Nothing Special   »   [go: up one dir, main page]

JPH054786B2 - - Google Patents

Info

Publication number
JPH054786B2
JPH054786B2 JP61167952A JP16795286A JPH054786B2 JP H054786 B2 JPH054786 B2 JP H054786B2 JP 61167952 A JP61167952 A JP 61167952A JP 16795286 A JP16795286 A JP 16795286A JP H054786 B2 JPH054786 B2 JP H054786B2
Authority
JP
Japan
Prior art keywords
fuel cell
molten salt
battery
gas
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61167952A
Other languages
Japanese (ja)
Other versions
JPS6326960A (en
Inventor
Masahito Takeuchi
Toshiki Kahara
Hideo Okada
Yoshio Iwase
Koichi Mitsugi
Koki Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61167952A priority Critical patent/JPS6326960A/en
Publication of JPS6326960A publication Critical patent/JPS6326960A/en
Publication of JPH054786B2 publication Critical patent/JPH054786B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は燃料電池、特に溶融塩型の燃料電池に
好適なシール材を有する溶融塩型燃料電池に関す
る。 〔従来の技術〕 燃料電池は燃料の有する化学エネルギーを直接
電気エネルギーに変換できるので発電効率が高
く、かつ有害ガスあるいは液体の発生が少く、低
騒音であるために環境調和性に優れており、将来
有望な新電源としてその開発が盛んである。中で
も、溶融塩型燃料電池は特に発電効率が高く、か
つLNGから石炭に至るまで燃料の多様化が可能
であり、その早期実用化が望まれる。 溶融塩型燃料電池はカソード及びアノードの一
対のガス拡散性多孔質電極と該電極間に配設され
るアルカリ金属炭酸塩の溶融電解質を保持してな
る電解質体と、前記一対のガス拡散性多孔質電極
の一方に酸化剤を供給するための酸化剤の流通で
きる室及び前記一対のガス拡散性多孔質電極の他
方に燃料を供給するための燃料の流通できる室を
もつて単位電池を構成してなる。 また、実用規模の溶融塩型燃料電池発電プラン
トにおいては、前記単位電池を多数段直列に積層
することにより電池電圧を高め、かつ電池を大形
化して電極有効面積を広くすることにより大電流
を取り出し、電池出力の大容量化を図ることにな
り、一般に第1図の如く構成される。 電解質体1の両側にカソード2及びアノード3
が配設され、さらにその外側に酸化剤の流通でき
る室4,4′及び燃料の流通できる室5,5′を具
備するセパレータ6,6′が配設される。1から
6で単位電池が構成され、これが順次積み重ねら
れて積層電池が構成される。上端板には酸化剤の
流通できる室が具備され、下端板には燃料の流通
できる室が具備される。また、各カソードと各酸
化剤の流通できる室の間及び各アノードと各燃料
の流通できる室の間にそれぞれコレクタ(集電
体)が設けられることが多い。 しかし、このような構造を有する溶融塩型燃料
電地においては反応ガスの電池外部への漏洩の可
能性が多分に考えられる。特に、電解質体1とセ
パレータ6及び6′の相接する電池の周辺端部に
おいてその可能性が大である。かかる構造の溶融
塩型燃料電池におけるガスシール法としては、通
常ウツエツトシール法と呼ばれる方法が採用され
ている。すなわち、電解質体1とセパレータ6及
び6′の接触面に溶融した電解質液膜を形成して
反応ガスの電池外部への漏洩を防止せんとするも
のである。 また、他の一つの方法としてドライシール法と
呼ばれる方法がある。セパレータ6及び6′間の
電解質体1の周辺端部に絶縁性ガスケツト、例え
ば緻密なセラミツクス板を配設して、反応ガス及
び電解質の電池外部への漏洩、流出を防止する方
法がある(例えば、特願昭59−101708号(特開昭
60−246570号公報)。 リン酸型燃料電池など電池運転温度の低い他の
種類の燃料電池においては、反応ガスや電解質液
の電池外部への漏洩、流出を防止するためのシー
ル対策として、以下に示す如き方法が開示されて
いる。 特開昭58−157063号公報においては、高温下の
リン酸に耐え、溶融可能なシール材を配置し、熱
処理してシール材が単電池とガス分離板に融着す
るようにしたもので、シール材としては4フツ化
エチレン−6フツ化プロピレン共重合体及びパー
フロアルキルビニルエーテル共重合体を請求して
いる。 また、特開昭58−119172号公報においてはフロ
ロシリコーンゴム接着剤を開示しており、特開昭
58−164155号公報においてはポリ4フツ化エチレ
ンやフツ素ゴムを開示しており、それらの材料を
用いることができる。 〔発明が解決しようとする問題点〕 本発明の主たる対象とする溶融塩型燃料電池に
おいては、運転温度が650℃前後の高温であり、
かつ適用される電解質が腐食性の強いアルカリ金
属炭酸塩であり、上記のごときシール材を含め
て、このような環境に耐え得る好適な材料を見い
出すのが困難な現状にある。 したがつて、前述のごときウエツトシール法あ
るいは緻密セラミツクス板などを用いる。言うな
ればドライシール法を適用せざる得ない状況にあ
る。 しかし、ウエツトシール法の信頼性はあまり高
くない。また、前記構造の溶融塩型燃料電池にお
いては、電解質液の電池外部への流出の可能性も
大である。すなわち、約650℃の高温状態で長時
間電池の運転を継続することにより、電解質体中
に保持されている電解質液が徐々に電池外部へ流
出することが予想される。このような状況が進行
すれば、ウエツトシール法によるガスシール特性
の信頼性が低下するであろうし、また電解質体中
の電解質量が不足し、電解質体にピンホールやク
ラツクが起こり、酸化材、燃料あるいは生成ガス
のクロスオーバ現象が生じ、電池性能の低下する
原因にもなり、さらに安全性の面でも問題を生じ
る可能性がある。 一方、他の一つの方法であるドライシール法に
おいても次の如き問題点がある。 この方法では、緻密なセラミツクス板のごとき
剛体に近いものを用いており、荷重変形が少ない
ため、電解質体や電極の物性に基づき、それら電
池構成部材及び絶縁性ガスケツトの寸法精度を厳
密に抑える必要があり、またセパレータあるいは
絶縁性ガスケツトのシール面を工夫しないとかな
り高い圧力で締め付けない限りそのシール特性が
向上しないなどの難点がある。さらに、締め付け
圧力を高くしてそのシール特性を向上させたとし
ても、電極と電解質体あるいはコレクターとの接
触状態が最適化されず、例えば電極の圧縮クリー
プ変形、電解質体から電極への電解質の過剰な移
動、電極のコレクター開口部へのダレコミ等によ
り、電池性能を最高の状態に維持できないなどの
副次的な問題点も発生する危険性がある。 本発明の目的は、上記従来技術の問題点を解消
して、新規なシール材を適用して長期にわたつて
安定なシール特性と電池特性を維持できる溶融塩
型燃料電池を提供するにある。 〔問題点を解決するための手段〕 上記目的は、溶融塩型燃料電池のシール手段を
改善することにより達成される。 本発明の特徴とするところは、一対の隔置され
たガス拡散性多孔質電極と該電極間に配設される
電解質を保持してなる電解質体とを酸化剤の流通
できる室及び/又は燃料の流通できる室を具備す
るセパレータにて挟むことにより構成される単位
電池を複数個積層してなる積層形溶融塩型燃料電
池において、気密性を必要とする部分のシール材
として、電池運転温度以下で溶融状態を形成した
るのちに固体状態に変化し、電池運転条件下でそ
の状態を維持しうる材料を含んでなるシール材を
用いることにある。 具体的には、好ましくは、電池の運転温度、一
般的は550〜700℃より低い温度で溶融、溶解する
材料とそれを保持する材料とから構成されるシー
ル材を適用することにより、気密性を必要とする
部分においてウエツトシール状態が形成される。
このままでは、従来より適用されているウエツト
シール法に他ならないが、この融解状態物質の化
学的性質を利用するか、若しくは外部からの強制
的な化学変化を利用することにより、それを固体
状態に変化させてドライシール状態に変えること
ができれば、ウエツトシール法とドライシール法
の両者の特徴を生かすことになり、本発明はその
点に着目してなされた発明である。 すなわち、ウエツトシール状態でシール材中の
融解物質液膜により気密性を向上させ、反応ガス
あるいは生成ガスの電池外部への漏洩を防止する
ことができる。このようにして形成されたシール
部位の長期安定性、信頼性を図るには、融解物質
液や電解質液の電池端部あるいは外部への流出を
防止できる状態が好ましく、上記の如くウエツト
シール状態からドライシール状態に変化させるこ
とにより、電池組立時のシール材や電池構成部材
