Nothing Special   »   [go: up one dir, main page]

JPH0560566B2 - - Google Patents

Info

Publication number
JPH0560566B2
JPH0560566B2 JP762186A JP762186A JPH0560566B2 JP H0560566 B2 JPH0560566 B2 JP H0560566B2 JP 762186 A JP762186 A JP 762186A JP 762186 A JP762186 A JP 762186A JP H0560566 B2 JPH0560566 B2 JP H0560566B2
Authority
JP
Japan
Prior art keywords
liquid crystal
polyamide
display element
crystal display
crystal alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP762186A
Other languages
Japanese (ja)
Other versions
JPS62165628A (en
Inventor
Kohei Goto
Fumitaka Takinishi
Makiko Togo
Hiroharu Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP762186A priority Critical patent/JPS62165628A/en
Publication of JPS62165628A publication Critical patent/JPS62165628A/en
Publication of JPH0560566B2 publication Critical patent/JPH0560566B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、液晶表示素子に関する。特に、液晶
配向膜が特定のポリアミドを含むポリマーからな
る液晶表示素子に関する。 〔従来の技術〕 従来、正の誘電異方性を有するネマチツク液晶
を液晶配向膜を塗布した透明導電膜(電極)でサ
ンドイツチし、液晶分子長軸が上下の基板面で
90°連続的に捩れたTN配列セルを有する表示素子
が知られている。このような液晶の配向状態は、
透明導電膜上に塗布された液晶配向膜を紙または
布などで一方向にラビングし、上下の基板上の配
向膜を配向方向がお互いに直交した状態となるよ
うに組みこむことにより、その表示機能を発現さ
せることができる。 液晶配向膜としてのポリイミドは、それ自身液
晶分子を平行に配列される機能をもつているこ
と、その前駆体であるポリアミツク酸を溶液状態
で塗布した後にイミド化させて、基板表面に均一
な塗膜を形成できること、液晶分子とのチルト角
が小さく、コントラスト比が高い映像が表示でき
ること、電界応答時に液晶分子が傾きはじめる閾
値特性がシヤープで、マルチプレツクス駆動に適
していること、などの理由により多用されてき
た。 また、最近、ポリアミツク酸を基板に塗布し、
約135〜145℃で約30分間焼成することにより、ポ
リアミツク酸構造が50%程度閉環してイミド化し
たポリイミド−ポリアミツク酸からなる液晶配向
膜を有する液晶表紙素子が提案されている(特開
昭59−142526号公報)。 〔発明が解決しようとする問題点〕 従来のポリイミドからなる液晶配向膜は、前述
のように、基板にポリアミツク酸の状態で塗布し
た後イミド化することにより製造するものである
が、このイミド化には、300℃以上の高温処理を
30分以上施す必要があつた。しかし、液晶表示素
子に用いられる他の材料が有する耐熱性は必ずし
も高くなく、このような高温長時間の熱処理は好
ましくない。また、こうして形成されるポリイミ
ド膜は、ガラス等からなる基板との接着性が劣
り、例えば、ラビング後の超音波洗浄の際に基板
から剥離したり、高温あるいは高湿条件下での使
用により剥離したり、基板との界面に水分が侵入
して表示特性が低下するという問題点を有してい
る。そのため、ポリイミド膜を形成する前に基板
をシランカツプリング剤等で表面処理して接着性
の改善が図られているがなお不十分であるのが現
状である。さらに、従来用いられて来たポリイミ
ドの代表的なものは、例えば芳香族テトラカルボ
ン酸二無水物と芳香族ジアミンを反応させて得ら
れるものであるが、中間体として得られる有機溶
媒可溶性ポリアミツク酸は保存安定性が低く、不
溶分が析出したり粘度の低下が起り易いため低温
で保存しなければならない不利があり、液晶表示
素子の製造工程を煩雑にする問題点のひとつとな
つていた。 さらに、特開昭59−142526号公報記載の液晶表
示素子が有するポリイミド−ポリアミツク酸液晶
配向膜は、上記ポリイミド膜のような高温長時間
の熱処理を要せず製造できるものとして提案され
たものがあるが、得らえる膜は着色しており、表
示背景が不鮮明という問題点を有している。 本発明の目的は、これら従来の液晶表示素子が
有する問題点を解決することにある。 〔問題点を解決するための手段〕 本発明は、液晶配向膜を有する液晶表示素子に
おいて、液晶配向膜が下記一般式()および
() 〔式中、R1は2価の有機ジアミン残基、R2およ
びR3は同一または異なつてもよく、水素原子ま
たはアルキル基を表わす。〕 で表わされる構造単位の少なくとも1種を有する
ポリアミドを含むポリマーからなることを特徴と
する液晶表示素子を提供するものである。 本発明の液晶表示素子は、例えば第1図に示す
ように透明導電膜2を設けた上下の基板1の透明
導電膜2を有する面に、前記ポリアミドを含むポ
リマーからなり、配向処理を施した液晶配向膜3
を有するものである。偏光板6は基板1の外側に
一体的に設けられ、また基板間には液晶4が挟持
され、かつ基板の周縁部は、液晶を封入するため
にシール材5でシールされる。 前記ポリアミドの具体例としては、次の一般式
()〜()から選ばれる少なくとも1種の構
造単位を含み、 〔式中、R1、R2およびR3は前記のとおりである〕 例えば、2,3,5−トリカルボキシシクロペ
ンチル酢酸(以下「TCA」という)類と一般式
()で表わされるジアミン H2N−R1−NH2 () 〔式中、R1は前記のとおりである〕 とを、少なくともこれらの一方を溶解する溶媒中
で反応させることにより得られるものである(特
開昭58−149918号公報、同58−208322号公報等)。 また本発明において、TCA類とは、TCA、
TCAの二無水物、ジアルキルエステルおよびテ
トラアルキルエステル(ここでアルキル基は、例
えばメチル、エチル、プロピル等の低級アルキル
基を示す。)を意味するものである。 また、ポリアミドの一般式()〜()の構
造単位および前記ジアミンが有するR1の例とし
ては、 [式中、X1、X2、X3およびX4は、同一でも異な
つてもよく、−H、−CH3または−OCH3、Y0は−
CH2−、−C2H4−、−O−、−S−、
[Industrial Application Field] The present invention relates to a liquid crystal display element. In particular, the present invention relates to a liquid crystal display element in which the liquid crystal alignment film is made of a polymer containing a specific polyamide. [Conventional technology] Conventionally, a nematic liquid crystal with positive dielectric anisotropy is sandwiched between a transparent conductive film (electrode) coated with a liquid crystal alignment film, and the long axes of the liquid crystal molecules are aligned with the upper and lower substrate surfaces.
Display elements having TN array cells that are continuously twisted by 90° are known. The alignment state of such liquid crystal is
By rubbing the liquid crystal alignment film coated on the transparent conductive film in one direction with paper or cloth, and assembling the alignment films on the upper and lower substrates so that the alignment directions are perpendicular to each other, the display can be made. Function can be expressed. Polyimide, which is used as a liquid crystal alignment film, has the ability to align liquid crystal molecules in parallel, and its precursor, polyamic acid, is applied in a solution state and then imidized to create a uniform coating on the substrate surface. This is due to the following reasons: the ability to form a film, the ability to display images with a small tilt angle with the liquid crystal molecules and high contrast ratio, and the sharp threshold characteristics at which the liquid crystal molecules begin to tilt when responding to an electric field, making it suitable for multiplex drive. It has been used extensively. Recently, polyamic acid has been applied to the substrate,
A liquid crystal cover element has been proposed that has a liquid crystal alignment film made of polyimide-polyamic acid, in which approximately 50% of the polyamic acid structure is ring-closed and imidized by firing at approximately 135 to 145°C for approximately 30 minutes (Japanese Patent Application Laid-Open No. 59-142526). [Problems to be solved by the invention] As mentioned above, conventional liquid crystal alignment films made of polyimide are manufactured by applying polyamic acid to a substrate and then imidizing it. For this purpose, high temperature treatment of 300℃ or higher is applied.
It was necessary to apply it for more than 30 minutes. However, other materials used in liquid crystal display elements do not necessarily have high heat resistance, and such high-temperature, long-term heat treatment is not preferred. In addition, the polyimide film formed in this way has poor adhesion to a substrate made of glass or the like, and for example, it may peel off from the substrate during ultrasonic cleaning after rubbing, or it may peel off when used under high temperature or high humidity conditions. In addition, moisture may enter the interface with the substrate, resulting in deterioration of display characteristics. Therefore, attempts have been made to improve adhesion by surface treating the substrate with a silane coupling agent or the like before forming the polyimide film, but this is still insufficient. Furthermore, typical polyimides conventionally used are those obtained by reacting aromatic tetracarboxylic dianhydride with aromatic diamine, but organic solvent-soluble polyamic acid obtained as an intermediate has low storage stability and is prone to precipitation of insoluble matter and decrease in viscosity, so it has the disadvantage of having to be stored at low temperatures, which is one of the problems that complicates the manufacturing process of liquid crystal display elements. Furthermore, the polyimide-polyamic acid liquid crystal alignment film included in the liquid crystal display element described in JP-A-59-142526 was proposed as a film that could be manufactured without requiring high-temperature and long-term heat treatment like the above polyimide film. However, the resulting film is colored and has the problem that the display background is unclear. An object of the present invention is to solve the problems that these conventional liquid crystal display elements have. [Means for Solving the Problems] The present invention provides a liquid crystal display element having a liquid crystal alignment film, in which the liquid crystal alignment film has the following general formulas () and (). [In the formula, R 1 is a divalent organic diamine residue, R 2 and R 3 may be the same or different and represent a hydrogen atom or an alkyl group. ] The present invention provides a liquid crystal display element characterized by being made of a polymer containing a polyamide having at least one type of structural unit represented by the following. The liquid crystal display element of the present invention includes, for example, as shown in FIG. 1, upper and lower substrates 1 each having a transparent conductive film 2 thereon are made of the polyamide-containing polymer and subjected to an alignment treatment on the surfaces thereof having the transparent conductive film 2. Liquid crystal alignment film 3
It has the following. A polarizing plate 6 is integrally provided on the outside of the substrate 1, and a liquid crystal 4 is sandwiched between the substrates, and the peripheral edge of the substrate is sealed with a sealing material 5 to seal the liquid crystal. Specific examples of the polyamide include at least one structural unit selected from the following general formulas () to (), [In the formula, R 1 , R 2 and R 3 are as described above] For example, 2,3,5-tricarboxycyclopentyl acetic acid (hereinafter referred to as "TCA") and a diamine represented by the general formula () H 2 N−R 1 −NH 2 () [In the formula, R 1 is as described above] is obtained by reacting N−R 1 −NH 2 () [wherein R 1 is as described above] in a solvent that dissolves at least one of them (Japanese Patent Application Laid-Open No. 1983-1999). 149918, 58-208322, etc.). In addition, in the present invention, TCAs include TCA,
It refers to dianhydrides, dialkyl esters and tetraalkyl esters of TCA (where the alkyl group represents, for example, a lower alkyl group such as methyl, ethyl, propyl, etc.). In addition, examples of the structural units of general formulas () to () of the polyamide and R 1 of the diamine include: [In the formula, X 1 , X 2 , X 3 and X 4 may be the same or different, -H, -CH 3 or -OCH 3 , Y 0 is -
CH 2 −, −C 2 H 4 −, −O−, −S−,

