refrigeration cycle is insufficient or when it gradually leaks due to long-term use will be explained using FIG. 6.

以上の説明に基づき、第3図に示す制御回路は
第5図に示すフローチヤートの内容の制御を行
う。
Based on the above explanation, the control circuit shown in FIG. 3 controls the contents of the flowchart shown in FIG. 5.

定常の冷媒量に対して、冷媒量が不足すると、
公知のごとく冷凍サイクル内での冷媒循環量が減
少することとなり、圧縮機から吐出される冷媒の
温度は上昇し、又同様に吸入冷媒温度が上昇す
る。一方、当然冷凍サイクルでは圧力が低下する
こととなり、蒸発器での冷媒温度も圧力低下に伴
つて下降することとなり、外気との熱交換により
暖房運転時は定常の冷媒量運転時より着霜が進む
こととなる。一方運転電流は冷媒循環量が減少す
ることにより、高圧が下がりかつ高圧と低圧の圧
力差が小さくなり圧縮機の仕事量が減少すること
となり、定常運転に比較し減少する。
When the amount of refrigerant is insufficient compared to the steady amount of refrigerant,
As is well known, the amount of refrigerant circulated within the refrigeration cycle decreases, the temperature of the refrigerant discharged from the compressor rises, and the temperature of the refrigerant sucked rises as well. On the other hand, naturally, the pressure in the refrigeration cycle decreases, and the refrigerant temperature in the evaporator also decreases as the pressure decreases, and due to heat exchange with the outside air, frost formation occurs during heating operation compared to when operating with a steady amount of refrigerant. We will move on. On the other hand, the operating current decreases compared to steady operation because the amount of refrigerant circulation decreases, the high pressure decreases, the pressure difference between the high pressure and the low pressure becomes smaller, and the amount of work of the compressor decreases.

従つて圧縮機1の吸入冷媒温度Ts、室内側熱
交換器の入口配管温度t、電源電流値Iは、第4
図の状態と比較してそれぞれ、上昇、上昇、低下
傾向となる。
Therefore, the suction refrigerant temperature Ts of the compressor 1, the inlet pipe temperature t of the indoor heat exchanger, and the power supply current value I are
Compared to the state shown in the figure, there is an upward trend, an upward trend, and a downward trend, respectively.

従つて除霜開始判定条件が、室内側熱交換器の
入口配管温度tの値のみであると、冷媒量不足の
場合は、着霜が進行しても除霜動作に入らないこ
ととなる。
Therefore, if the defrosting start determination condition is only the value of the inlet pipe temperature t of the indoor heat exchanger, if the amount of refrigerant is insufficient, the defrosting operation will not start even if frosting progresses.

ここで電源電流値Iの判定点I1を適切に設定す
ることにより、このような場合にも適切な除霜動
作を行うことができる。
By appropriately setting the determination point I 1 of the power supply current value I, an appropriate defrosting operation can be performed even in such a case.

すなわち、第5図のステツプ1で示すように暖
房運転が開始されると、マイコン11で所定時間
Tのタイマーカウントがセツトされる(ステツプ
2)。このタイマーカウントセツトは、暖房運転
開始からT時間(例えば1時間)暖房運転を確保
するためのもので、例えば強制的にT時間暖房を
連続することも一つの手段である。
That is, when the heating operation is started as shown in step 1 in FIG. 5, a timer count for a predetermined time T is set in the microcomputer 11 (step 2). This timer count set is for ensuring heating operation for T hours (for example, 1 hour) from the start of heating operation. For example, one means is to forcibly continue heating for T hours.

そしてタイマーカウントがセツトされると、ス
テツプ3でT時間経過が判定される。T時間経過
するまでは暖房運転が継続される。
After the timer count is set, in step 3 it is determined whether time T has elapsed. Heating operation continues until T time elapses.

そしてT時間が経過するとステツプ4へ移り、
配管温度検出素子6による配管温度tの読み込み
が行われ、ステツプ5に移つて配管温度tが設定
配管温度t1よりも低いかどうかが判定される。具
体的には第3図のコンパレータ14が判定する。
Then, when time T has elapsed, the process moves to step 4.
The pipe temperature t is read by the pipe temperature detection element 6, and the process moves to step 5, where it is determined whether the pipe temperature t is lower than the set pipe temperature t1 . Specifically, the comparator 14 in FIG. 3 makes the determination.