である電極、電解質体の厳密な寸法精度の管理を
必要とすることなくその目的である電解質液の外
部への流出防止を容易に達成することができ、ま
たその気密性も維持改善できる。 さらに具体的に述べれば、本発明の特徴とする
電池運転温度以下で溶融状態を形成したるのちに
固体状態に変化し、電池運転条件下でその状態を
維持しうる材料として、アルカリ金属及び/又は
アルカリ土類金属の水酸化物をあげることができ
る。それらの水酸化物のうちで特に好ましい水酸
化物としては第1表に掲げるごとく、リチウム、
ナトリウム、カリウム、ルビジウム、ストロンチ
ウム、バリウムの水酸化物であり、それらのいず
れかあるいは混合物を含むシール材を用いて本発
明の目的を達成することができる。 例えば、水酸化リチウムの融点は467℃であり、
その温度以上になると溶融した状態になり、それ
を含んでなるシール材中で液状物質になることで
気密性を必要とする部位で液膜を形成して気密性
が向上する。そのような状態になつたところで炭
酸ガス含有ガスを通気することにより、該水酸化
物は炭酸塩に変換して固体状態になり、ドライシ
ール状態若しくはそれに近い状態になる。それに
近い状態とは気密性を必要とするシール部位の炭
酸ガスと接触した部分が固体状態になり、接触し
ないシール部位内部はウエツトシール状態になつ
ていることを意味する。 上記の例では、水酸化リチウムが炭酸リチウム
に変化し、その融点が720℃となるため、電池運
転温度範囲の550〜700℃より高いため固体状態に
なる。しかも、第1表に示したように、水酸化物
の単位モル当りの容積化よりも炭酸塩のそれの方
が大きいため、水酸化物が炭酸塩に変化すること
によりシール材中に空隙が発生してシール性がそ
こなわれることもない。リチウム塩の場合も同様
である。水酸化物を炭酸塩に変化させるためには
前記したごとく、炭酸ガス含有ガスを通気させる
必要があるが、電池発電時に供給する酸化剤や燃
料中にはそれぞれ炭酸ガスが含有されているの
で、その時点でシール部位の水酸化物が炭酸塩に
変化して固体状態になつてもよい。
[Industrial Application Field] The present invention relates to a fuel cell, and particularly to a molten salt fuel cell having a sealing material suitable for a molten salt fuel cell. [Conventional technology] Fuel cells can directly convert the chemical energy of fuel into electrical energy, so they have high power generation efficiency, generate little harmful gas or liquid, and have low noise, so they are environmentally friendly. It is being actively developed as a promising new power source. Among these, molten salt fuel cells have particularly high power generation efficiency and can be used in a variety of fuels, from LNG to coal, and their early commercialization is desired. A molten salt fuel cell comprises a pair of gas-diffusing porous electrodes, a cathode and an anode, an electrolyte body holding a molten alkali metal carbonate electrolyte disposed between the electrodes, and the pair of gas-diffusing porous electrodes. A unit cell has a chamber through which an oxidizing agent can flow to supply an oxidizing agent to one of the porous electrodes, and a chamber through which a fuel can flow to supply the fuel to the other of the pair of gas-diffusing porous electrodes. It becomes. In addition, in a practical-scale molten salt fuel cell power generation plant, the battery voltage is increased by stacking multiple unit cells in series, and a large current is generated by increasing the size of the battery and widening the effective area of the electrodes. In order to increase the capacity of the battery, it is generally constructed as shown in FIG. Cathode 2 and anode 3 on both sides of electrolyte body 1
Further, separators 6, 6' having chambers 4, 4' through which the oxidizing agent can flow and chambers 5, 5' through which the fuel can flow are disposed outside the separators 6, 6'. 1 to 6 constitute a unit battery, which are stacked one after another to constitute a stacked battery. The upper end plate is provided with a chamber through which the oxidizing agent can flow, and the lower end plate is provided with a chamber through which the fuel can flow. In addition, collectors (current collectors) are often provided between each cathode and each chamber through which each oxidizing agent can flow, and between each anode and each chamber through which fuel can flow. However, in a molten salt fuel cell having such a structure, there is a high possibility that the reactant gas may leak to the outside of the cell. This possibility is particularly high at the peripheral edges of the battery where the electrolyte body 1 and the separators 6 and 6' are in contact with each other. As a gas sealing method in a molten salt fuel cell having such a structure, a method called a wet sealing method is generally adopted. That is, the purpose is to form a molten electrolyte liquid film on the contact surfaces of the electrolyte body 1 and the separators 6 and 6' to prevent leakage of reaction gas to the outside of the battery. Another method is a method called a dry seal method. There is a method of disposing an insulating gasket, for example, a dense ceramic plate, at the peripheral end of the electrolyte body 1 between the separators 6 and 6' to prevent leakage and outflow of the reaction gas and electrolyte to the outside of the battery (for example, , Patent Application No. 1983-101708 (Japanese Patent Application No.