【式】【formula】

【式】【formula】

【式】−SO2−または−CONH −を示し、nは0または1を示す]で示される芳
香族基、−(CH2o−(n=2〜20)、
[Formula] represents -SO 2 - or -CONH -, n represents 0 or 1], -(CH 2 ) o - (n = 2 to 20),

【式】【formula】 【式】【formula】

【式】 で示される炭素原子数2〜20の脂肪族基または脂
環式基、 〔式中、R4
[Formula] An aliphatic group or alicyclic group having 2 to 20 carbon atoms, [In the formula, R 4 is

【式】(―CH2l――、[Formula] (-CH 2 ) l ---,

【式】 等の2価の脂肪族、脂環式または芳香族の炭化水
素基を示し、R5
[Formula] represents a divalent aliphatic, alicyclic or aromatic hydrocarbon group, and R 5 is

【式】【formula】

【式】 −CoH2o+1(n=1〜20)等の1価の脂肪族、
脂環式または芳香族の炭化水素基を示し、mは1
〜100の整数である〕で示されるオルガノシロキ
サン残基を挙げることができる。 前記ジアミンの具体例としては、パラフエニレ
ンジアミン、メタフエニレンジアミン、4,4′−
ジアミノジフエニルメタン、4,4′−ジアミノジ
フエニルエタン、ベンジジン、4,4′−ジアミノ
ジフエニルスルフイド、4,4′−ジアミノジフエ
ニルスルホン、4,4′−ジアミノジフエニルエー
テル、1,5−ジアミノナフタレン、3,3′−ジ
メチル−4,4′−ジアミノビフエニル、3,4′−
ジアミノベンズアニリド、3,4′−ジアミノジフ
エニルエーテル、3,3′−ジアミノベンゾフエノ
ン、3,4′−ジアミノベンゾフエノン、4,4′−
ジアミノベンゾフエノン、ジアミノテトラフエニ
ルチオフエン、2,2−ビス[4−(4−アミノ
フエノキシ)フエニル]プロパン、ビス[4−
(4−アミノフエノキシ)フエニル]スルホン、
1,4−ビス(4−アミノフエノキシ)ベンゼ
ン、1,3−ビス(4−アミノフエノキシ)ベン
ゼン、1,3−ビス(3−アミノフエノキシ)ベ
ンゼン、9,9−ビス(4−アミノフエニル)−
10−ヒドロ−アントラセン、9,9−ビス(4−
アミノフエニル)フルオレン、4,4′−メチレン
−ビス(2−クロロアニリン)、2,2′,5,
5′−テトラクロロ−4,4′−ジアミノビフエニ
ル、2,2′−ジクロロ−4,4′−ジアミノ−5,
5′−ジメトキシビフエニル、3,3′−ジメトキシ
−4,4′−ジアミノビフエニル、メタキシリレン
ジアミン、パラキシリレンジアミン、エチレンジ
アミン、1,3−プロパンジアミン、テトラメチ
レンジアミン、ペンタメチレンジアミン、ヘキサ
メチレンジアミン、ヘプタメチレンジアミン、オ
クタメチレンジアミン、ノナメチレンジアミン、
4,4′−ジメチルヘプタメチレンジアミン、1,
4−ジアミノシクロヘキサン、イソホロンジアミ
ン、テトラヒドロジシクロペンタジエニレンジア
ミン、ヘキサヒドロ−4,7−メタノインダニレ
ンジメチレンジアミン、トリシクロ[6,2,
1,02.7]ウンデシレンジメチルジアミンおよび 1,3−ビス(3−アシノプロピル)テトラメ
チルジシロキサン等で示されるジアミノオルガノ
シロシサンを挙げることができる。これらの有機
ジアミンは、1種単独でも2種以上の組合わせで
も使用することができる。 本発明に用いられるポリアミドを前記の製法に
より製造する際には、TCA類とともに、TCA類
以外のテトラカルボン酸類を併用することができ
る。ここにおいてテトラカルボン酸類とは、テト
ラカルボン酸、テトラカルボン酸の二無水物、ジ
アルキルエステル、およびテトラアルキルエステ
ル(ここでアルキル基は例えばメチル、エチル、
プロピル等の低級アルキル基を示す。)を意味す
るものである。 TCA類と併用することのできるテトラカルボ
ン酸類としては、ピロメリツト酸類、3,3′,
4,4′−ベンゾフエノンテトラカルボン酸類、
3,3′,4,4′−ビフエニルスルホンテトラカル
ボン酸類、1,2,5,6−ナフタレンテトラカ
ルボン酸類、1,4,5,8−ナフタレンテトラ
カルボン酸類、2,3,6,7−ナフタレンテト
ラカルボン酸類、フランテトラカルボン酸、3,
3′,4,4′−ビフエニルエーテルテトラカルボン
酸類、3,3′,4,4′−ジメチルジフエニルシラ
ンテトラカルボン酸類、3,3′,4,4′−テトラ
フエニルシランテトラカルボン酸類、3,3′,
4,4′−パーフルオロイソプロピリデンテトラカ
ルボン酸類等の芳香族テトラカルボン酸類、シク
ロブタンテトラカルボン酸類、シクロペンタンテ
トラカルボン酸類、5−(2,5−ジオキソテト
ラヒドロフリル)−3−メチル−3−シクロヘキ
センジカルボン酸類、ビシクロ(2,2,2)−
オクト−7−エン−2,3,5,6−テトラカル
ボン酸類、3,5,6−トリカルボキシノルボル
ナン−2−酢酸類、テトラヒドロフランテトラカ
ルボン酸類等の脂環式テトラカルボン酸類、また
は1,2,3,4−ブタンテトラカルボン酸類、
2,2,6,6−ヘプタンテトラカルボン酸類等
の脂肪族テトラカルボン酸類を挙げることができ
る。これらは単独でまたは2種以上組合わせて用
いることができる。このようにTCA類以外のテ
トラカルボン酸類を併用する場合の、TCA類の
使用量は、TCA類およびTCA類以外のテトラカ
ルボン酸類の総量の10モル%以上、特に20モル%
以上であることが好ましい。 TCA類、あるいはTCA類とTCA類以外のテト
ラカルボン酸類等を併用する場合の、TCA類と
TCA類以外のテトラカルボン酸の総量と、ジア
ミンとの反応割合は、当モルで行なうのが好まし
いが、若干の過不足があつても差支えない。また
反応は、溶媒中で行なうことが好ましい。溶媒の
使用量は、通常、TCA類、TCA類以外のテトラ
カルボン酸類およびジアミンの合計量に対して
0.5〜20重量倍である。 上記ポリアミドを合成する際に用いる溶媒ある
いは得られたポリアミドを再溶解させる溶媒とし
ては、N−メチル−2−ピロリドン、N,N−ジ
メチルアセトアミド、N,N−ジメチルホルムア
ミド、ジメチルスルホキシド、γ−ブチロラクト
ン、テトラメチル尿素等の非プロトン系極性溶
媒、またはクレゾール、キシレノール、ハロゲン
化フエノール等のフエノール系溶媒が好ましい
が、その他一般的有機溶媒であるアルコール類、
フエノール類、ケトン類、エステル類、ラクトン
類、エーテル類、ハロゲン化炭化水素類、炭化水
素類等、例えばメチルアルコール、エチルアルコ
ール、イソプロピルアルコール、エチレングリコ
ール、プロピレングリコール、1,4−ブタンジ
オール、トリエチレングリコール、エチレングリ
コールモノメチルエーテル、フエノール、アセト
ン、メチルエチルケトン、メチルイソブチルケト
ン、シクロヘキサノンイソホロン、酢酸メチル、
酢酸エチル、酢酸ブチル、酢酸ジエチル、マロン
酸ジエチル、ジエチルエーテル、エチレングリコ
ールメチルエーテル、エチレングリコールエチル
エーテル、エチレングリコールn−プロピルエー
テル、エチレングリコールイソプロピルエーテ
ル、エチレングリコールn−ブチルエーテル、エ
チレングリコールジメチルエーテル、エチレング
リコールエチルエーテルアセテート、ジエチレン
グリコールモノエチルエーテル、ジエチレングリ
コールモノn−ブチルエーテル、ジエチレングリ
コールジメチルエーテル、エチレングリコールn
−ブチルエーテルアセテート、テトラヒドロフラ
ン、ジクロルメタン、1,2−ジクロルエタン、
1,4−ジクロルブタン、トリクロルエタン、ク
ロルベンゼン、o−ジクロルベンゼン、ヘキサ
ン、ヘプタン、オクタン、ベンゼン、トルエン、
キシレン等も使用することができる。 ポリアミドを合成する際の反応温度は、出発原
料によつて異なり、例えばTCAおよびTCAのジ
アルキルエステルを原料とする場合には縮合を行
なわせるために、通常、50〜250℃、好ましくは
70〜230℃で反応を行なうのが効果的である。ま
た、TCA二無水物を原料とする場合には付加重
合であり、必らずしも高温で反応させる必要はな
く、通常は0〜100℃で反応を行なえばよい。 本発明に用いられるポリアミドは、上記の合成
段階で一部脱水閉環してイミド化していてもよ
く、また合成後に化学的または熱的に一部イミド
化させたものであつてもよい。 このように、本発明に用いられるポリアミド
は、単量体単位としてTCA類およびTCA類以外
のテトラカルボン酸類に由来する構造単位を含む
ことができ、またポリアミド構造は部分的にイミ
ド化していてもよいため、一般式()および
()以外の構造単位を含む場合もあるが、本発
明のポリアミドは、一般式()および()で
表わされる構造単位を、10モル%以上、特に25モ
ル%以上含有することが好ましい。一般式()
および()で表わされる構造単位が10モル%未
満であると、ポリアミドの基板への十分な接着性
が得られにくい。 上記ポリアミドは前記のように有機溶媒可溶性
であり、その固有粘度(ηinh)(ジメチルホルム
アミド中、濃度0.5g/dl、30℃)は、0.05dl/
g以上、特に0.05〜5dl/gの範囲が好ましい。
固有粘度が0.05dl/g未満であると、基板上に塗
膜を形成させにくく、5dl/gを超えると取り扱
いが困難となる。 本発明において液晶配向膜の形成に用いられる
ポリマーは上述したポリアミドを必須成分として
含むものであるが、この他に有機溶媒可溶性ポリ
イミドを併用することもできる。このように、有
機溶媒可溶性ポリイミドを併用する場合には、ポ
リアミドを含むポリマーが有する一般式()お
よび()の構造単位がポリマー全体の10モル%
以上、特に25モル%以上であることが好ましい。
全ポリマー中における一般式()および()
の構造単位が10モル%未満であると、基板に対し
て十分な接着性が得られにくい。 本発明において上記ポリアミドと併用可能なポ
リイミドとしては、TCA類、前記TCA類と併用
することのできる芳香族テトラカルボン酸類、脂
肪族テトラカルボン酸類、脂環式テトラカルボン
酸類等とジアミンから生成される有機溶媒可溶性
ポリイミドを挙げることができる。 前記ポリアミドを含むポリマーで液晶配向膜を
形成するには、まず前述の適当な溶媒を用いて塗
布用ポリマー溶液を調製する。このポリマー溶液
は、通常、固形分濃度0.1〜30重量%、好ましく
は0.5〜20重量%の濃度に調整して用いられる。 このようにして調製されたポリマー溶液は、例
えば第1図に示すように、導電膜2を有する基板
1上に、例えばロールコーター法、スピンナー
法、印刷法などで塗布し、次いで80〜250℃で乾
燥することによつて前記ポリマーからなる液晶配
向膜3が形成される。該液晶配向膜の厚さは、通
常、0.01〜1μmであり、特に0.01〜0.5μmが好ま
しい。 なお、必要に応じて、基板との接着性をさらに
良くする目的で、基板上に予め官能性シラン化合
物またはチタネート化合物を塗布し、基板とポリ
アミド塗膜との接着性を高めることができる。ま
た、官能性シラン化合物またはチタネート化合物
はポリアミド塗膜に含まれていてもよい。 用いられる官能性シラン化合物の具体例として
は、3−アミノプロピルトリメトキシシラン、3
−アミノプロピルトリエトキシシラン、2−アミ
ノプロピルトリメトキシシラン、2−アミノプロ
ピルトリエトキシシラン、N−(2−アミノエチ
ル)−3−アミノ−プロピルトリメトキシシラン、
N−(2−アミノエチル)−3−アミノ−プロピル
トリエトキシシラン、N−(2−アミノエチル)−
3−アミノ−プロピルメチルジメトキシシラン、
3−ウレイド−プロピルトリエトキシシラン、3
−ウレイド−プロピルトリエトキシシラン、N−
エトキシカルボニル−3−アミノ−プロピルトリ
メトキシシラン、N−エトキシカルボニル−3−
アミノ−プロピルトリエトキシシラン、N−トリ
メトキシシリルプロピル−トリエチレントリアミ
ン、N−トリエトキシシリルプロピル−トリエチ
レントリアミン、10−トリメトキシシリル−1,
4,7−トリアザデカン、10−トリエトキシシリ
ル−1,4,7−トリアザデカン、9−トリメト
キシシリル−3,6−ジアザノニルアセテート、
9−トリエトキシシリル−3,6−ジアザノニル
アセテート、N−ベンジル−3−アミノ−プロピ
ルトリメトキシシラン、N−ベンジル−3−アミ
ノ−プロピルトリエトキシシラン、N−フエニル
−3−アミノ−プロピルトリメトキシシラン、N
−フエニル−3−アミノ−プロピルトリエトキシ
シラン、N−ビス(オキシエチレン)−3−アミ
ノ−プロピルトリメトキシシラン、N−ビス(オ
キシエチレン)−3−アミノ−プロピルトリエト
キシシラン等を挙げることができ、これらの官能
性シラン化合物は2種以上併用することもでき
る。 チタネート化合物としては、
[Formula] Monovalent aliphatic such as −C o H 2o+1 (n = 1 to 20),
Represents an alicyclic or aromatic hydrocarbon group, m is 1
an integer from 100 to 100]. Specific examples of the diamine include paraphenylenediamine, metaphenylenediamine, 4,4'-
Diaminodiphenylmethane, 4,4'-diaminodiphenyl ethane, benzidine, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 1 , 5-diaminonaphthalene, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,4'-
Diaminobenzanilide, 3,4'-diaminodiphenyl ether, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-
Diaminobenzophenone, diaminotetraphenylthiophene, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, bis[4-
(4-aminophenoxy)phenyl]sulfone,
1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 9,9-bis(4-aminophenyl)-
10-hydro-anthracene, 9,9-bis(4-
aminophenyl)fluorene, 4,4'-methylene-bis(2-chloroaniline), 2,2',5,
5'-tetrachloro-4,4'-diaminobiphenyl, 2,2'-dichloro-4,4'-diamino-5,
5'-dimethoxybiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, metaxylylene diamine, paraxylylene diamine, ethylene diamine, 1,3-propanediamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine,
4,4'-dimethylheptamethylenediamine, 1,
4-diaminocyclohexane, isophorone diamine, tetrahydrodicyclopentadienylene diamine, hexahydro-4,7-methanoindanilene dimethylene diamine, tricyclo[6,2,
1,0 2.7 ] undecyledimethyldiamine and Examples include diaminoorganosilosisane such as 1,3-bis(3-acinopropyl)tetramethyldisiloxane. These organic diamines can be used alone or in combination of two or more. When producing the polyamide used in the present invention by the above-mentioned production method, tetracarboxylic acids other than TCAs can be used together with TCAs. Here, the term "tetracarboxylic acids" refers to tetracarboxylic acid, tetracarboxylic acid dianhydride, dialkyl ester, and tetraalkyl ester (here, the alkyl group is, for example, methyl, ethyl,
Indicates a lower alkyl group such as propyl. ). Tetracarboxylic acids that can be used in combination with TCAs include pyromellitic acids, 3,3',
4,4'-benzophenonetetracarboxylic acids,
