Nothing Special   »   [go: up one dir, main page]

JPH0565502A - Method for granulating tantalum powder - Google Patents

Method for granulating tantalum powder

Info

Publication number
JPH0565502A
JPH0565502A JP3128474A JP12847491A JPH0565502A JP H0565502 A JPH0565502 A JP H0565502A JP 3128474 A JP3128474 A JP 3128474A JP 12847491 A JP12847491 A JP 12847491A JP H0565502 A JPH0565502 A JP H0565502A
Authority
JP
Japan
Prior art keywords
powder
binder
granulation
granulated
tantalum powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3128474A
Other languages
Japanese (ja)
Other versions
JP3105294B2 (en
Inventor
Yoshikazu Noguchi
佳和 野口
Kanichi Nakamura
勘一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA KIYABOTSUTO SUUPAA METAL
SHOWA KIYABOTSUTO SUUPAA METAL KK
Original Assignee
SHOWA KIYABOTSUTO SUUPAA METAL
SHOWA KIYABOTSUTO SUUPAA METAL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA KIYABOTSUTO SUUPAA METAL, SHOWA KIYABOTSUTO SUUPAA METAL KK filed Critical SHOWA KIYABOTSUTO SUUPAA METAL
Priority to JP03128474A priority Critical patent/JP3105294B2/en
Publication of JPH0565502A publication Critical patent/JPH0565502A/en
Application granted granted Critical
Publication of JP3105294B2 publication Critical patent/JP3105294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the tantalum powder having a low carbon content and a good flow property at a good yield. CONSTITUTION:A fluidized bed type granulating machine is used and the powder is first granulated by using an inorg. binder as a binder. The powder is then granulated by using an org. binder. The Ta powder having an adequate grain size distribution and the low carbon content is obtd. in this way and, therefore, this powder is optimum as the powder for sintered tantalum capacitors.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はタンタル粉に係わり、特
に電解コンデンサー材料として有用なタンタル粉末の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to tantalum powder, and more particularly to a method for producing tantalum powder useful as a material for electrolytic capacitors.

【0002】[0002]

【従来の技術】金属タンタルの電解酸化被膜は誘電率が
高いことからコンデンサー用電極として多用されてい
る。コンデンサー用の金属タンタルは通常フッ化タンタ
ル酸カリウム(K2 TaF7 )をナトリウム(Na)で
還元する方法で製造し、いくつかの化学処理および熱処
理を経て精製した粉末を得ている。コンデンサー用タン
タル粉末はその個々の粒子が凹凸に富んだ複雑な外形を
有すると同時に、極めて多孔質な海綿状を呈しており実
効表面積は外見よりもはるかに大きい。さらに大きな表
面積が要求されることから、粉末の粒径は細かい方が良
いとされている。得られたタンタル粉末を圧縮成型して
ペレットとし、高真空中において1400℃以上の高温
度で熱処理して多孔質の焼結体となして、これに化成処
理を施して酸化被膜を形成してコンデンサー陽極として
いる。
2. Description of the Related Art An electrolytic oxide film of metal tantalum has a high dielectric constant and is widely used as a capacitor electrode. Metallic tantalum for capacitors is usually manufactured by a method of reducing potassium fluorotantalate (K 2 TaF 7 ) with sodium (Na), and a powder purified through several chemical treatments and heat treatments is obtained. The tantalum powder for capacitors has a complex outer shape in which the individual particles are rich in irregularities and, at the same time, has an extremely porous sponge-like shape, and the effective surface area is much larger than it looks. Since a larger surface area is required, it is said that the powder should have a fine particle size. The obtained tantalum powder is compression molded into pellets, heat-treated in a high vacuum at a high temperature of 1400 ° C. or higher to form a porous sintered body, which is subjected to chemical conversion treatment to form an oxide film. It is used as a capacitor anode.