60-246570). In other types of fuel cells such as phosphoric acid fuel cells where the cell operating temperature is low, the following methods have been disclosed as sealing measures to prevent reaction gas and electrolyte from leaking or flowing out to the outside of the cell. ing. In JP-A No. 58-157063, a sealing material that can withstand phosphoric acid at high temperatures and can be melted is arranged, and heat-treated so that the sealing material is fused to the cell and the gas separation plate. The sealing material is claimed to be a tetrafluoroethylene-hexafluoropropylene copolymer and a perfluoroalkyl vinyl ether copolymer. Furthermore, JP-A-58-119172 discloses a fluorosilicone rubber adhesive;
58-164155 discloses polytetrafluoroethylene and fluorocarbon rubber, and these materials can be used. [Problems to be solved by the invention] In the molten salt fuel cell which is the main object of the present invention, the operating temperature is high around 650°C,
In addition, the applied electrolyte is a highly corrosive alkali metal carbonate, and it is currently difficult to find suitable materials, including the above-mentioned sealing material, that can withstand such an environment. Therefore, the wet seal method described above or a dense ceramic plate is used. In other words, we are in a situation where we have no choice but to apply the dry seal method. However, the reliability of the wet seal method is not very high. Furthermore, in the molten salt fuel cell having the above structure, there is a high possibility that the electrolyte solution will leak out of the cell. That is, by continuing to operate the battery for a long time at a high temperature of about 650° C., it is expected that the electrolyte solution held in the electrolyte body will gradually flow out of the battery. If this situation progresses, the reliability of the gas sealing properties of the wet seal method will decrease, and the amount of electrolyte in the electrolyte will become insufficient, causing pinholes and cracks in the electrolyte, which will cause oxidants and fuel to leak. Alternatively, a crossover phenomenon of generated gas may occur, which may cause deterioration of battery performance and may also cause safety problems. On the other hand, the dry sealing method, which is another method, also has the following problems. This method uses something close to a rigid body, such as a dense ceramic plate, which causes little deformation under load, so it is necessary to strictly control the dimensional accuracy of these battery components and insulating gaskets based on the physical properties of the electrolyte body and electrodes. In addition, the sealing properties of the separator or insulating gasket cannot be improved unless the sealing surface of the separator or insulating gasket is tightened at a considerably high pressure. Furthermore, even if the clamping pressure is increased to improve its sealing properties, the contact conditions between the electrode and the electrolyte body or collector may not be optimized, resulting in, for example, compressive creep deformation of the electrode, excess electrolyte from the electrolyte body to the electrode. There is a risk that secondary problems may occur, such as inability to maintain battery performance at its best due to movement of the electrode, dripping of the electrode into the collector opening, etc. An object of the present invention is to solve the problems of the prior art described above and to provide a molten salt fuel cell that can maintain stable sealing characteristics and cell characteristics over a long period of time by applying a new sealing material. [Means for Solving the Problems] The above object is achieved by improving the sealing means of a molten salt fuel cell. The present invention is characterized in that a pair of spaced apart gas diffusing porous electrodes and an electrolyte body holding an electrolyte disposed between the electrodes are connected to a chamber through which an oxidizing agent can flow and/or a fuel In stacked molten salt fuel cells, which