3,3',4,4'-biphenylsulfonetetracarboxylic acids, 1,2,5,6-naphthalenetetracarboxylic acids, 1,4,5,8-naphthalenetetracarboxylic acids, 2,3,6,7 -naphthalenetetracarboxylic acids, furantetracarboxylic acid, 3,
3',4,4'-biphenyl ether tetracarboxylic acids, 3,3',4,4'-dimethyldiphenylsilane tetracarboxylic acids, 3,3',4,4'-tetraphenylsilane tetracarboxylic acids ,3,3′,
Aromatic tetracarboxylic acids such as 4,4'-perfluoroisopropylidene tetracarboxylic acids, cyclobutanetetracarboxylic acids, cyclopentanetetracarboxylic acids, 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3- Cyclohexenedicarboxylic acids, bicyclo(2,2,2)-
Alicyclic tetracarboxylic acids such as oct-7-ene-2,3,5,6-tetracarboxylic acids, 3,5,6-tricarboxynorbornane-2-acetic acids, tetrahydrofurantetracarboxylic acids, or 1,2 , 3,4-butanetetracarboxylic acids,
Aliphatic tetracarboxylic acids such as 2,2,6,6-heptanetetracarboxylic acids can be mentioned. These can be used alone or in combination of two or more. In this way, when tetracarboxylic acids other than TCAs are used together, the amount of TCAs used should be 10 mol% or more, especially 20 mol% of the total amount of TCAs and tetracarboxylic acids other than TCAs.
It is preferable that it is above. When using TCAs, or TCAs and tetracarboxylic acids other than TCAs,
The reaction ratio between the total amount of tetracarboxylic acids other than TCAs and diamine is preferably equimolar, but there may be some excess or deficiency. Further, the reaction is preferably carried out in a solvent. The amount of solvent used is usually based on the total amount of TCAs, tetracarboxylic acids other than TCAs, and diamines.
0.5 to 20 times the weight. The solvent used to synthesize the above polyamide or the solvent to redissolve the obtained polyamide is N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, and γ-butyrolactone. , aprotic polar solvents such as tetramethylurea, or phenolic solvents such as cresol, xylenol, and halogenated phenols are preferred, but alcohols, which are other common organic solvents,
Phenols, ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons, etc., such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, propylene glycol, 1,4-butanediol, Ethylene glycol, ethylene glycol monomethyl ether, phenol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone isophorone, methyl acetate,
Ethyl acetate, butyl acetate, diethyl acetate, diethyl malonate, diethyl ether, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol n-propyl ether, ethylene glycol isopropyl ether, ethylene glycol n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol Ethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol dimethyl ether, ethylene glycol n
-butyl ether acetate, tetrahydrofuran, dichloromethane, 1,2-dichloroethane,
1,4-dichlorobutane, trichloroethane, chlorobenzene, o-dichlorobenzene, hexane, heptane, octane, benzene, toluene,
Xylene and the like can also be used. The reaction temperature when synthesizing polyamide varies depending on the starting materials; for example, when TCA and dialkyl esters of TCA are used as raw materials, it is usually 50 to 250°C, preferably 50 to 250°C, in order to carry out condensation.
It is effective to carry out the reaction at 70-230°C. Further, when TCA dianhydride is used as a raw material, addition polymerization is performed, and the reaction does not necessarily need to be carried out at a high temperature, and it is usually sufficient to carry out the reaction at a temperature of 0 to 100°C. The polyamide used in the present invention may be partially dehydrated and ring-closed and imidized in the above synthesis step, or may be partially imidized chemically or thermally after synthesis. As described above, the polyamide used in the present invention can contain structural units derived from TCAs and tetracarboxylic acids other than TCAs as monomer units, and the polyamide structure may be partially imidized. The polyamide of the present invention may contain structural units other than the general formulas () and () in an amount of 10 mol% or more, especially 25 mol% It is preferable to contain the above amount. General formula ()
If the structural units represented by () and () are less than 10 mol%, it is difficult to obtain sufficient adhesion to the polyamide substrate. As mentioned above, the polyamide is soluble in organic solvents, and its intrinsic viscosity (ηinh) (in dimethylformamide, concentration 0.5 g/dl, 30°C) is 0.05 dl/
g or more, particularly preferably in the range of 0.05 to 5 dl/g.
If the intrinsic viscosity is less than 0.05 dl/g, it will be difficult to form a coating film on the substrate, and if it exceeds 5 dl/g, it will be difficult to handle. The polymer used for forming the liquid crystal alignment film in the present invention contains the above-mentioned polyamide as an essential component, but in addition to this, an organic solvent-soluble polyimide can also be used in combination. In this way, when using organic solvent-soluble polyimide in combination, the structural units of general formulas () and () possessed by the polymer containing polyamide account for 10 mol% of the entire polymer.
In particular, it is preferably 25 mol% or more.
General formulas () and () in all polymers
If the structural unit of is less than 10 mol%, it is difficult to obtain sufficient adhesion to the substrate. In the present invention, polyimides that can be used in combination with the above polyamides include TCAs, aromatic tetracarboxylic acids that can be used in combination with the above TCAs, aliphatic tetracarboxylic acids, alicyclic tetracarboxylic acids, etc., and polyimides produced from diamines. Organic solvent soluble polyimides can be mentioned. In order to form a liquid crystal alignment film using a polymer containing polyamide, first, a coating polymer solution is prepared using the above-mentioned appropriate solvent. This polymer solution is usually used after adjusting the solid content concentration to 0.1 to 30% by weight, preferably 0.5 to 20% by weight. The polymer solution prepared in this way is applied onto a substrate 1 having a conductive film 2 by, for example, a roll coater method, a spinner method, a printing method, etc., as shown in FIG. By drying, a liquid crystal alignment film 3 made of the polymer is formed. The thickness of the liquid crystal alignment film is usually 0.01 to 1 μm, particularly preferably 0.01 to 0.5 μm. If necessary, a functional silane compound or a titanate compound can be coated on the substrate in advance to improve the adhesion between the substrate and the polyamide coating film. Functional silane compounds or titanate compounds may also be included in the polyamide coating. Specific examples of the functional silane compounds used include 3-aminopropyltrimethoxysilane, 3
-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-amino-propyltrimethoxysilane,
N-(2-aminoethyl)-3-amino-propyltriethoxysilane, N-(2-aminoethyl)-
3-amino-propylmethyldimethoxysilane,
3-ureido-propyltriethoxysilane, 3
-Ureido-propyltriethoxysilane, N-
Ethoxycarbonyl-3-amino-propyltrimethoxysilane, N-ethoxycarbonyl-3-
Amino-propyltriethoxysilane, N-trimethoxysilylpropyl-triethylenetriamine, N-triethoxysilylpropyl-triethylenetriamine, 10-trimethoxysilyl-1,
4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate,
9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-amino-propyltrimethoxysilane, N-benzyl-3-amino-propyltriethoxysilane, N-phenyl-3-amino-propyl Trimethoxysilane, N
-phenyl-3-amino-propyltriethoxysilane, N-bis(oxyethylene)-3-amino-propyltrimethoxysilane, N-bis(oxyethylene)-3-amino-propyltriethoxysilane, etc. Two or more of these functional silane compounds can also be used in combination. As a titanate compound,