【0003】ペレットを成型するためにダイスに充填す
る際に粉末の流動性が問題となるため、流動性の良い粉
末が要求されている。この問題を解決するために、従来
次の手段が用いられている。 熱処理後250メッシュの篩で篩分けを行い、250
メッシュ以下の粉末を再熱処理した後、250メッシュ
以上の粉末をブレンドする方法(USP401730
2)。 熱処理後篩で篩分けを行い、粗粒側の粉末のみを使用
する方法(USP4968481)。 スプレードライなど造粒機を用いて、微粉を造粒して
粗粒とする方法。バインダーとしては、PVA,PVB
等の有機バインダーを使用する(特開平2−3470
1)。
Since the flowability of the powder becomes a problem when it is filled in a die for molding the pellets, a powder having good flowability is required. To solve this problem, the following means have been conventionally used. After heat treatment, sieve with a 250 mesh sieve
A method of re-heat-treating powder of mesh or less and then blending powder of 250 mesh or more (USP401730)
2). After heat treatment, sieving is performed with a sieve, and only the powder on the coarse grain side is used (USP4968481). A method of granulating fine powder into coarse particles using a granulator such as spray drying. As the binder, PVA, PVB
And other organic binders are used (JP-A-2-3470).
1).

【0004】[0004]

【発明が解決しようとする課題】従来技術は、次のよう
な問題点を抱えている。 熱処理後250メッシュの篩で篩分けを行い、250
メッシュ以下の粉末を再熱処理した後、250メッシュ
以上の粉末をブレンドする方法においては、325メッ
シュ以下の粉末の割合が5〜10%程度しか減少せず、
効果が不十分である。 熱処理後325メッシュの篩で篩分けを行い、325
メッシュ以上の粉末のみを使用する方法において、収率
が悪化するためにコストアップとなる。 有機バインダーを使用して造粒機で造粒する方法で
は、造粒後に脱バインダー工程を入れたとしても粉末中
のカーボン濃度が通常の4〜6倍になってしまって、電
気特性、特に漏れ電流が悪化してしまう。粉末中のカー
ボン濃度が40ppm を超えると、コンデンサーにしたと
きの電気特性、特に漏れ電流に悪影響を及ぼすことが知
られている。したがって、カーボン濃度は40ppm 以下
に抑える必要がある。カーボン濃度を低く抑えるには有
機バインダーの使用は好ましくない。しかし、水等をバ
インダーとして使用した場合には乾燥した時点で造粒が
崩れてしまう欠点がある。
The prior art has the following problems. After heat treatment, sieve with a 250 mesh sieve
In the method of blending the powder of 250 mesh or more after re-heat-treating the powder of mesh or less, the ratio of the powder of 325 mesh or less decreases only about 5-10%,
The effect is insufficient. After heat treatment, sieving is performed with a 325-mesh sieve to obtain 325
In the method using only powder of mesh or more, the yield is deteriorated, resulting in cost increase. In the method of granulating with an organic binder using a granulator, the carbon concentration in the powder becomes 4 to 6 times the normal level even if a debinding step is performed after granulation, and electrical characteristics, especially leakage The current gets worse. It is known that if the carbon concentration in the powder exceeds 40 ppm, the electrical characteristics of the capacitor, especially the leakage current, are adversely affected. Therefore, it is necessary to keep the carbon concentration below 40 ppm. The use of organic binders is not preferred to keep the carbon concentration low. However, when water or the like is used as a binder, there is a drawback that the granulation collapses when dried.

【0005】また、スプレードライヤーは造粒しようと
する粉末に50μm以上の粒径の粉末が入っていると造
粒できなくなり、転動式の造粒機では粉末(タンタル粉
末はポーラスな凝集粒を形成している)が粉砕されて微
細化してしまうため緻密な造粒粉末ができて造粒後の粉
末をペレットにした場合の成型体強度(以下GSと略
す)が減少する欠点もある。さらに、圧縮成型工程に移
る過程で適度な粒径を保ち、流動性の良い粗粒であるこ
とが望まれる。従来の造粒方法ではこれらの点において
も十分な特性のタンタル粉末は得られていない。
Further, the spray dryer cannot granulate if the powder to be granulated contains a powder having a particle size of 50 μm or more, and the powder can be granulated by the tumbling granulator (tantalum powder forms porous agglomerated particles). Since it has been pulverized and becomes finer, a dense granulated powder is formed, and the strength of the molded body (hereinafter abbreviated as GS) when the powder after granulation is made into pellets also has a drawback. Further, it is desired that the coarse particles have good fluidity while maintaining an appropriate particle diameter in the process of moving to the compression molding step. The conventional granulation method has not obtained tantalum powder having sufficient characteristics in these respects.