are formed by stacking a plurality of unit cells sandwiched between separators having chambers through which air can flow, it is used as a sealing material for parts that require airtightness at temperatures below the cell operating temperature. The purpose of the present invention is to use a sealing material that includes a material that forms a molten state and then changes to a solid state and maintains that state under battery operating conditions. Specifically, airtightness is preferably achieved by applying a sealing material composed of a material that melts and melts at a temperature lower than the operating temperature of the battery, generally 550 to 700°C, and a material that holds it. A wet seal condition is formed in the area where it is required.
As it is, it is nothing but the conventional wet sealing method, but by utilizing the chemical properties of this molten state substance or by using a forced chemical change from the outside, it can be changed to a solid state. If it is possible to change the seal state to a dry seal state, the characteristics of both the wet seal method and the dry seal method can be utilized, and the present invention has been made with this point in mind. That is, in a wet-sealed state, the molten substance liquid film in the sealing material improves airtightness and prevents leakage of reactant gas or generated gas to the outside of the battery. In order to ensure the long-term stability and reliability of the seal area formed in this way, it is preferable that the melted substance liquid and electrolyte liquid be prevented from flowing out to the battery end or outside. By changing to a sealed state, it is possible to prevent the electrolyte from leaking to the outside without requiring strict control of the dimensional accuracy of the sealing material during battery assembly, the battery component electrodes, and the electrolyte body. This can be easily achieved, and its airtightness can also be maintained and improved. More specifically, the present invention is characterized by alkali metals and/or materials that change into a solid state after forming a molten state below the battery operating temperature and can maintain that state under battery operating conditions. Alternatively, hydroxides of alkaline earth metals can be mentioned. Among these hydroxides, particularly preferred hydroxides are listed in Table 1, including lithium,
The object of the present invention can be achieved by using a sealing material that is a hydroxide of sodium, potassium, rubidium, strontium, or barium, and includes any one or a mixture thereof. For example, the melting point of lithium hydroxide is 467℃,
When the temperature exceeds that temperature, it enters a molten state and turns into a liquid substance in the sealing material containing it, forming a liquid film in areas that require airtightness, thereby improving airtightness. When such a state is reached, by passing a carbon dioxide-containing gas through, the hydroxide is converted into a carbonate and becomes a solid state, resulting in a dry sealed state or a state close to it. A state close to that means that the part of the sealing part that requires airtightness that has come into contact with carbon dioxide gas is in a solid state, and the inside of the sealing part that does not come into contact is in a wet seal state. In the above example, lithium hydroxide changes to lithium carbonate, and its melting point is 720°C, which is higher than the battery operating temperature range of 550 to 700°C, so it becomes a solid state. Moreover, as shown in Table 1, the volume per unit mole of hydroxide is larger than that of carbonate, so the change of hydroxide into carbonate creates voids in the sealing material. This does not occur and the sealing performance is not impaired. The same applies to lithium salts. As mentioned above, in order to convert hydroxide into carbonate, it is necessary to aerate gas containing carbon dioxide, but since carbon dioxide is contained in the oxidizing agent and fuel supplied during battery power generation, At that point, the hydroxide at the seal site may change to carbonate and become a solid state.