ステツプ5において配管温度tが設定温度t1
りも高い場合にはステツプ6に移つて電流値Iが
設定電流値I1よりも低いかどうかが判定される。
具体的には第3図のコンパレータ18が判定す
る。
If the pipe temperature t is higher than the set temperature t1 in step 5, the process moves to step 6, where it is determined whether the current value I is lower than the set current value I1 .
Specifically, the comparator 18 shown in FIG. 3 makes the determination.

そしてステツプ5又はステツプ7の条件が満足
されるとステツプ8へ移り、除霜運転が開始され
る。すなわち、第3図のトランジスタTR1
TR2,TR3,TR4がそれぞれ動作し、四方切換弁
2を切換え、必要に応じてその前に圧縮機1を一
定時間停止し、室内送風機7および室外送風機8
を停止する。そして冷房サイクルにて除霜を行
う。この除霜運転の内容は従来周知のため、詳細
な説明を省略する。また暖房運転の復帰について
も従来より周知の如く、適宜手段にて実施でき
る。
When the conditions of step 5 or step 7 are satisfied, the process moves to step 8 and defrosting operation is started. That is, the transistor TR 1 in FIG.
TR 2 , TR 3 , and TR 4 each operate to switch the four-way switching valve 2, and if necessary, before that, the compressor 1 is stopped for a certain period of time, and the indoor blower 7 and outdoor blower 8 are switched on.
stop. Defrost is then performed in the cooling cycle. Since the content of this defrosting operation is conventionally well known, detailed explanation will be omitted. Further, the restoration of the heating operation can be carried out by any suitable means as is well known in the art.

なお、本実施例においては、除霜運転を暖房サ
イクルから冷房サイクルへの切換えによつて行う
ようにしたが、例えば暖房サイクルを維持したま
まとして室外側熱交換器へ別途蓄熱していた冷媒
を流す構成あるいは、別熱源にて霜を溶かす構成
としてもよいことは言うまでもない。また圧縮機
1は除霜運転へ切換え時には連続運転とし、暖房
運転復帰前に一時停止させるようにしてもよい。
In this embodiment, the defrosting operation is performed by switching from the heating cycle to the cooling cycle. It goes without saying that a configuration in which the frost is allowed to flow or a configuration in which a separate heat source is used to melt the frost may also be used. Further, the compressor 1 may be operated continuously when switching to defrosting operation, and may be temporarily stopped before returning to heating operation.