【式】(R6O)Ti(OR83、 (RO)Ti(OXR73等で示されるモノアルキルチ
タネート(ここで、R6はC1〜C4のアルキル基を、
R7はビニル基、α−アルキル置換ビニル基、ま
たは炭素原子数が6以上のアルキル基、アラルキ
ル基、アリル基もしくはその誘導体を示し、R8
は炭素原子数が6以上のアルキル基、アラルキル
基、アリル基もしくはその誘導体を示し、またX
は、
[Formula] Monoalkyl titanate represented by (R 6 O) Ti (OR 8 ) 3 , (RO) Ti (OXR 7 ) 3, etc. (where R 6 is a C 1 to C 4 alkyl group,
R 7 represents a vinyl group, an α-alkyl substituted vinyl group, an alkyl group having 6 or more carbon atoms, an aralkyl group, an allyl group, or a derivative thereof, and R 8
represents an alkyl group, aralkyl group, allyl group or a derivative thereof having 6 or more carbon atoms, and X
teeth,

【式】【formula】 〔実施例〕〔Example〕

以下、実施例を挙げ本発明をさらに具体的に説
明するが、本発明はこれらの実施例に制限される
ものではない。 実施例 1 (1) N2雰囲気下、4,4′−ジアミノジフエニル
メタン16.56g(0.0835mol)を、N,N′−ジメ
チルホルムアミド(DMF)200gに溶解し、
TCA二無水物18.72g(0.0835mol)を粉末の
まま添加し、懸濁させた後、室温下で18時間反
応させ、下記に表わされる構造単位を有するポ
リアミド溶液を得た。 このポリアミドの固有粘度(ηinh)(30℃、
0.5g/dl、DMF溶媒中)は1.02dl/gであつ
た。 (2) (1)で得られたポリアミドの固形分3重量%
DMF溶液をポアサイズ0.22μmのフイルターで
濾過した後、ITO透明電極を所定のパターンに
形成してあるソーダガラス基板の上にスピンコ
ート法により塗布した。 塗布後、基板を200℃で30分間乾燥し、膜厚
0.075μmの塗膜を得た。得られた塗膜は透明性
が優れており、0.1μm換算膜厚の可視光線での
透過率を調べたところ、第2図に示すように、
98%以上の透過率を示した。この塗膜を、JIS
K5400に規定する剥離試験に供した。剥離され
た碁盤目数は0であり、高い接着性を示した。 次いで、この基板の塗布面を一方向に布でラ
ビングし配向処理を行なつた。ラビング後のラ
ビング面を水中で5分間の超音波洗浄を行つ
た。超音波洗浄後のポリアミド塗膜を、前記の
剥離試験に供したところ、剥離した碁盤目の数
は0であり、超音波洗浄の条件下においても極
めて優れた基板への接着性が維持されていた。 上記のようにラビングにより配向処理された
上下一対の基板を、ラビング方向が直交するよ
うにセルに組立てた。 次にエポシキ樹脂、フイラーとしてタルク、
硬化剤として酸無水物およびスペーサーとして
10μmの酸化アルミニウム球を混合したシール
剤でシールした。 次いで液晶注入口よりフエニルシクロヘキサ
ン系の液晶を注入して封止した後、セルの上下
の基板の外側に偏光板を偏光方向がそれぞれの
基板に貼り合わせた液晶配向膜のラビング方向
と一致するように貼りあわせ、液晶表示素子を
得た。 得られた液晶表示素子の液晶配向状態を調べ
たところ、良好な配向状態を示した。また、80
℃で200時間の高温環境試験に供したが、液晶
表示素子の表示特性はまつたく変化しなかつ
た。 なお、液晶配向膜の形成に用いたポリアミド
溶液を室温に3ケ月間放置したが、外観、粘度
等変化がなく何らの沈殿物も生じなかつた。 実施例 2 (1) 4,4′−ジアミノジフエニルメタンの代りに
4,4′−ジアミノジフエニルエーテルを用いた
他は、実施例1と同様にして下記の構造で表わ
される構造単位を有するポリアミド溶液を得
た。 このポリアミドの固有粘度(ηinh)(30℃、
0.5g/dl、DMF溶媒中)は0.75dl/gであつ
た。 (2) (1)で製造したポリアミドの固形分3重量%
DMF溶液を用いた他は、実施例1と同様にし
て、液晶配向膜として厚さ0.070μmのポリアミ
ドからなる塗膜を有する液晶表示素子を製造し
た。該ポリアミドの塗膜の、膜厚0.1μm換算の
可視光線透過率は、第2図に示すように、98%
以上であり、優れた透明性を示した。 このように形成した塗膜について、および該
塗膜をラビング後水中で超音波洗浄したものに
ついて剥離試験を行なつたが、いずれの場合も
剥離した碁盤目の数は0で、優れた基板との接
着性を有していた。 得られた液晶表示素子の液晶配向状態は良好
であり、80℃で200時間の高温環境試験後にお
いても液晶表示素子の表示特性の低下はまつた
くみられなかつた。 なお、液晶配向膜の形成に用いたポリアミド
溶液を室温に3ケ月間放置したが、外観、粘度
等変化がなく何らの沈殿物も生じなかつた。 実施例 3 (1) 実施例1で得られたポリアミド溶液100gに
DMF149g、無水酢酸8.52g(0.0835モル)お
よびピリジン11.01g(0.1392モル)を加え、
135℃に昇温し、2時間反応させた。 反応後、該溶液を大量のメタノール中に注
ぎ、ポリイミドを回収し、濾別、乾燥を行な
い、下記構造単位を有するポリイミドの粉末を
得た。 このポリアミドの固有粘度(ηinh)(30℃、
0.5g/dl、DMF溶媒中)は0.70dl/gであつ
た。 (2) 実施例1で製造したポリアミド75重量部と上
記(1)で製造したポリイミド25重量部とからなる
固形分3重量%DMF溶液を用いた他は、実施
例1と同様にして、液晶配向膜として厚さ
0.075μmのポリマー塗膜を有する液晶表示素子
を製造した。 上記のポリマー塗膜の、厚さ0.1μm換算の可
視光線透過率は98%以上と測定され、高い透明
性を示した。 このように形成した塗膜について、および該
塗膜をラビング後水中で超音波洗浄したものに
ついて、剥離試験を行なつたが、いずれの場合
も剥離した碁盤目の数は0で、優れた基板との
接着性を有していた。 得られた液晶表示素子の液晶配向状態は良好
であり、80℃で200時間の高温環境試験後にお
いても液晶表示素子の表示特性の低下はまつた
くみられなかつた。 なお、液晶配向膜の形成に用いたポリマー溶
液を室温に3ケ月間放置したが、外観、粘度等
変化がなく何らの沈殿物も生じなかつた。 実施例 4 (1) 実施例2で得られたポリアミドから実施例3
と同様にして下記構造単位を有するポリイミド
を得た。 このポリアミドの固有粘度(ηinh)(30℃、
0.5g/dl、DMF溶媒中)は0.52dl/gであつ
た。 (2) 実施例2で製造したポリアミド75重量部と上
記(1)で製造したポリイミド25重量部とからなる
固形分3重量%DMF溶液を用いた他は、実施
例1と同様にして、液晶配向膜として厚さ
0.070μmのポリマー塗膜を有する液晶表示素子
を製造した。 上記ポリマーの塗膜の、厚さ0.1μm換算の可
視光線透過率は98%以上と測定され、優れた透
明性を示した。 このように形成した塗膜について、および該
塗膜をラビング後水中で超音波洗浄したものに
ついて、剥離試験を行なつたが、いずれの場合
も剥離した碁盤目の数は0で、優れた基板との
接着性を有していた。 得られた液晶表示素子の液晶配向状態は良好
であり、80℃で200時間の高温環境試験後にお
いても液晶表示素子の表示特性の低下はまつた
くみられなかつた。 なお、液晶配向膜の形成に用いたポリマー溶
液を室温に3ケ月間放置したが、外観、粘度等
変化がなく何らの沈殿物も生じなかつた。 比較例 1 (1) N2雰囲気下、4,4′−ジアミノジフエニル
エーテル16.89g(0.0843mol)を、N−メチル
ピロリドン(NMP)200gに溶解し、撹拌し
ながら室温でピロメリツト酸二無水物18.39g
(0.0843mol)を添加し、懸濁させた後、室温
で18時間反応させ、下記構造単位を有するポリ
アミドを得た。 このポリアミドの固有粘度(ηinh)(30℃、
0.5g/dl、DMF溶媒中)は1.42dl/gであつ
た。 (2) (1)で製造したポリアミドの3重量%NMP溶
液を用い、塗布後の加熱条件を140℃で30分に
変えた以外は、実施例1と同様にして、液晶配
向膜として厚さ0.085μmのポリマー塗膜を有す
る液晶表示素子を製造した。 上記のポリアミドの塗膜の、厚さ0.1μm換算
の可視光線透過率を測定したところ、第2図に
示す波長依存性を示し、全体に透過率が実施例
の場合よりも低く、特に400nm以下および
500nm以上において著しく低く、透明性が劣
ることが判つた。 形成した塗膜を剥離試験に供したところ、剥
離した碁盤目の数は30であつた。 なお、塗布用に調製した前記のポリアミド溶
液を室温で1月間放置したところ、不溶分が析
出した。 実施例 5 塗布用ポリアミド溶液の溶媒として、N,N−
ジメチルホルムアミドの代わりに、N,N−ジメ
チルホルムアミド/γ−ブチルラクトンの25/75
(重量比)混合溶媒を用いた以外は、実施例1と
同様にして、液晶配向膜として厚さ0.090μmのポ
リマー塗膜を有する液晶表示素子を製造した。 上記ポリマー塗膜の厚さ0.1μm換算の可視光線
透過率は98%以上と測定され、優れた透明性を示
した。 このように形成した塗膜について、および該塗
膜をラビング後水中で超音波洗浄したものについ
て、剥離試験を行なつたが、いずれの場合も、剥
離した碁盤目の数は0で、優れた基板との接着性
を有していた。 得られた液晶表示素子の液晶配向状態は良好で
あり、80℃で200時間の高温環境試験後において
も液晶表示素子の表示特性の低下はまつたくみら
れなかつた。 実施例 6 (1) N2雰囲気下、4,4′−ジアミノジフエニル
エーテル20.02g(0.100mol)をNMP200gに
溶解し、撹拌しながらTCA26.02g
(0.100mol)を添加し、懸濁させた後、190℃
に昇温して、副生する水を留去しながら2時間
反応させた。その後、この反応溶液を大量のメ
タノール中に投入して凝固し、乾燥させて粉末
とし、イミド化率30%の部分イミド化ポリアミ
ドを得た。この部分イミド化ポリアミドの固有
粘度(ηinh)(30℃、0.5g/dl、NMP溶媒中)
は0.30dl/gであつた。 なお、イミド化率Aは下記式で表わされるも
のである。 A=イミド化したカルボキシル基の総数/イミド化前
のカルボキシル基の総数×100 (2) (1)で得られた部分イミド化ポリアミドの3重
量%のNMP溶液を用いた他は実施例1と同様
にして、膜厚0.065μmの液晶配向膜を有する液
晶表示素子を得た。 得られた液晶表示素子の液晶配向膜につい
て、および該液晶配向塗膜をラビング後水中で
超音波洗浄したものについて、剥離試験を行な
つたが、いずれの場合も、剥離した碁盤目の数
は0で、優れた基板との接着性を有していた。 得られた液晶表示素子の液晶配向状態は良好
であり、80℃で200時間の高温環境試験後にお
いても液晶表示素子の表示特性の低下はまつた
くみられなかつた。 なお、液晶配向膜の形成に用いたポリアミド
溶液を室温に3ケ月間放置したが、外観、粘度
等変化がなく何らの沈殿物も生じなかつた。 実施例 7 (1) N2雰囲気下、1,3−ビス(3−アミノプ
ロピル)テトラメチルジシロキサン8.16g
(0.0253mol)および4,4′−ジアミノジフエニ
ルエーテル15.20g(0.0759モル)をDMF200g
に溶解し、TCA二無水物22.6g(0.1012mol)
を添加し、室温で18時間反応させポリアミドを
溶液を得た。 このポリアミドの固有粘度(ηinh)(30℃、
0.5g/dl、DMF溶媒中)は0.83dl/gであつ
た。 (2) (1)で得られたポリアミドの3重量%のDMF
溶液を用い、基板としてソーダガラスを用い、
200℃で1時間乾燥した他は、実施例1と同様
にして膜厚0.085μmの液晶配向膜を有する液晶
表示素子を得た。 得られた液晶表示素子の液晶配向膜につい
て、および該液晶配向塗膜をラビング後水中で
超音波洗浄したものについて、剥離試験を行な
つたが、いずれの場合も、剥離した碁盤目の数
は0で、優れた基板との接着性を有していた。 得られた液晶表示素子の液晶配向状態は良好
であり、80℃で200時間の高温環境試験後にお
いても液晶表示素子の表示特性の低下はまつた
くみられなかつた。 なお、液晶配向膜の形成に用いたポリアミド
溶液を室温に3ケ月間放置したが、外観、粘度
等変化がなく何らの沈殿物も生じなかつた。 実施例 8 実施例1で得られたポリアミドの3重量%の
DMF溶液100重量部に対し、3−ウレイドプロピ
ルトリエトキシシラン3重量部を添加した溶液を
用い、基板としてソーダガラスを用い、200℃で
1時間乾燥した他は実施例1と同様にして膜厚
0.085μmの液晶配向膜を有する液晶表示素子を得
た。 得られた液晶表示素子の液晶配向膜について、
および該液晶配向膜をラビング後水中で超音波洗
浄したものについて、基盤目試験を行なつたが、
いずれの場合も、剥離した碁盤目の数は0で、優
れた基板との接着性を有していた。 得られた液晶表示素子の液晶配向状態は良好で
あり、80℃で200時間の高温環境試験後において
も液晶表示素子の表示特性の低下はまつたくみら
れなかつた。 なお、液晶配向膜の形成に用いたポリアミド溶
液を室温に3ケ月間放置したが、外観、粘度等変
化がなく何らの沈殿物も生じなかつた。 実施例 9 (1) N2雰囲気下、2,2−ビス[4−(4−アミ
ノフエノキシ)フエニル]プロパン41.54g
(0.1012mol)を、γ−ブチロラクトン360gに
溶解し、TCA二無水物22.69g(0.1012mol)
を粉末のまま添加し、懸濁させた後、室温下で
18時間反応させ、下記に表わされる構造単位を
有するポリアミド溶液を得た。 このポリアミドの固有粘度(ηinh)(30℃、
0.5g/dl、γ−ブチロラクトン溶媒中)は
0.94dl/gであつた。 (2) (1)で製造したポリアミドの固形分3重量%γ
−ブチロラクトン溶液を用い、塗布後の加熱条
件を200℃で60分に変えた以外は、実施例1と
同様にして、液晶配向膜として厚さ0.085μmの
ポリマー塗膜を有する液晶表示素子を製造し
た。 上記のポリマー塗膜の、厚さ0.1μm換算の可
視光線透過率は98%以上と測定され、高い透明
性を示した。 このように形成した塗膜について、および該
塗膜をラビング後水中で超音波洗浄したものに
ついて、剥離試験を行なつたが、いずれの場合
も剥離した碁盤目の数は0で、優れた基板との
接着性を有していた。 得られた液晶表示素子の液晶配向状態は良好
であり、80℃で200時間の高温環境試験後にお
いても液晶表示素子の表示特性の低下はまつた
くみられなかつた。 なお、液晶配向膜の形成に用いたポリマー溶
液を室温に3ケ月間放置したが、外観、粘度等
変化がなく何らの沈殿物も生じなかつた。 実施例 10 (1) N2雰囲気下、ビス[4−(4−アミノフエノ
キシ)フエニル]スルホン43.77g
(0.1012mol)を、γ−ブチロラクトン380gに
溶解し、TCA二無水物22.69g(0.1012mol)
を粉末のまま添加し、懸濁させた後、室温下で
18時間反応させ、下記に表わされる構造単位を
有するポリアミド溶液を得た。 このポリアミドの固有粘度(ηinh)(30℃、
0.5g/dl、γ−ブチロラクトン溶媒中)は
0.84dl/gであつた。 (2) (1)で製造したポリアミドの固形分3重量%γ
−ブチロラクトン溶液を用い、塗布後の加熱条
件を200℃で60分に変えた以外は、実施例1と
同様にして、液晶配向膜として厚さ0.085μmの
ポリマー塗膜を有する液晶表示素子を製造し
た。 上記のポリマー塗膜の、厚さ0.1μm換算の可
視光線透過率は98%以上と測定され、高い透明
性を示した。 このように形成した塗膜について、および該
塗膜をラビング後水中で超音波洗浄したものに
ついて、剥離試験を行なつたが、いずれの場合
も剥離した碁盤目の数は0で、優れた基板との
接着性を有していた。 得られた液晶表示素子の液晶配向状態は良好
であり、80℃で200時間の高温環境試験後にお
いても液晶表示素子の表示特性の低下はまつた
くみられなかつた。 なお、液晶配向膜の形成に用いたポリマー溶
液を室温に3ケ月間放置したが、外観、粘度等
変化がなく何らの沈殿物も生じなかつた。 実施例 11 (1) N2雰囲気下、1,3−ビス(4−アミノフ
エノキシ)ベンゼン29.58g(0.1012mol)を、
γ−ブチロラクトン300gに溶解し、TCA二無
水物22.69g(0.1012mol)を粉末のまま添加
し、懸濁させた後、室温下で18時間反応させ、
下記に表わされる構造単位を有するポリアミド
溶液を得た。 このポリアミドの固有粘度(ηinh)(30℃、
0.5g/dl、γ−ブチロラクトン溶媒中)は
0.96dl/gであつた。 (2) (1)で製造したポリアミドの固形分3重量%γ
−ブチロラクトン溶液を用い、塗布後の加熱条
件を200℃で60分に変えた以外は、実施例1と
同様にして、液晶配向膜として厚さ0.085μmの
ポリマー塗膜を有する液晶表示素子を製造し
た。 上記のポリマー塗膜の、厚さ0.1μm換算の可
視光線透過率は98%以上と測定され、高い透明
性を示した。 このように形成した塗膜について、および該
塗膜をラビング後水中で超音波洗浄したものに
ついて剥離試験を行なつたが、いずれの場合も
剥離した碁盤目の数は0で、優れた基板との接
着性を有していた。 得られた液晶表示素子の液晶配向状態は良好
であり、80℃で200時間の高温環境試験後にお
いても液晶表示素子の表示特性の低下はまつた
くみられなかつた。 なお、液晶配向膜の形成に用いたポリマー溶
液を室温に3ケ月間放置したが、外観、粘度等
変化がなく何らの沈殿物も生じなかつた。 実施例 12 (1) N2雰囲気下、3,3′−ジメチル−4,4′−ジ
アミノビフエニル21.48g(0.1012mol)を、γ
−ブチロラクトン230gに溶解し、TCA二無水
物22.69g(0.1012mol)を粉末のまま添加し、
懸濁させた後、室温下で18時間反応させ、下記
に表わされる構造単位を有するポリアミド溶液
を得た。 このポリアミドの固有粘度(ηinh)(30℃、
0.5g/dl、γ−ブチロラクトン溶媒中)は
1.40dl/gであつた。 (2) (1)で製造したポリアミドの固形分3重量%γ
−ブチロラクトン溶液を用い、塗布後の加熱条
件を200℃で60分に変えた以外は、実施例1と
同様にして、液晶配向膜として厚さ0.085μmの
ポリマー塗膜を有する液晶表示素子を製造し
た。 上記のポリマー塗膜の、厚さ0.1μm換算の可
視光線透過率は98%以上と測定され、高い透明
性を示した。 このように形成した塗膜について、および該
塗膜をラビング後水中で超音波洗浄したものに
ついて、剥離試験を行なつたが、いずれの場合
も剥離した碁盤目の数は0で、優れた基板との
接着性を有していた。 得られた液晶表示素子の液晶配向状態は良好
であり、80℃で200時間の高温環境試験後にお
いても液晶表示素子の表示特性の低下はまつた
くみられなかつた。 なお、液晶配向膜の形成に用いたポリマー溶
液を室温に3ケ月間放置したが、外観、粘度等
変化がなく何らの沈殿物も生じなかつた。 実施例 13 (1) N2雰囲気下、3,4′−ジアミノジフエニル
エーテル20.26g(0.1012mol)を、γ−ブチロ
ラクトン200gに溶解し、TCA二無水物22.69
g(0.1012mol)を粉末のまま添加し、懸濁さ
せた後、室温下で18時間反応させ、下記に表わ
される構造単位を有するポリアミド溶液を得
た。 このポリアミドの固有粘度(ηinh)(30℃、
0.5g/dl、γ−ブチロラクトン溶媒中)は
0.51dl/gであつた。 (2) (1)で製造したポリアミドの固形分3重量%γ
−ブチロラクトン溶液を用い、塗布後の加熱条
件を200℃で60分に変えた以外は、実施例1と
同様にして、液晶配向膜として厚さ0.085μmの