〔実施例〕〔Example〕

以下、本発明の実施例に基づいて、さらに具体
的にその内容を説明する。 実施例 1 本発明の溶融塩型燃料電池の構成の概略の断面
図は第1図に示すごとくである。 カソード2及びアノード3をそれぞれセパレー
タ6及び6′に配設し、その両電極間に電解質体
1を挟み、その電解質体1の周縁端部にシール材
9を設けてなる構造の燃料電池である。 シール材9は次のようにして製作した。水酸化
バリウムとγ−リチウムアルミネート粉末を6:
4(重量比)の割合で混合したのち、振動ミルで
約3時間乾式粉砕し、かつ均密に混合した。この
操作はホツトミル内を窒素ガス雰囲気にして行つ
た。 この混合物を整粒したのち、水を加えて(約5
重量%)調湿したのち、コールドプレスで約50
Kg/cm2の圧力でプレス成形した。調湿操作も窒素
雰囲気で実施した。この成形体を外寸130mm角、
シール幅20mm、厚さ2.0mmの形状に切り出してシ
ール材9とした。なお、シール材9の各周辺には
φ6のガス流路孔10を各辺にそれぞれ6ケ設け
た。 電解質板1は、γ−リチウムアルミネート粉末
及び繊維(粉末/繊維=80/20、重量比)を電解
質保持材とする気孔率約60%の基板に電解質であ
る混合炭酸塩(炭酸リチウム/炭酸カリウム=
62/38、モル比)を含浸したものを用いた。その
形状は90mm角、厚さ2.0mmとした。 また、カソード2及びアノード3はそれぞれ酸
化ニツケルに銀を含有(5atom%)させたもの及
びニツケルを用いており、それぞれSUS310及び
ニツケル金網に添着したガス拡散性多孔質焼結体
であり、その形状は80mm角、厚さはそれぞれ0.58
mm及び0.60mmのものを用いた。セパレータ6及び
6′はSUS310製であり、外寸130mm角、電極配設
部80mm角、厚さ約6mmのものを使用した。 これを組立てて5セル積層形燃料電池とし、以
下の実験を行つた。 この積層電池を約0.5Kg/cm2の電池締は圧力で
締めつけ、常温から50℃/hの昇温速度で650℃
まで昇温した。この場合、ベルジヤ内のガス雰囲
気は窒素ガス雰囲気とし、また電池内部にはアノ
ードガス及びカソードガスラインから窒素を0.5
/min流通した。650℃になつてから電池締付
圧力を2Kg/cm2に増加したのち、アノードガスラ
イン及びカソードガスラインから炭酸ガスを5
/minの流通した。この状態で約2時間保持し
たのち、シール特性を調べた。そのまま炭酸ガス
を流して行い、その出入口流量を計測した。その
結果、アノード例のシール率は99.2%、カソード
例のそれは99.8%であつた。 次に、発電実験を行つた。実験条件は反応温度
650℃、アノードガス組成は80%H2−20%CO2
カソードガス組成は30%CO2−70%空気であり、
アノードガスは45℃水中をバブルして加湿した。
アノードガス流量は125/h、カソードガス流
量は350/hとした。発電実験初期(30時間後)
の電池性能は150mA/cm2で0.78Vの電池電圧を
示し、500時間後においても性能低下はほとんど
認められなかつた。また、その時点でのシール特
性もアノード側、カソード例とも良好であり、そ
れぞれ99.5%、99.7%であつた。 一方、シール材を用いず、電解質体1の形状を
130mm角として、同様に組立、昇温、発電した電
池の実施例では、初期のシール率がアノード側で
95.5%、カソード例で93.5%であつたが、500時
間後においてそれぞれ88.5%、90.0%とそのシー
ル特性が低下していた。また、約100時間後から
ガスクロスオーバ現象も認められた。 なお、電池性能は初期(30時間後)において
150mA/cm2で0.77Vであつたが、500時間後には
0.53Vまで低下した。 実施例 2 実施例1と同様にして、水酸化バリウムのかわ
りに水酸化リチウム、水酸化ナトリウ、水酸化カ
リウム、又は水酸化ストロンチウムを用いてシー
ル材を成形し、実施例1と同様に実験した。 その結果、初期のシール率はアノード側、カソ
ード側共に99%以上であり、良好なシール特性を
示した。また、500時間後においてもいずれも約
99%若しくはそれ以上のシール特性を示した。 実施例 3 実施例1と同様にして、水酸化バリウムのかわ
りにリン酸リチウムを用いてシール材を成形し、
実施例1と同様に実験した。 500時間後においてもアノード側のシール率は
99.2%、カソード側のシール率は99.5%であつ
た。 実施例 4 外部マニホールド方式の5セル積層形燃料電池
を試作した。電極面積64cm2、外寸法はタテ70mm、
幅120mm、奥行120mmであり、この電池の外部マニ
ホールド取付面に外寸120mm×70mm、シール幅20
mmのシール材を電池端部とマニホールド間に挾ん
で装着した。シール材は実施例1と同一のシール
材を用いた。このようにして外部マニホールド型
積層電池を組立てた。 電池締付圧力及びマニホールド取付面の締圧を
それぞれ2Kg/cm2、5Kg/cm2とし、常温から650
℃まで昇温した。この場合、酸化剤用マニホール
ド及び燃料用マニホールドから窒素を0.5/
min流通した。650℃になつてから窒素のかわり
に炭酸ガスを5/minの流量で流通した。以
下、実施例1と同様にしてシール特性を測定した
ところ、シール率はアノード側が99.2%、カソー
ド側が98.9%であり、500時間後においてもシー
ル特性の低下は認められなかつた。 〔発明の効果〕 本発明によれば、ウエツトシール法とドライシ
ール法のそれぞれの利点を有効に発揮させること
ができ、顕著な効果がある。
Hereinafter, the contents of the present invention will be explained in more detail based on examples of the present invention. Example 1 A schematic cross-sectional view of the structure of a molten salt fuel cell according to the present invention is shown in FIG. This fuel cell has a structure in which a cathode 2 and an anode 3 are arranged in separators 6 and 6', respectively, an electrolyte body 1 is sandwiched between the two electrodes, and a sealing material 9 is provided at the peripheral edge of the electrolyte body 1. . Seal material 9 was manufactured as follows. 6 barium hydroxide and γ-lithium aluminate powder:
After mixing at a ratio of 4 (weight ratio), they were dry-pulverized in a vibrating mill for about 3 hours and mixed evenly. This operation was carried out in a nitrogen gas atmosphere inside the hot mill. After sizing this mixture, add water (approx.
Weight%) After conditioning, cold press approximately 50%