発明の効果 以上述べたように本発明によれば、上記した構
成により、過熱域冷媒ガスの温度を室内側熱交換
器入口配管にて検出し、また電源電流を検出し、
室内風量の影響をあまり受けずに、適確な除霜運
転を温度検出1点又は電流検出1点で行うことが
でき、構成が非常に簡単であり、また冷媒が暖房
を行う熱量を十分に有しているか否かの判定が室
内側熱交換器の入口側で行えるため、実際の暖房
能力の有無を確実に判断して除霜を行うことがで
きる。また冷凍サイクルの冷媒が不足している場
合は電流により適確な除霜を行うことができる。
すなわち、本発明は完全に着霜が発生している冷
媒の温度が熱交換器の入口部、中間部に差がな
く、未着霜時に入口冷媒温度の方が中間部の冷媒
温度に比べて著しく高い点と入口冷媒温度と電源
電流との比例関係に着眼し、入口側の冷媒温度及
び電源電流を検出することによつて、未着霜から
着霜に至るまでの温度変化及び電流変化が大きく
とれ、各1点の温度検出及び電源電流検出で限界
に近い暖房能力を引き出すことができる。また本
発明は暖房開始から一定時間経過するまで着霜を
検出しないため、その一定時間は暖房能力が確保
され、快適さが損われることもない。
Effects of the Invention As described above, according to the present invention, the temperature of the refrigerant gas in the superheated region is detected at the indoor heat exchanger inlet piping, and the power supply current is detected by the above-described configuration.
Accurate defrosting operation can be performed with one temperature detection point or one current detection point without being affected by the indoor air volume, the configuration is very simple, and the refrigerant has a sufficient amount of heat for heating. Since it can be determined on the inlet side of the indoor heat exchanger whether the heating capacity is present or not, defrosting can be performed by reliably determining the presence or absence of the actual heating capacity. In addition, if the refrigerant cycle is short of refrigerant, the current can be used to perform appropriate defrosting.
In other words, in the present invention, there is no difference in the temperature of the refrigerant at the inlet part and the middle part of the heat exchanger when frost has completely formed, and when no frost has formed, the inlet refrigerant temperature is higher than the refrigerant temperature in the middle part. By focusing on the proportional relationship between the extremely high point and the inlet refrigerant temperature and power supply current, and detecting the refrigerant temperature and power supply current on the inlet side, it is possible to detect temperature changes and current changes from non-frost to frost. The heating capacity is close to the limit by detecting temperature and power supply current at one point each. Furthermore, since the present invention does not detect frost formation until a certain period of time has elapsed from the start of heating, heating capacity is ensured during that certain period of time, and comfort is not impaired.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の除霜制御装置を機能実現手段
で表現したブロツク図、第2図は本発明の一実施
例を示す空気調和機の冷凍サイクル図、第3図は
同空気調和機における除霜制御装置の回路図、第
4図は同除霜制御装置における室内側熱交換器へ
流入する冷媒温度と圧縮機吸入冷媒温度と空気調
和機の電源電流の関係を示す特性図、第5図は同
除霜制御装置の動作内容を示すフローチヤート、
第6図は上記除霜制御装置における冷媒量不足の
場合の室内側熱交換器へ流入する冷媒温度と圧縮
機吸入冷媒温度と、空気調和機の電源電流の関係
を示す特性図である。 1……圧縮機、2……四方切換弁、3……室内
側熱交換器、4……減圧器、5……室外側熱交換
器、6……配管温度検出素子、7……室内送風
機、8……室外送風機、9……電流検出素子、1
1……マイクロコンピユータ、12……記憶部、
13……駆動信号発生手段、14,18……コン
パレータ、15,16,17……温度設定用抵
抗、19,20……電流設定用抵抗、21……電
流電圧変換回路、A……室外ユニツト、B……室
内ユニツト。
Fig. 1 is a block diagram expressing the defrosting control device of the present invention using function realizing means, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, and Fig. 3 is a diagram of the defrosting control device of the present invention. FIG. 4 is a circuit diagram of the defrosting control device, and FIG. The figure is a flowchart showing the operation details of the defrosting control device.
FIG. 6 is a characteristic diagram showing the relationship between the temperature of the refrigerant flowing into the indoor heat exchanger, the temperature of the refrigerant sucked into the compressor, and the power supply current of the air conditioner when the amount of refrigerant is insufficient in the defrosting control device. 1... Compressor, 2... Four-way switching valve, 3... Indoor heat exchanger, 4... Pressure reducer, 5... Outdoor heat exchanger, 6... Piping temperature detection element, 7... Indoor blower , 8... Outdoor blower, 9... Current detection element, 1
1...Microcomputer, 12...Storage unit,
13... Drive signal generation means, 14, 18... Comparator, 15, 16, 17... Temperature setting resistor, 19, 20... Current setting resistor, 21... Current voltage conversion circuit, A... Outdoor unit , B... Indoor unit.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、室内側熱交換器、減圧装置、室外側
熱交換器を具備した冷凍サイクルに、暖房サイク
ルと除霜サイクルを切換えるサイクル切換手段を
設け、さらに前記セイクル切換手段を暖房サイク
ルから除霜サイクルの切換える制御装置を、暖房
運転開始からの時間を計測する時間計測手段と、
あらかじめ設定された時間を記憶している設定時
間記憶手段と、前記時間計測手段により検出した
時間と前記設定時間記憶手段に設定された時間の
一致を検出し出力する第1の比較手段と、前記室
内側熱交換器の冷媒入口側に連結された配管のう
ち過熱域冷媒ガスが流れる部分の温度を検出する
温度検出手段と、暖房サイクルを除霜サイクルに
切換える境界値温度を記憶した設定温度記憶手段
と、前記温度検出手段により検出した温度が前記
設定温度記憶手段に記憶された境界値温度より低
下したことを検出し出力する第2の比較手段と、
電源電流を検出する電流検出手段と、暖房サイク
ルを除霜サイクルに切換える境界値電流を記憶し
た設定電流記憶手段と、前記電流検出手段により
検出した電流が、前記設定電流記憶手段に記憶さ
れた境界値電流より低下したことを検出し、出力
する第3の比較手段と、前記第1の比較手段によ
る設定時間経過信号と前記第2の比較手段による
境界値低下信号或は前記第1の比較手段による設
定時間経過信号と前記第3の比較手段による境界
値低下信号により、暖房サイクルから除霜サイク
ルへの切換えを判定する判定手段と、前記判定手
段の出力に応じて前記冷凍サイクルを暖房運転か
ら除霜運転へ制御する選択出力手段より構成した
空気調和機の除霜制御装置。
1. A refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger is provided with a cycle switching means for switching between a heating cycle and a defrosting cycle, and the cycle switching means switches from the heating cycle to the defrosting cycle. A control device for switching the cycle, a time measuring means for measuring time from the start of heating operation,
a set time storage means for storing a preset time; a first comparison means for detecting and outputting a match between the time detected by the time measurement means and the time set in the set time storage means; Temperature detection means for detecting the temperature of the part of the pipe connected to the refrigerant inlet side of the indoor heat exchanger through which superheated refrigerant gas flows, and a set temperature memory that stores the boundary value temperature for switching the heating cycle to the defrosting cycle. and second comparison means for detecting and outputting that the temperature detected by the temperature detection means has fallen below the boundary value temperature stored in the set temperature storage means;
current detection means for detecting a power supply current; set current storage means for storing a boundary value current for switching a heating cycle to a defrosting cycle; a third comparing means for detecting and outputting a drop below the current value, a set time elapsed signal from the first comparing means and a boundary value drop signal from the second comparing means, or the first comparing means; determining means for determining whether to switch from the heating cycle to the defrosting cycle based on the set time elapsed signal and the boundary value drop signal from the third comparison means; A defrosting control device for an air conditioner comprising selection output means for controlling defrosting operation.
JP61054033A 1986-03-12 1986-03-12 Defrost control device for air conditioner Granted JPS62213636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61054033A JPS62213636A (en) 1986-03-12 1986-03-12 Defrost control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61054033A JPS62213636A (en) 1986-03-12 1986-03-12 Defrost control device for air conditioner