ポリマー塗膜を有する液晶表示素子を製造し
た。 上記のポリマー塗膜の、厚さ0.1μm換算の可
視光線透過率は98%以上と測定され、高い透明
性を示した。 このように形成した塗膜について、および該
塗膜をラビング後水中で超音波洗浄したものに
ついて、剥離試験を行なつたが、いずれの場合
も剥離した碁盤目の数は0で、優れた基板との
接着性を有していた。 得られた液晶表示素子の液晶配向状態は良好
であり、80℃で200時間の高温環境試験後にお
いても液晶表示素子の表示特性の低下はまつた
くみられなかつた。 なお、液晶配向膜の形成に用いたポリマー溶
液を室温に3ケ月間放置したが、外観、粘度等
変化がなく何らの沈殿物も生じなかつた。 〔発明の効果〕 本発明の液晶表示素子は、液晶配向膜であるポ
リアミドを主成分とするポリマー塗膜が製造に際
して高温長時間の熱処理を必要としないので、他
の素子材料を損傷する恐れがなく、製造が容易で
あり、さらに基板等に耐熱性の低いプラスチツク
材料を利用することもできる。しかも該ポリマー
塗膜は、液晶表示素子の製造時の高温に耐える耐
熱性を有するとともに、良好な液晶配向能を有し
ている。さらに、該ポリマー塗膜の基板との接着
性も良好である。また、該ポリマー塗膜は、液晶
の実用的作動温度範囲においては経時的にも安定
で着色など生ぜず、液晶表示素子は信頼性の高い
表示特性を有するものである。 また、前記ポリマー塗膜は、屈折率が例えば
1.5というように低いものであるので本発明の液
晶表示素子は外部から見たときに内部の透明電極
が見えにくいという効果をも有するものである。 さらに、本発明の液晶表示素子の液晶配向膜の
作成に用いる塗布用ポリマー溶液は、安定性が高
く、長期の保存によつても白濁や粘度変化を生じ
ないので、素子製造上有利である。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 (1) Under an N2 atmosphere, 16.56 g (0.0835 mol) of 4,4'-diaminodiphenylmethane was dissolved in 200 g of N,N'-dimethylformamide (DMF),
18.72 g (0.0835 mol) of TCA dianhydride was added as a powder, suspended, and reacted at room temperature for 18 hours to obtain a polyamide solution having the structural unit shown below. Intrinsic viscosity (ηinh) of this polyamide (30℃,
0.5 g/dl in DMF solvent) was 1.02 dl/g. (2) Solid content of polyamide obtained in (1): 3% by weight
After the DMF solution was filtered through a filter with a pore size of 0.22 μm, an ITO transparent electrode was applied onto a soda glass substrate formed in a predetermined pattern by spin coating. After coating, dry the substrate at 200℃ for 30 minutes to determine the film thickness.
A coating film of 0.075 μm was obtained. The obtained coating film has excellent transparency, and when the transmittance of visible light at a film thickness equivalent to 0.1 μm was examined, as shown in Figure 2,
It showed a transmittance of over 98%. This coating film is JIS
It was subjected to a peel test specified in K5400. The number of peeled off grids was 0, indicating high adhesiveness. Next, the coated surface of this substrate was rubbed in one direction with a cloth for orientation treatment. After rubbing, the rubbed surface was subjected to ultrasonic cleaning in water for 5 minutes. When the polyamide coating film after ultrasonic cleaning was subjected to the peeling test described above, the number of peeled off grids was 0, indicating that extremely excellent adhesion to the substrate was maintained even under ultrasonic cleaning conditions. Ta. A pair of upper and lower substrates that had been oriented by rubbing as described above were assembled into a cell so that the rubbing directions were perpendicular to each other. Next, use epoxy resin, talc as a filler,
Acid anhydride as curing agent and spacer
A 10 μm aluminum oxide sphere was sealed with a mixed sealant. Next, phenylcyclohexane-based liquid crystal is injected from the liquid crystal injection port and sealed, and then polarizing plates are placed on the outside of the upper and lower substrates of the cell so that the polarization direction matches the rubbing direction of the liquid crystal alignment film attached to each substrate. A liquid crystal display element was obtained. When the liquid crystal alignment state of the obtained liquid crystal display element was examined, it was found that the liquid crystal alignment state was good. Also, 80
Although it was subjected to a high temperature environment test at ℃ for 200 hours, the display characteristics of the liquid crystal display element did not change appreciably. Although the polyamide solution used to form the liquid crystal alignment film was left at room temperature for 3 months, there was no change in appearance, viscosity, etc., and no precipitates were formed. Example 2 (1) Same as Example 1 except that 4,4'-diaminodiphenyl ether was used instead of 4,4'-diaminodiphenyl methane, having a structural unit represented by the following structure. A polyamide solution was obtained. Intrinsic viscosity (ηinh) of this polyamide (30℃,
0.5 g/dl in DMF solvent) was 0.75 dl/g. (2) Solid content of polyamide produced in (1): 3% by weight
A liquid crystal display element having a coating film made of polyamide with a thickness of 0.070 μm as a liquid crystal alignment film was manufactured in the same manner as in Example 1 except that a DMF solution was used. The visible light transmittance of the polyamide coating film when converted to a film thickness of 0.1 μm is 98%, as shown in Figure 2.
The above results showed excellent transparency. Peeling tests were conducted on the coating film formed in this way and on the coating film that was ultrasonically cleaned in water after rubbing, but in both cases, the number of peeled off grids was 0, indicating that it was an excellent substrate. It had adhesive properties. The liquid crystal alignment state of the obtained liquid crystal display element was good, and no deterioration in the display characteristics of the liquid crystal display element was observed even after a high-temperature environment test at 80° C. for 200 hours. Although the polyamide solution used to form the liquid crystal alignment film was left at room temperature for 3 months, there was no change in appearance, viscosity, etc., and no precipitates were formed. Example 3 (1) 100g of the polyamide solution obtained in Example 1
Add 149 g of DMF, 8.52 g (0.0835 mol) of acetic anhydride and 11.01 g (0.1392 mol) of pyridine,
The temperature was raised to 135°C and the mixture was reacted for 2 hours. After the reaction, the solution was poured into a large amount of methanol to recover the polyimide, which was filtered and dried to obtain a polyimide powder having the following structural unit. Intrinsic viscosity (ηinh) of this polyamide (30℃,
0.5 g/dl in DMF solvent) was 0.70 dl/g. (2) A liquid crystal was prepared in the same manner as in Example 1, except that a 3% by weight DMF solution containing 75 parts by weight of the polyamide produced in Example 1 and 25 parts by weight of the polyimide produced in (1) above was used. Thickness as alignment film
A liquid crystal display element with a 0.075 μm polymer coating was manufactured. The visible light transmittance of the above polymer coating film calculated at a thickness of 0.1 μm was measured to be 98% or more, indicating high transparency. Peeling tests were conducted on the coating film formed in this way, and on the coating film that had been rubbed and then ultrasonically cleaned in water. In all cases, the number of peeled off grids was 0, indicating that the substrate was an excellent substrate. It had adhesive properties with. The liquid crystal alignment state of the obtained liquid crystal display element was good, and no deterioration in the display characteristics of the liquid crystal display element was observed even after a high-temperature environment test at 80° C. for 200 hours. Although the polymer solution used to form the liquid crystal alignment film was left at room temperature for 3 months, there was no change in appearance, viscosity, etc., and no precipitates were formed. Example 4 (1) Example 3 from the polyamide obtained in Example 2
A polyimide having the following structural unit was obtained in the same manner as above. Intrinsic viscosity (ηinh) of this polyamide (30℃,
0.5 g/dl in DMF solvent) was 0.52 dl/g. (2) A liquid crystal was prepared in the same manner as in Example 1, except that a 3% by weight DMF solution containing 75 parts by weight of the polyamide produced in Example 2 and 25 parts by weight of the polyimide produced in (1) above was used. Thickness as alignment film
A liquid crystal display element with a 0.070 μm polymer coating was manufactured. The visible light transmittance of the coating film of the above polymer was measured to be 98% or more when converted to a thickness of 0.1 μm, indicating excellent transparency. Peeling tests were conducted on the coating film formed in this way, and on the coating film that had been rubbed and then ultrasonically cleaned in water. In all cases, the number of peeled off grids was 0, indicating that the substrate was an excellent substrate. It had adhesive properties with. The liquid crystal alignment state of the obtained liquid crystal display element was good, and no deterioration in the display characteristics of the liquid crystal display element was observed even after a high-temperature environment test at 80° C. for 200 hours. Although the polymer solution used to form the liquid crystal alignment film was left at room temperature for 3 months, there was no change in appearance, viscosity, etc., and no precipitates were formed. Comparative Example 1 (1) Under an N2 atmosphere, 16.89 g (0.0843 mol) of 4,4'-diaminodiphenyl ether was dissolved in 200 g of N-methylpyrrolidone (NMP), and pyromellitic dianhydride was dissolved at room temperature while stirring. 18.39g