Press molding was performed at a pressure of Kg/cm 2 . Humidity control operations were also performed in a nitrogen atmosphere. This molded body has an external size of 130 mm square,
A seal material 9 was cut out into a shape with a seal width of 20 mm and a thickness of 2.0 mm. In addition, around each side of the sealing material 9, six gas passage holes 10 of φ6 were provided on each side. Electrolyte plate 1 consists of a substrate with a porosity of approximately 60%, which uses γ-lithium aluminate powder and fibers (powder/fiber = 80/20, weight ratio) as an electrolyte holding material, and mixed carbonate (lithium carbonate/carbonate) as an electrolyte. Potassium =
62/38, molar ratio) was used. Its shape was 90mm square and 2.0mm thick. In addition, the cathode 2 and anode 3 are made of nickel oxide containing silver (5 atom%) and nickel, and are gas-diffusive porous sintered bodies attached to SUS310 and nickel wire mesh, respectively, and their shapes are 80mm square, and the thickness is 0.58mm each.
mm and 0.60 mm were used. The separators 6 and 6' were made of SUS310 and had an outer dimension of 130 mm square, an electrode arrangement part of 80 mm square, and a thickness of about 6 mm. This was assembled into a 5-cell stacked fuel cell, and the following experiments were conducted. This laminated battery was tightened with pressure of approximately 0.5 kg/cm 2 and heated to 650°C at a heating rate of 50°C/h from room temperature.
The temperature rose to . In this case, the gas atmosphere inside the bell gear is a nitrogen gas atmosphere, and 0.5% nitrogen is added to the inside of the battery from the anode gas and cathode gas lines.
/min was distributed. After the temperature reached 650℃, increase the battery tightening pressure to 2Kg/ cm2 , and then add 55% of carbon dioxide gas from the anode gas line and cathode gas line.
/min was distributed. After maintaining this state for about 2 hours, the sealing properties were examined. The carbon dioxide gas was flowed as it was, and the flow rate at the inlet and outlet was measured. As a result, the sealing rate for the anode example was 99.2%, and that for the cathode example was 99.8%. Next, we conducted a power generation experiment. Experimental conditions are reaction temperature
650℃, anode gas composition is 80% H2-20 % CO2 ,
The cathode gas composition is 30% CO2 - 70% air,
The anode gas was humidified by bubbling water at 45°C.
The anode gas flow rate was 125/h, and the cathode gas flow rate was 350/h. Early power generation experiment (30 hours later)
The battery performance showed a battery voltage of 0.78V at 150mA/cm 2 , and almost no deterioration in performance was observed even after 500 hours. Furthermore, the sealing properties at that point were also good for both the anode and cathode examples, being 99.5% and 99.7%, respectively. On the other hand, the shape of the electrolyte body 1 can be changed without using a sealing material.
In an example of a 130mm square battery that was assembled, heated, and generated power in the same way, the initial sealing rate was on the anode side.
The sealing properties were 95.5% and 93.5% for the cathode example, but after 500 hours, the sealing properties had decreased to 88.5% and 90.0%, respectively. Furthermore, a gas crossover phenomenon was observed after about 100 hours. In addition, the battery performance is initially (after 30 hours)