【0006】造粒の度合を表す指標として、325メッ
シュ以下(以下−325#と略す)の粉末の割合および
FR(JIS2504に準じた測定方法において、1秒
間に流れ落ちる粉末のグラム数)という値が良く用いら
れる。−325#の粉末の割合が不適当だと、流動性が
悪くなる(FRが大きくなる)ため、−325#粉末の
割合は重要である。
[0006] As an index showing the degree of granulation, the ratio of powder of 325 mesh or less (hereinafter abbreviated as -325 #) and the value of FR (the number of grams of powder flowing down in one second in the measuring method according to JIS2504) are used. Often used. The proportion of the -325 # powder is important because if the proportion of the -325 # powder is unsuitable, the fluidity becomes poor (FR becomes large).

【0007】現在、振動を与えなくてもホッパーから流
れ落ちる程度の流動性が要求されているのであるが、そ
のためにはFRは0.8以上であることが必要であり、
そのためには、−325#の割合が25%以下となる必
要がある。また、成型体強度GSは1.0gの粉末を使
用して作成した6mm×7.9mm,プレス体密度4.5g
/ccのペレットの圧壊強度で表すが、GSが4Kg以下で
あるとペレットが壊れる場合があるため、GSは4kg以
上必要である。本発明の目的は、上記のような特性を有
するタンタル粉末を収率良く得ることである。
At present, it is required that the fluidity be such that it flows down from the hopper without applying vibration. For that purpose, FR must be 0.8 or more,
For that purpose, the ratio of −325 # needs to be 25% or less. Also, the molded body strength GS is 6 mm × 7.9 mm created using 1.0 g of powder, and the pressed body density is 4.5 g.
It is expressed by the crushing strength of pellets of / cc, but if GS is 4 kg or less, the pellets may be broken. Therefore, GS is required to be 4 kg or more. An object of the present invention is to obtain a tantalum powder having the above characteristics in good yield.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に、本発明では以下のような手段を採用した。 造粒された粉末の成型体強度を減少させないために、
流動層造粒機を使用する。 粉末のカーボン濃度を増加させないために、まず水の
みをバインダーとして造粒を行う。しかし、水だけで造
粒を行うと、造粒機から取り出して、乾燥機さらには熱
処理炉に入れるまでの機械的外力で壊れてしまう。そこ
で、水造粒の後、PVA等の有機バインダーをスプレー
して、有機バインダーで粉末表面を薄く覆うことにより
造粒を完成させる。 以上二点を満足する造粒を行えば、従来技術の抱えてい
る問題が解決されることが判明した。以下に本発明を詳
説する。
In order to solve the above problems, the present invention employs the following means. In order not to reduce the strength of the granulated powder compact,
Use a fluid bed granulator. In order not to increase the carbon concentration of the powder, first, granulation is performed using only water as a binder. However, if the granulation is carried out only with water, the granules will be broken by the mechanical external force until the granules are taken out from the granulator and put into a dryer or a heat treatment furnace. Therefore, after water granulation, an organic binder such as PVA is sprayed, and the surface of the powder is thinly covered with the organic binder to complete the granulation. It has been found that the granulation satisfying the above two points can solve the problems of the prior art. The present invention will be described in detail below.