(0.0843 mol) was added, suspended, and reacted at room temperature for 18 hours to obtain a polyamide having the following structural unit. Intrinsic viscosity (ηinh) of this polyamide (30℃,
0.5 g/dl in DMF solvent) was 1.42 dl/g. (2) Using the 3% by weight NMP solution of the polyamide produced in (1), the same procedure as in Example 1 was carried out, except that the heating conditions after coating were changed to 140°C for 30 minutes. A liquid crystal display element with a 0.085 μm polymer coating was manufactured. When the visible light transmittance of the above polyamide coating film was measured at a thickness of 0.1 μm, it showed the wavelength dependence shown in Figure 2, and the transmittance was lower overall than in the example, especially below 400 nm. and
It was found that the transparency was extremely low at wavelengths of 500 nm or more, and the transparency was poor. When the formed coating film was subjected to a peel test, the number of peeled off grids was 30. Note that when the polyamide solution prepared for coating was left at room temperature for one month, insoluble matter precipitated. Example 5 As a solvent for a polyamide solution for coating, N,N-
25/75 of N,N-dimethylformamide/γ-butyllactone instead of dimethylformamide
(Weight ratio) A liquid crystal display element having a polymer coating film with a thickness of 0.090 μm as a liquid crystal alignment film was manufactured in the same manner as in Example 1 except that a mixed solvent was used. The visible light transmittance of the polymer coating film calculated at a thickness of 0.1 μm was measured to be 98% or more, indicating excellent transparency. Peeling tests were conducted on the coating films formed in this way, and on those coated with ultrasonic cleaning in water after rubbing, but in both cases, the number of peeled off grids was 0, indicating excellent It had adhesive properties with the substrate. The liquid crystal alignment state of the obtained liquid crystal display element was good, and no deterioration in the display characteristics of the liquid crystal display element was observed even after a high-temperature environment test at 80° C. for 200 hours. Example 6 (1) Under N2 atmosphere, 20.02g (0.100mol) of 4,4'-diaminodiphenyl ether was dissolved in 200g of NMP, and 26.02g of TCA was added with stirring.
(0.100mol) and suspended at 190℃.
The temperature was raised to 100.degree. C., and the reaction was allowed to proceed for 2 hours while distilling off water as a by-product. Thereafter, this reaction solution was poured into a large amount of methanol, solidified, and dried to form a powder to obtain a partially imidized polyamide with an imidization rate of 30%. Intrinsic viscosity (ηinh) of this partially imidized polyamide (30℃, 0.5g/dl, in NMP solvent)
was 0.30 dl/g. Incidentally, the imidization rate A is expressed by the following formula. A = total number of imidized carboxyl groups/total number of carboxyl groups before imidization x 100 (2) Same as Example 1 except that a 3% by weight NMP solution of the partially imidized polyamide obtained in (1) was used. Similarly, a liquid crystal display element having a liquid crystal alignment film with a film thickness of 0.065 μm was obtained. Peeling tests were conducted on the liquid crystal alignment film of the obtained liquid crystal display element and on the liquid crystal alignment coating film that had been ultrasonically cleaned in water after rubbing. In each case, the number of peeled off grids was 0, and had excellent adhesion to the substrate. The liquid crystal alignment state of the obtained liquid crystal display element was good, and no deterioration in the display characteristics of the liquid crystal display element was observed even after a high-temperature environment test at 80° C. for 200 hours. Although the polyamide solution used to form the liquid crystal alignment film was left at room temperature for 3 months, there was no change in appearance, viscosity, etc., and no precipitates were formed. Example 7 (1) 8.16 g of 1,3-bis(3-aminopropyl)tetramethyldisiloxane under N2 atmosphere
(0.0253 mol) and 15.20 g (0.0759 mol) of 4,4'-diaminodiphenyl ether in 200 g of DMF.
22.6g (0.1012mol) of TCA dianhydride dissolved in
was added and reacted at room temperature for 18 hours to obtain a polyamide solution. Intrinsic viscosity (ηinh) of this polyamide (30℃,
0.5 g/dl in DMF solvent) was 0.83 dl/g. (2) 3% by weight DMF of the polyamide obtained in (1)
Using a solution and using soda glass as a substrate,
A liquid crystal display element having a liquid crystal alignment film with a thickness of 0.085 μm was obtained in the same manner as in Example 1, except that it was dried at 200° C. for 1 hour. Peeling tests were conducted on the liquid crystal alignment film of the obtained liquid crystal display element and on the liquid crystal alignment coating film that had been ultrasonically cleaned in water after rubbing. In each case, the number of peeled off grids was 0, and had excellent adhesion to the substrate. The liquid crystal alignment state of the obtained liquid crystal display element was good, and no deterioration in the display characteristics of the liquid crystal display element was observed even after a high-temperature environment test at 80° C. for 200 hours. Although the polyamide solution used to form the liquid crystal alignment film was left at room temperature for 3 months, there was no change in appearance, viscosity, etc., and no precipitates were formed. Example 8 3% by weight of the polyamide obtained in Example 1
The film thickness was obtained in the same manner as in Example 1 except that 3 parts by weight of 3-ureidopropyltriethoxysilane was added to 100 parts by weight of DMF solution, soda glass was used as the substrate, and the film was dried at 200°C for 1 hour.
A liquid crystal display element having a liquid crystal alignment film of 0.085 μm was obtained. Regarding the liquid crystal alignment film of the obtained liquid crystal display element,
A substrate eye test was conducted on the liquid crystal alignment film which was subjected to ultrasonic cleaning in water after rubbing.
In either case, the number of peeled off grids was 0, indicating excellent adhesion to the substrate. The liquid crystal alignment state of the obtained liquid crystal display element was good, and no deterioration in the display characteristics of the liquid crystal display element was observed even after a high-temperature environment test at 80° C. for 200 hours. Although the polyamide solution used to form the liquid crystal alignment film was left at room temperature for 3 months, there was no change in appearance, viscosity, etc., and no precipitates were formed. Example 9 (1) 41.54 g of 2,2-bis[4-(4-aminophenoxy)phenyl]propane under N2 atmosphere
(0.1012 mol) was dissolved in 360 g of γ-butyrolactone, and 22.69 g (0.1012 mol) of TCA dianhydride was dissolved in 360 g of γ-butyrolactone.
was added as a powder, suspended, and then stirred at room temperature.
The reaction was carried out for 18 hours to obtain a polyamide solution having the structural unit shown below. Intrinsic viscosity (ηinh) of this polyamide (30℃,
0.5g/dl in γ-butyrolactone solvent) is
It was 0.94 dl/g. (2) Solid content of polyamide produced in (1): 3% by weight γ
- A liquid crystal display element having a polymer coating film with a thickness of 0.085 μm as a liquid crystal alignment film was produced in the same manner as in Example 1, except that a butyrolactone solution was used and the heating conditions after application were changed to 200°C for 60 minutes. did. The visible light transmittance of the above polymer coating film calculated at a thickness of 0.1 μm was measured to be 98% or more, indicating high transparency. Peeling tests were conducted on the coating film formed in this way, and on the coating film that had been rubbed and then ultrasonically cleaned in water. In all cases, the number of peeled off grids was 0, indicating that the substrate was an excellent substrate. It had adhesive properties with. The liquid crystal alignment state of the obtained liquid crystal display element was good, and no deterioration in the display characteristics of the liquid crystal display element was observed even after a high-temperature environment test at 80° C. for 200 hours. Although the polymer solution used to form the liquid crystal alignment film was left at room temperature for 3 months, there was no change in appearance, viscosity, etc., and no precipitates were formed. Example 10 (1) 43.77 g of bis[4-(4-aminophenoxy)phenyl]sulfone under N2 atmosphere
(0.1012 mol) was dissolved in 380 g of γ-butyrolactone, and 22.69 g (0.1012 mol) of TCA dianhydride was dissolved in 380 g of γ-butyrolactone.
was added as a powder, suspended, and then stirred at room temperature.
The reaction was carried out for 18 hours to obtain a polyamide solution having the structural unit shown below. Intrinsic viscosity (ηinh) of this polyamide (30℃,
0.5g/dl in γ-butyrolactone solvent) is
It was 0.84 dl/g. (2) Solid content of polyamide produced in (1): 3% by weight γ
- A liquid crystal display element having a polymer coating film with a thickness of 0.085 μm as a liquid crystal alignment film was produced in the same manner as in Example 1, except that a butyrolactone solution was used and the heating conditions after application were changed to 200°C for 60 minutes. did. The visible light transmittance of the above polymer coating film calculated at a thickness of 0.1 μm was measured to be 98% or more, indicating high transparency. Peeling tests were conducted on the coating film formed in this way, and on the coating film that was ultrasonically cleaned in water after rubbing, but in all cases, the number of peeled off grids was 0, indicating that it was an excellent substrate. It had adhesive properties with. The liquid crystal alignment state of the obtained liquid crystal display element was good, and no deterioration in the display characteristics of the liquid crystal display element was observed even after a high-temperature environment test at 80° C. for 200 hours. Although the polymer solution used to form the liquid crystal alignment film was left at room temperature for 3 months, there was no change in appearance, viscosity, etc., and no precipitates were formed. Example 11 (1) Under an N2 atmosphere, 29.58 g (0.1012 mol) of 1,3-bis(4-aminophenoxy)benzene was
Dissolved in 300 g of γ-butyrolactone, added 22.69 g (0.1012 mol) of TCA dianhydride as a powder, suspended, and reacted at room temperature for 18 hours.
A polyamide solution having the structural unit shown below was obtained. Intrinsic viscosity (ηinh) of this polyamide (30℃,
0.5g/dl in γ-butyrolactone solvent) is
It was 0.96 dl/g. (2) Solid content of polyamide produced in (1): 3% by weight γ
- A liquid crystal display element having a polymer coating film with a thickness of 0.085 μm as a liquid crystal alignment film was produced in the same manner as in Example 1, except that a butyrolactone solution was used and the heating conditions after application were changed to 200°C for 60 minutes. did. The visible light transmittance of the above polymer coating film calculated at a thickness of 0.1 μm was measured to be 98% or more, indicating high transparency. Peeling tests were conducted on the coating film formed in this way and on the coating film that was ultrasonically cleaned in water after rubbing, but in both cases, the number of peeled off grids was 0, indicating that it was an excellent substrate. It had adhesive properties of The liquid crystal alignment state of the obtained liquid crystal display element was good, and no deterioration in the display characteristics of the liquid crystal display element was observed even after a high-temperature environment test at 80° C. for 200 hours. Although the polymer solution used to form the liquid crystal alignment film was left at room temperature for 3 months, there was no change in appearance, viscosity, etc., and no precipitates were formed. Example 12 (1) Under N2 atmosphere, 21.48 g (0.1012 mol) of 3,3'-dimethyl-4,4'-diaminobiphenyl was added to γ
- Dissolved in 230 g of butyrolactone and added 22.69 g (0.1012 mol) of TCA dianhydride as a powder,
After suspending, the mixture was reacted at room temperature for 18 hours to obtain a polyamide solution having the structural unit shown below. Intrinsic viscosity (ηinh) of this polyamide (30℃,
0.5g/dl in γ-butyrolactone solvent) is
It was 1.40 dl/g. (2) Solid content of polyamide produced in (1): 3% by weight γ
- A liquid crystal display element having a polymer coating film with a thickness of 0.085 μm as a liquid crystal alignment film was produced in the same manner as in Example 1, except that a butyrolactone solution was used and the heating conditions after application were changed to 200°C for 60 minutes. did. The visible light transmittance of the above polymer coating film calculated at a thickness of 0.1 μm was measured to be 98% or more, indicating high transparency. Peeling tests were conducted on the coating film formed in this way, and on the coating film that had been rubbed and then ultrasonically cleaned in water. In all cases, the number of peeled off grids was 0, indicating that the substrate was an excellent substrate. It had adhesive properties with. The liquid crystal alignment state of the obtained liquid crystal display element was good, and no deterioration in the display characteristics of the liquid crystal display element was observed even after a high-temperature environment test at 80° C. for 200 hours. Although the polymer solution used to form the liquid crystal alignment film was left at room temperature for 3 months, there was no change in appearance, viscosity, etc., and no precipitates were formed. Example 13 (1) Under an N2 atmosphere, 20.26 g (0.1012 mol) of 3,4'-diaminodiphenyl ether was dissolved in 200 g of γ-butyrolactone, and 22.69 g of TCA dianhydride was dissolved.
g (0.1012 mol) was added as a powder, suspended, and reacted at room temperature for 18 hours to obtain a polyamide solution having the structural unit shown below. Intrinsic viscosity (ηinh) of this polyamide (30℃,
0.5g/dl in γ-butyrolactone solvent) is
It was 0.51 dl/g. (2) Solid content of polyamide produced in (1): 3% by weight γ
- A liquid crystal display element having a polymer coating film with a thickness of 0.085 μm as a liquid crystal alignment film was produced in the same manner as in Example 1, except that a butyrolactone solution was used and the heating conditions after application were changed to 200°C for 60 minutes. did. The visible light transmittance of the above polymer coating film calculated at a thickness of 0.1 μm was measured to be 98% or more, indicating high transparency. Peeling tests were conducted on the coating film formed in this way, and on the coating film that had been rubbed and then ultrasonically cleaned in water. In all cases, the number of peeled off grids was 0, indicating that the substrate was an excellent substrate. It had adhesive properties with. The liquid crystal alignment state of the obtained liquid crystal display element was good, and no deterioration in the display characteristics of the liquid crystal display element was observed even after a high-temperature environment test at 80° C. for 200 hours. Although the polymer solution used to form the liquid crystal alignment film was left at room temperature for 3 months, there was no change in appearance, viscosity, etc., and no precipitates were formed. [Effects of the Invention] The liquid crystal display element of the present invention does not require high-temperature and long-term heat treatment for the liquid crystal alignment film, which is a polymer coating film whose main component is polyamide, so there is no risk of damaging other element materials. It is easy to manufacture, and it is also possible to use plastic materials with low heat resistance for the substrate and the like. Furthermore, the polymer coating film has heat resistance that can withstand high temperatures during the manufacture of liquid crystal display elements, and also has good liquid crystal alignment ability. Furthermore, the adhesion of the polymer coating film to the substrate is also good. Further, the polymer coating film is stable over time and does not cause coloring in the practical operating temperature range of liquid crystals, and the liquid crystal display element has highly reliable display characteristics. Further, the polymer coating film has a refractive index of, for example,
Since it is as low as 1.5, the liquid crystal display element of the present invention also has the effect that the internal transparent electrodes are difficult to see when viewed from the outside. Furthermore, the polymer solution for coating used to prepare the liquid crystal alignment film of the liquid crystal display element of the present invention is highly stable and does not become cloudy or change in viscosity even after long-term storage, which is advantageous in the production of the element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、液晶表示素子の断面図、第2図は、
実施例1、2および比較例1で作成したポリマー
塗膜の透過率の波長依存性を示すグラフである。 1……基板、2……透明導電膜(電極)、3…
…液晶配向膜、4……液晶、5……シール材、6
……偏光板。
Figure 1 is a cross-sectional view of a liquid crystal display element, and Figure 2 is a cross-sectional view of a liquid crystal display element.
1 is a graph showing the wavelength dependence of transmittance of polymer coating films created in Examples 1 and 2 and Comparative Example 1. 1...Substrate, 2...Transparent conductive film (electrode), 3...
...Liquid crystal alignment film, 4...Liquid crystal, 5...Sealing material, 6
……Polarizer.

Claims (1)

【特許請求の範囲】 1 液晶配向膜を有する液晶表示素子において、
液晶配向膜が下記一般式()および() 〔式中、R1は2価の有機ジアミン残基、R2およ
びR3は同一または異なつてもよく、水素原子ま
たはアルキル基を表わす。〕 で表わされる構造単位の少なくとも1種を有する
ポリアミドを含むポリマーからなることを特徴と
する液晶表示素子。
[Claims] 1. In a liquid crystal display element having a liquid crystal alignment film,
The liquid crystal alignment film has the following general formulas () and () [In the formula, R 1 is a divalent organic diamine residue, R 2 and R 3 may be the same or different and represent a hydrogen atom or an alkyl group. ] A liquid crystal display element comprising a polymer containing a polyamide having at least one structural unit represented by the following.
JP762186A 1986-01-17 1986-01-17 Liquid crystal display element Granted JPS62165628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP762186A JPS62165628A (en) 1986-01-17 1986-01-17 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP762186A JPS62165628A (en) 1986-01-17 1986-01-17 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JPS62165628A JPS62165628A (en) 1987-07-22
JPH0560566B2 true JPH0560566B2 (en) 1993-09-02

Family

ID=11670889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP762186A Granted JPS62165628A (en) 1986-01-17 1986-01-17 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPS62165628A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237324A (en) * 1988-07-27 1990-02-07 Sanyo Electric Co Ltd Production of polyimide oriented film
JP2635435B2 (en) * 1989-09-06 1997-07-30 シャープ株式会社 Liquid crystal display
JPH0843829A (en) * 1995-07-26 1996-02-16 Sanyo Electric Co Ltd Liquid crystal oriented film material
JP2001272645A (en) * 2000-03-27 2001-10-05 Hitachi Ltd Liquid crystal display device
JP3908552B2 (en) 2001-03-29 2007-04-25 Nec液晶テクノロジー株式会社 Liquid crystal display device and manufacturing method thereof
JP5516863B2 (en) 2009-03-18 2014-06-11 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5376165B2 (en) 2009-04-08 2013-12-25 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5582295B2 (en) 2009-06-11 2014-09-03 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5556395B2 (en) 2009-08-28 2014-07-23 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element
JP5712524B2 (en) 2009-10-28 2015-05-07 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5832847B2 (en) 2011-10-13 2015-12-16 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP6288412B2 (en) 2013-01-17 2018-03-07 Jsr株式会社 Liquid crystal alignment agent
JP6252752B2 (en) 2013-04-09 2017-12-27 Jsr株式会社 Liquid crystal alignment agent
JP6315182B2 (en) 2014-03-18 2018-04-25 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP6451941B2 (en) 2014-04-23 2019-01-16 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element

Also Published As

Publication number Publication date
JPS62165628A (en) 1987-07-22

Similar Documents

Publication Publication Date Title
JP3257325B2 (en) Method for producing polyimide copolymer, thin film forming agent, and method for producing liquid crystal alignment film
US4880895A (en) Polyimide film-forming polyamide acid solution
JP3612832B2 (en) Method for producing imide group-containing polyamic acid and liquid crystal aligning agent
JP5428336B2 (en) Coating liquid, liquid crystal alignment film and liquid crystal display element using the same
WO2004053583A1 (en) Liquid crystl orientating agent and liquid crystal display element using it
WO2004021076A1 (en) Material for liquid crystal alignment and liquid crystal displays made by using the same
KR100940471B1 (en) Aligning agent for liquid crystal and liquid-crystal display element
JPH0743726A (en) Liquid crystal display element
KR100941904B1 (en) Liquid crystal aligning agent for vertical alignment, alignment layer for liquid crystal, and liquid crystal displays made by using the same
JPH0560566B2 (en)
KR20150052120A (en) Liquid crystal aligning agent and liquid crystal display element using same
EP1276003A1 (en) Liquid-crystal display
JP3584457B2 (en) Diamine compound, polyamic acid, polyimide, liquid crystal aligning agent and liquid crystal display device
KR20030020359A (en) Liquid crystal orientating agent and liquid crystal display element using the same
US6084058A (en) Composition for liquid crystal aligning film, liquid crystal aligning film, liquid crystal displays and liquid crystal display element
JPH0648338B2 (en) Alignment treatment agent for liquid crystal display devices
JP3521589B2 (en) Polyimide block copolymer, method for producing the same, and liquid crystal alignment film
KR100827167B1 (en) Liquid Crystal Aligning Agent and In-plane Switching Liquid Crystal Display
TW201905039A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPH0560565B2 (en)
JP2010266477A (en) Liquid crystal aligner and liquid crystal display element
KR101494464B1 (en) Liquid crystal aligning agent and in-plane switching liquid crystal display
JP4003592B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP2564777B2 (en) Liquid crystal display element
JP3663603B2 (en) Liquid crystal alignment agent

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term