Publications (2)

Publication Number Publication Date
JPS62213636A JPS62213636A (en) 1987-09-19
JPH0566497B2 true JPH0566497B2 (en) 1993-09-21

Family

ID=12959275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61054033A Granted JPS62213636A (en) 1986-03-12 1986-03-12 Defrost control device for air conditioner

Country Status (1)

Country Link
JP (1) JPS62213636A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104180571B (en) * 2014-08-25 2016-11-09 广东美的集团芜湖制冷设备有限公司 The defrosting control method of air-conditioner, the defrosting of air-conditioner control device and air-conditioner

Also Published As

Publication number Publication date
JPS62213636A (en) 1987-09-19

Similar Documents

Publication Publication Date Title
JPH0615932B2 (en) Defrost control device for air conditioner
JPS62218748A (en) Defrosting controller for air-conditioning machine
JPS62261845A (en) Defrosting controller for air-conditioning machine
JPH0566497B2 (en)
JPH0566498B2 (en)
JPS62210336A (en) Control device for defrosting of air-conditioning machine
JPH0566489B2 (en)
JPH067020B2 (en) Defrost control device for air conditioner
JPH0583819B2 (en)
JPH0566496B2 (en)
JPH081324B2 (en) Defrost control device for air conditioner
JPH0566490B2 (en)
JPH0566488B2 (en)
JPH0454858B2 (en)
JPH07117270B2 (en) Defrost control device for air conditioner
JPH0566491B2 (en)
JPS63189731A (en) Defrosting controller of air conditioner
JPH0566494B2 (en)
JPH065133B2 (en) Defrost control device for air conditioner
JPS62223551A (en) Defrosting control unit of air conditioner
JPS62223548A (en) Defrosting control unit of air conditioner
JPS62213637A (en) Defrost control device for air conditioner
JPH07117271B2 (en) Defrost control device for air conditioner
JPS62218750A (en) Defrosting controller for air-conditioning machine
JPS62210341A (en) Control device for defrosting of air-conditioning machine