It was 0.77V at 150mA/ cm2 , but after 500 hours
It dropped to 0.53V. Example 2 In the same manner as in Example 1, a sealing material was molded using lithium hydroxide, sodium hydroxide, potassium hydroxide, or strontium hydroxide instead of barium hydroxide, and an experiment was conducted in the same manner as in Example 1. . As a result, the initial sealing rate was 99% or more on both the anode and cathode sides, indicating good sealing properties. In addition, even after 500 hours, both
It showed a sealing property of 99% or more. Example 3 In the same manner as in Example 1, a sealing material was formed using lithium phosphate instead of barium hydroxide, and
An experiment was conducted in the same manner as in Example 1. Even after 500 hours, the sealing rate on the anode side remained
The sealing rate on the cathode side was 99.2%, and the sealing rate on the cathode side was 99.5%. Example 4 A 5-cell stacked fuel cell of external manifold type was prototyped. Electrode area 64cm 2 , external dimensions 70mm vertically,
It is 120mm wide and 120mm deep, and the external manifold mounting surface of this battery has an external size of 120mm x 70mm and a seal width of 20mm.
A sealing material of mm was sandwiched between the end of the battery and the manifold. The same sealing material as in Example 1 was used. In this way, an external manifold type stacked battery was assembled. The battery clamping pressure and the clamping pressure of the manifold mounting surface are 2Kg/cm 2 and 5Kg/cm 2 respectively, and the temperature is 650℃ from room temperature.
The temperature was raised to ℃. In this case, 0.5% of nitrogen is added from the oxidizer manifold and fuel manifold.
It was distributed for min. After the temperature reached 650°C, carbon dioxide gas was introduced at a flow rate of 5/min instead of nitrogen. Hereinafter, the sealing properties were measured in the same manner as in Example 1, and the sealing rate was 99.2% on the anode side and 98.9% on the cathode side, and no deterioration in the sealing properties was observed even after 500 hours. [Effects of the Invention] According to the present invention, the respective advantages of the wet sealing method and the dry sealing method can be effectively exhibited, resulting in remarkable effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の電池構造を示す断
面図、第2図は内部マニホールド型電池構造を示
す電池中間部の上面図、第3図は外部マニホール
ド型構造を示す電池中間部の上面図である。 1……電解質体、2……カソード、3……アノ
ード、4,4′……酸化剤の流通できる室,5,
5′……燃料の流通できる室、6,6′……セパレ
ータ、9……シール材、10……ガス供給又は排
出用流路孔、11……内部マニホールド型電池の
シール材外周部位、12……外部マニホールド型
電池のシール材露出面。
FIG. 1 is a sectional view showing a battery structure according to an embodiment of the present invention, FIG. 2 is a top view of the middle part of the battery showing an internal manifold type battery structure, and FIG. 3 is a top view of the middle part of the battery showing an external manifold type structure. FIG. 1... Electrolyte body, 2... Cathode, 3... Anode, 4, 4'... Chamber through which oxidizing agent can flow, 5,
5'... Chamber through which fuel can flow, 6, 6'... Separator, 9... Seal material, 10... Gas supply or discharge passage hole, 11... Seal material outer circumferential portion of internal manifold type battery, 12 ...The exposed surface of the sealant of the external manifold type battery.