【0009】本発明では造粒方法として流動層造粒機を
採用する。流動層造粒機は固気系流動層とスプレーノズ
ルの組み合わせによって構成され、層中で流動する粉体
にバインダーをスプレーした時の被覆作用と凝集作用に
より造粒するものである。流動層造粒機を用いると、粉
末が粉砕されて微細化することがないため、ポーラスな
造粒粉末ができる。そのため、GSが4kg以上の造粒粉
が製作できる。バインダーは2段階に分けて使用する。
まず、造粒初期には粘着力の少ない無機バインダーを使
用する。無機バインダーとしては水や燐酸が使用でき
る。造粒初期には粘着力は弱くても凝集力を発揮するも
のであれば良く、炭素を含有しないものを使用する必要
がある。造粒の50〜80%を無機バインダーを使用し
て行う。ついで後段の造粒に移るが、後段は無機バイン
ダーとしてはポリビニルアルコール(PVA)、ポリビ
ニルブチラール(PVB)、メチルセルロース、カルボ
キシメチルセルロース等が使用できる。これらの有機バ
インダーは炭素を含み、強力な粘着力を有する。造粒の
終期に有機バインダーを使用すれば、造粒体の強度を高
めることができるため、乾燥後も壊れない。有機バイン
ダーは造粒体の表面に使用するだけで良い。有機バイン
ダーは補助的にしようするため、使用量が少なくてす
み、熱処理後のカーボン濃度が従来に比べて格段に低く
なる。
In the present invention, a fluidized bed granulator is used as the granulation method. The fluidized bed granulator is composed of a combination of a solid gas fluidized bed and a spray nozzle, and granulates by a coating action and an aggregating action when a binder is sprayed on a powder that flows in the layer. If a fluidized bed granulator is used, the powder will not be crushed into fine particles, so that a porous granulated powder can be obtained. Therefore, granulated powder with GS of 4 kg or more can be manufactured. The binder is used in two stages.
First, at the initial stage of granulation, an inorganic binder having a low adhesive strength is used. Water or phosphoric acid can be used as the inorganic binder. At the initial stage of granulation, it is sufficient that the adhesive force is weak but the cohesive force is exhibited, and it is necessary to use a carbon-free one. 50-80% of the granulation is done using an inorganic binder. Then, in the latter stage of granulation, polyvinyl alcohol (PVA), polyvinyl butyral (PVB), methyl cellulose, carboxymethyl cellulose and the like can be used as the inorganic binder in the latter stage. These organic binders contain carbon and have strong adhesion. If the organic binder is used at the final stage of the granulation, the strength of the granulated product can be increased, so that it does not break even after drying. The organic binder need only be used on the surface of the granule. Since the organic binder is used as a supplement, the amount used is small, and the carbon concentration after heat treatment is much lower than in the past.

【0010】[0010]

【作用】本発明は、無機バインダーの凝集性と有機バイ
ンダーの粘着力を利用するものである。造粒の主体を炭
素を含まない無機バインダーで行い、表層部分のみに有
機バインダーを使用して造粒体の強度を維持するように
した。
The present invention utilizes the cohesiveness of the inorganic binder and the adhesive strength of the organic binder. The main granulation was performed with an inorganic binder containing no carbon, and the organic binder was used only in the surface layer portion to maintain the strength of the granulated body.

【0011】[0011]

【実施例】次に実施例をあげて本発明を説明する。EXAMPLES Next, the present invention will be described with reference to examples.

【0012】実施例1 −325#の割合が50%のタンタル粉末1kgを流動層
造粒機(エアロマティック社製STREA−1)にいれ
た。熱風流量を50m3 /分、熱風温度を50℃にセッ
トして粉末を流動させた。まず水を20cc/min の流量
で10分間噴霧し、粉末を造粒した。その後、PVAを
20cc/min の流量で5分間噴霧して造粒した。造粒し
た粉末を乾燥機で乾燥した後、真空中で熱処理(145
0℃)を行った。熱処理後解砕を行った。
Example 1 1 kg of tantalum powder having a 325 # ratio of 50% was put into a fluidized bed granulator (STREA-1 manufactured by Aeromatic Co.). The hot air flow rate was set to 50 m 3 / min and the hot air temperature was set to 50 ° C. to flow the powder. First, water was sprayed for 10 minutes at a flow rate of 20 cc / min to granulate the powder. Then, PVA was sprayed at a flow rate of 20 cc / min for 5 minutes for granulation. The granulated powder is dried in a dryer and then heat treated in vacuum (145
0 ° C.). Crushing was performed after the heat treatment.

【0013】実施例2 −325#の割合が50%のタンタル粉末1kgを流動層
造粒機にいれた。熱風流量を50m3 /分、熱風温度を
50℃にセットして粉末を流動させた。まず燐酸を20
cc/min の流量で10分間噴霧し、粉末を造粒した。そ
の後、PVBを20cc/min の流量で5分間噴霧して造
粒した。造粒した粉末を乾燥機で乾燥した後、真空中で
熱処理(1450℃)を行った。熱処理後、解砕を行っ
た。
Example 2 1 kg of tantalum powder with a 325 # ratio of 50% was placed in a fluid bed granulator. The hot air flow rate was set to 50 m 3 / min and the hot air temperature was set to 50 ° C. to flow the powder. First, add phosphoric acid 20
The powder was granulated by spraying for 10 minutes at a flow rate of cc / min. Then, PVB was sprayed at a flow rate of 20 cc / min for 5 minutes for granulation. After drying the granulated powder with a dryer, heat treatment (1450 ° C.) was performed in vacuum. After the heat treatment, crushing was performed.

【0014】比較のため、次の3例の造粒を行った。 比較例1 バインダーとして水を20cc/min の流量で10分間噴
霧し、粉末を造粒した以外は実施例1と同様の条件で処
理した。 比較例2 バインダーとしてPVAを20cc/min の流量で10分
間噴霧し、粉末を造粒した以外は実施例1と同様の条件
で処理した。 比較例3 実施例1と同様のタンタル粉末1kgを転動式造粒機を用
いて造粒を行った。バインダーとしてはPVAを200
cc使用した。造粒した粉末を実施例1と同様に処理し
た。
For comparison, the following three examples of granulation were carried out. Comparative Example 1 As a binder, water was sprayed at a flow rate of 20 cc / min for 10 minutes, and the same procedure as in Example 1 was carried out except that the powder was granulated. Comparative Example 2 PVA as a binder was sprayed at a flow rate of 20 cc / min for 10 minutes, and the same procedure as in Example 1 was carried out except that the powder was granulated. Comparative Example 3 1 kg of tantalum powder similar to that in Example 1 was granulated using a rolling granulator. 200 PVA as binder
I used cc. The granulated powder was treated as in Example 1.

【0015】実施例と比較例の各サンプルについて、−
325#粉末の割合,FR,GSおよび、熱処理後のカ
ーボン濃度を測定し、結果を表1に示す。
For each sample of the example and the comparative example,
The ratio of 325 # powder, FR, GS, and carbon concentration after heat treatment were measured, and the results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示したように、本発明により得られ
た造粒タンタル粉末は、従来の粉にはない良好な流動性
を具備しているため、ペレットダイスへの粉末の充填が
容易になる。また、カーボン濃度が極めて低いにもかか
わらずペレット強度が高く、焼結コンデンサー用として
適していることが分かる。
As shown in Table 1, the granulated tantalum powder obtained according to the present invention has a good fluidity which conventional powders do not have, so that it is easy to fill the pellet die with the powder. Become. Further, it can be seen that the pellet strength is high even though the carbon concentration is extremely low, which is suitable for a sintered capacitor.

【0018】[0018]

【発明の効果】本発明によれば、ペレット充填性が良い
適正粒度分布を有し、かつ炭素含有量が低いタンタル粉
末をアルカリ還元粉末から収率良く得ることができるの
で、焼結タンタルコンデンサーに与える経済効果は極め
て大である。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a tantalum powder having an appropriate particle size distribution with good pellet packing property and a low carbon content from an alkali-reduced powder in good yield. The economic effect it gives is extremely large.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流動層式造粒機を用いてタンタル粉末を
造粒する方法において、まず無機バインダーをスプレー
して造粒を行い、その後有機バインダーをスプレーして
造粒することを特徴とするタンタル粉末の造粒方法。
1. A method for granulating tantalum powder using a fluidized bed granulator, wherein an inorganic binder is first sprayed for granulation, and then an organic binder is sprayed for granulation. Granulation method of tantalum powder.
【請求項2】 無機バインダーが水である請求項第1項
記載のタンタル粉末の造粒方法。
2. The method for granulating tantalum powder according to claim 1, wherein the inorganic binder is water.
【請求項3】 無機バインダーが燐酸である請求項第1
項記載のタンタル粉末の造粒方法。
3. The inorganic binder is phosphoric acid.
A method for granulating tantalum powder according to the item.
JP03128474A 1991-04-30 1991-04-30 Granulation method of tantalum powder Expired - Lifetime JP3105294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03128474A JP3105294B2 (en) 1991-04-30 1991-04-30 Granulation method of tantalum powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03128474A JP3105294B2 (en) 1991-04-30 1991-04-30 Granulation method of tantalum powder

Publications (2)

Publication Number Publication Date
JPH0565502A true JPH0565502A (en) 1993-03-19
JP3105294B2 JP3105294B2 (en) 2000-10-30

Family

ID=14985629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03128474A Expired - Lifetime JP3105294B2 (en) 1991-04-30 1991-04-30 Granulation method of tantalum powder

Country Status (1)

Country Link
JP (1) JP3105294B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024914A (en) * 1997-09-01 2000-02-15 Nec Corporation Process for production of anode for solid electrolytic capacitor
US6479012B2 (en) 1998-05-22 2002-11-12 Cabot Corporation Method to agglomerate metal particles and metal particles having improved properties
JP2009102680A (en) * 2007-10-22 2009-05-14 Cabot Supermetal Kk Agglomerated particles of tantalum, and production method therefor
JP2009141044A (en) * 2007-12-05 2009-06-25 Nichicon Corp Solid electrolytic capacitor element and production method thereof
US7666247B2 (en) 2005-09-29 2010-02-23 Ningxia Orient Tantalum Industry Co., Ltd. Methods for spherically granulating and agglomerating metal particles, and the metal particles prepared thereby, anodes made from the metal patricles
DE102012024766A1 (en) 2011-12-23 2013-06-27 Taike Technology (Suzhou) Co., Ltd. Sintering process for a tantalum capacitor anode block
CN105428071A (en) * 2016-01-12 2016-03-23 深圳顺络电子股份有限公司 Manufacturing method of anode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024914A (en) * 1997-09-01 2000-02-15 Nec Corporation Process for production of anode for solid electrolytic capacitor
US6479012B2 (en) 1998-05-22 2002-11-12 Cabot Corporation Method to agglomerate metal particles and metal particles having improved properties
US6576038B1 (en) 1998-05-22 2003-06-10 Cabot Corporation Method to agglomerate metal particles and metal particles having improved properties
US7666247B2 (en) 2005-09-29 2010-02-23 Ningxia Orient Tantalum Industry Co., Ltd. Methods for spherically granulating and agglomerating metal particles, and the metal particles prepared thereby, anodes made from the metal patricles
JP2009102680A (en) * 2007-10-22 2009-05-14 Cabot Supermetal Kk Agglomerated particles of tantalum, and production method therefor
JP2009141044A (en) * 2007-12-05 2009-06-25 Nichicon Corp Solid electrolytic capacitor element and production method thereof
DE102012024766A1 (en) 2011-12-23 2013-06-27 Taike Technology (Suzhou) Co., Ltd. Sintering process for a tantalum capacitor anode block
CN105428071A (en) * 2016-01-12 2016-03-23 深圳顺络电子股份有限公司 Manufacturing method of anode
CN105428071B (en) * 2016-01-12 2019-01-18 深圳顺络电子股份有限公司 A kind of manufacturing method of anode

Also Published As

Publication number Publication date
JP3105294B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
EP0956173B1 (en) Metal powder granulates, method for their production and use of the same
KR101158520B1 (en) Process for preparing powder of niobium suboxides or niobium
US3418106A (en) Refractory metal powder
JPH0897095A (en) Tantalum powder and electrolytic capacitor employing it
JP2675820B2 (en) Tantalum powder granulation
US5689796A (en) Method of manufacturing molded copper-chromium family metal alloy article
EP0741193A1 (en) Method of making flowable tungsten/copper composite powder
JP3105294B2 (en) Granulation method of tantalum powder
US3934179A (en) Tantalum anode for electrolytic devices
JPS6212666A (en) Manufacture of oven core pipe for semiconductor
JPH06163055A (en) Manufacture of sintered electrode for battery
GB2206875A (en) Magnesia granule and process for producing same
JPS6089557A (en) Powdered material for thermal spray and its manufacture
JPS59100233A (en) Manufacture of flake-like mother alloy for preparation of dental amalgam
JP3998972B2 (en) Method for producing sputtering tungsten target
JP2005079333A (en) Valve action metal powder for dispersion, and solid electrolytic capacitor using the same
JP3077679B2 (en) Method for manufacturing anode body for solid electrolytic capacitor
JPH086122B2 (en) Granulation method of tantalum powder
US2082126A (en) Method of manufacturing porous metallic bodies
US20170004927A1 (en) Anode body for tungsten capacitors
CN114804834A (en) Low-temperature sintered carbon composite ceramic linear resistor and preparation method thereof
JP2004091889A (en) Metal niobium powder and its manufacturing method
JPS5939333A (en) Granulation of fine powdery coke in high efficiency
JP3665083B2 (en) Method for producing ceramic powder slurry and ceramic granule
JPH08311509A (en) Production of flowing tungsten/copper composite powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11