Claims (1)

【特許請求の範囲】 1 一対の隔置されたガス拡散性多孔質電極と該
電極間に配設される電解質を保持してなる電解質
体とを酸化剤の流通できる室及び/又は燃料の流
通できる室を具備するセパレータにて挟むことに
より構成される単位電池を複数個積層してなる積
層形溶融塩型燃料電池において、気密性を必要と
する部分のシール材として、電池運転温度以下で
溶融状態を形成したるのちに固体状態に変化し、
電池運転条件下でその状態を維持しうる材料を含
んでなるシール材を用いることを特徴とする溶融
塩型燃料電池。 2 特許請求の範囲第1項記載の溶融塩型燃料電
池において、電池運転温度以下で溶融状態を形成
したるのちに固体状態に変化し、電池運転状態下
でその状態を維持しうる材料が、アルカリ金属及
び/又はアルカリ土類金属の水酸化物であること
を特徴とする溶融塩型燃料電池。 3 特許請求の範囲第2項記載の溶融塩型燃料電
池において、前記水酸化物がリチウム、ナトリウ
ム、カリウム、ルビジウム、ストロンチウム、バ
リウムの水酸化物のいずれかあるいは混合物であ
ることを特徴とする溶融塩型燃料電池。
[Scope of Claims] 1. A pair of gas-diffusing porous electrodes spaced apart from each other and an electrolyte body holding an electrolyte disposed between the electrodes are connected to a chamber through which an oxidizing agent can flow and/or through which fuel can flow. In a stacked molten salt fuel cell, which is made up of a stack of multiple unit cells sandwiched between separators each having a chamber, it is used as a sealing material for parts that require airtightness. After forming a state, it changes to a solid state,
A molten salt fuel cell characterized by using a sealing material containing a material that can maintain its state under battery operating conditions. 2. In the molten salt fuel cell according to claim 1, the material is capable of forming a molten state below the cell operating temperature and then changing to a solid state and maintaining that state under the cell operating condition. A molten salt fuel cell characterized by being a hydroxide of an alkali metal and/or an alkaline earth metal. 3. The molten salt fuel cell according to claim 2, wherein the hydroxide is any one or a mixture of hydroxides of lithium, sodium, potassium, rubidium, strontium, and barium. Salt fuel cell.
JP61167952A 1986-07-18 1986-07-18 Molten salt fuel cell Granted JPS6326960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61167952A JPS6326960A (en) 1986-07-18 1986-07-18 Molten salt fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61167952A JPS6326960A (en) 1986-07-18 1986-07-18 Molten salt fuel cell

Publications (2)

Publication Number Publication Date
JPS6326960A JPS6326960A (en) 1988-02-04
JPH054786B2 true JPH054786B2 (en) 1993-01-20

Family

ID=15859088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61167952A Granted JPS6326960A (en) 1986-07-18 1986-07-18 Molten salt fuel cell

Country Status (1)

Country Link
JP (1) JPS6326960A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6577540B2 (en) * 2017-08-25 2019-09-18 本田技研工業株式会社 Power generation cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1214514A (en) * 1982-08-19 1986-11-25 Pinakin S. Patel Electrode structure and method of making same

Also Published As

Publication number Publication date
JPS6326960A (en) 1988-02-04

Similar Documents

Publication Publication Date Title
US4895774A (en) Molten carbonate fuel cell
US5141828A (en) Electrochemical system using bipolar electrode
KR101184486B1 (en) A sealing element for solid oxide fuel cell and solid oxide fuel cell employing the same
JPH05242897A (en) Solid high polymer electrolyte type fuel cell
WO2013047667A1 (en) Solid oxide fuel cell device
JP2001060462A (en) Cell tube seal structure
JPH06231784A (en) Solid oxide fuel cell
JP2005100970A (en) Polymer electrolyte fuel cell
JP2010055951A (en) Seal material and electrochemical device using the same
JP2002313371A (en) Cell unit of fuel cell
JPH054786B2 (en)
KR100397954B1 (en) Manufacturing Method of Polymer Electrolyte Membrane for Fuel Cells
JP3838403B2 (en) Phosphoric acid fuel cell
JPH02168568A (en) Solid electrolyte fuel cell
KR20180027918A (en) High performance solid oxide fuel cell module
KR20090029381A (en) Solid oxide fuel cell sealing material and gasket manufacturing method using the same
JP2002203581A (en) Gas seal structure of high temperature fuel cell
KR20080008019A (en) Method for Forming Sealing Layer of Flat Solid Oxide Fuel Cell
JPS60246570A (en) Fused carbonate fuel cell
JPH0684530A (en) Solid electrolyte type fuel cell
KR101245552B1 (en) Solid oxide fuel cell and manufacturing method thereof
JPH0447672A (en) Fuel cell with solid electrolyte
JPS6322422B2 (en)
JP3105717B2 (en) Flat electrolyte fuel cell
JP3774443B2 (en) Fuel cell container and fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees