JPH0547762U - Absorption chiller / heater - Google Patents
Absorption chiller / heaterInfo
- Publication number
- JPH0547762U JPH0547762U JP9476091U JP9476091U JPH0547762U JP H0547762 U JPH0547762 U JP H0547762U JP 9476091 U JP9476091 U JP 9476091U JP 9476091 U JP9476091 U JP 9476091U JP H0547762 U JPH0547762 U JP H0547762U
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- refrigerant vapor
- condenser
- hot water
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
(57)【要約】
【目的】 吸収冷温水機において、冷水と温水の同時供
給を可能とするとともに、機器の数の増加を抑制し、小
型化を図る。
【構成】 凝縮器304内に、軸心をほぼ鉛直にした複
数の管310をその外周面が冷媒蒸気に接し内周面が外
気に接するように配置し、該管310の内周面に冷却水
の液膜を形成する手段を設けるとともに、凝縮器304
内で前記管310の周りを囲むように温水ポンプ6Aに
接続された螺旋状の温水コイル1Eを配置する。また、
吸収器306内に、軸心をほぼ鉛直にした複数の管31
5をその外周面が冷媒蒸気に接し内周面が外気に接する
ように配置し、該管315の内周面に冷却水の液膜を形
成する手段を設けるとともに、管315及び管310内
の空気を流動させる冷却ファン312を設ける。
【効果】
(57) [Abstract] [Purpose] In an absorption chiller-heater, it is possible to simultaneously supply cold water and hot water, and to suppress the increase in the number of devices and to make them smaller. [Structure] In a condenser 304, a plurality of tubes 310 whose axes are substantially vertical are arranged so that their outer peripheral surfaces are in contact with refrigerant vapor and their inner peripheral surfaces are in contact with the outside air, and the inner peripheral surfaces of the tubes 310 are cooled. A means for forming a liquid film of water is provided and the condenser 304
A spiral hot water coil 1E connected to the hot water pump 6A is arranged so as to surround the pipe 310 inside. Also,
Inside the absorber 306, a plurality of pipes 31 whose axes are substantially vertical
5 is arranged such that its outer peripheral surface is in contact with the refrigerant vapor and its inner peripheral surface is in contact with the outside air, and means for forming a liquid film of cooling water is provided on the inner peripheral surface of the pipe 315. A cooling fan 312 that allows air to flow is provided. 【effect】
Description
【0001】[0001]
本考案は、吸収剤(例えば臭化リチウム,ヨウ化リチウム)を液冷媒(例えば 水)に溶解させて作った吸収液を作動流体とし、該作動流体の濃度を希溶液から 濃溶液(場合によっては希溶液、中間濃溶液、濃溶液)の順に濃縮させながら動 作する吸収冷温水機に係り、特に冷水と温水を同時に供給する吸収冷温水機に関 する。 In the present invention, an absorbing liquid prepared by dissolving an absorbent (eg, lithium bromide or lithium iodide) in a liquid refrigerant (eg, water) is used as a working fluid, and the concentration of the working fluid is changed from a dilute solution to a concentrated solution (as the case may be). Relates to an absorption chiller-heater that operates while concentrating a dilute solution, an intermediate concentrated solution, and a concentrated solution in this order, and particularly to an absorption chiller-heater that simultaneously supplies cold water and hot water.
【0002】[0002]
従来、冷水と温水を同時に供給する吸収冷温水機としては、例えば、「吸収冷 凍機」(高田秋一著、日本冷凍協会発行)に記載されたものが知られている。こ れは図10に示すように、第1発生器で生成された中間濃溶液の顕熱で温水を加 熱する第三熱交と、第2発生器を通過した冷媒の潜熱及び顕熱で温水を加熱する 温水加熱器とを設けるものである。 Conventionally, as an absorption chiller-heater for simultaneously supplying cold water and hot water, for example, one described in "Absorption chiller" (written by Shuichi Takada, published by The Japan Refrigeration Association) is known. As shown in FIG. 10, this is due to the third heat exchange that heats warm water with the sensible heat of the intermediate concentrated solution generated in the first generator, and the latent heat and sensible heat of the refrigerant that has passed through the second generator. A hot water heater for heating hot water is provided.
【0003】[0003]
上記従来技術では、冷水、温水の同時供給を可能とするために、機器の数が増 えるとともに、それらの機器を接続する配管の系統も増え、装置の大型化、保守 の煩雑化を招くという問題があった。 In the above-mentioned conventional technology, since it is possible to supply cold water and hot water at the same time, the number of devices increases, and the number of piping systems connecting these devices also increases, which leads to an increase in the size of the device and complexity of maintenance. There was a problem.
【0004】 本考案の課題は、装置の大型化、保守の煩雑化を招くことなく、冷水、温水の 同時供給を可能とするにある。An object of the present invention is to enable simultaneous supply of cold water and hot water without increasing the size of the device and complicating maintenance.
【0005】[0005]
上記の課題は、吸収剤を冷媒に溶解させて得た希溶液を加熱する高温再生器と 、該高温再生器で加熱された希溶液から冷媒蒸気と溶液を分離する分離器と、該 分離器で分離された冷媒蒸気を冷却する冷却手段を備え該冷却手段により前記冷 媒蒸気を冷却して凝縮液化する凝縮器と、蒸発コイルを内装し前記凝縮器で生成 された液冷媒を該蒸発コイル上で蒸発させて該蒸発コイル内の流体を冷却する蒸 発器と、前記分離器で分離された溶液に前記蒸発器で発生した冷媒蒸気を吸収さ せて希溶液を生成し発生する吸収熱を冷却する吸収器と、前記分離器と蒸発器を 弁を介して連通する手段とを備えてなる吸収冷温水機において、前記凝縮器で冷 媒蒸気を冷却する冷却手段として、凝縮器に内装されてそれぞれ冷却媒体を循環 させる少なくともそのうちの1系統は温水負荷に接続可能な少なくとも2系統の コイルと、該2系統のコイル内の冷却媒体の循環を独立して制御する手段とを備 えることにより達成される。 The above-mentioned problems include a high temperature regenerator for heating a dilute solution obtained by dissolving an absorbent in a refrigerant, a separator for separating a refrigerant vapor and a solution from a dilute solution heated by the high temperature regenerator, and the separator. And a condenser for cooling and condensing the cooling medium vapor by the cooling means to condense and liquefy the cooling medium vapor, and a liquid refrigerant generated in the condenser, which is equipped with an evaporation coil. An evaporator that evaporates above to cool the fluid in the evaporation coil, and absorption heat that produces a dilute solution by absorbing the refrigerant vapor generated in the evaporator in the solution separated in the separator. In an absorption chiller-heater equipped with an absorber for cooling the condenser and a means for communicating the separator and the evaporator through a valve, the condenser is provided as a cooling means for cooling the refrigerant vapor in the condenser. At least each one circulates a cooling medium One line of which is achieved by obtaining Bei the coil of the at least two lines connectable to the hot water load, and means for controlling independently the circulation of the cooling medium in the coil of the two systems.
【0006】 上記の課題はまた、吸収剤を冷媒に溶解させて得た希溶液を加熱する高温再生 器と、該高温再生器で加熱された希溶液から冷媒蒸気と溶液を分離する分離器と 、該分離器で分離された冷媒蒸気を冷却する冷却手段を備え該冷却手段により前 記冷媒蒸気を冷却して凝縮液化する凝縮器と、蒸発コイルを内装し前記凝縮器で 生成された液冷媒を該蒸発コイル上で蒸発させて該蒸発コイル内の流体を冷却す る蒸発器と、前記分離器で分離された溶液に前記蒸発器で発生した冷媒蒸気を吸 収させて希溶液を生成し発生する吸収熱を冷却する吸収器と、前記分離器と蒸発 器を弁を介して連通する手段とを備えてなる吸収冷温水機において、前記凝縮器 で冷媒蒸気を冷却する冷却手段を、凝縮器に内装されて冷却媒体を循環させ温水 負荷に接続可能な冷却媒体循環手段と、該凝縮器の冷媒蒸気と外気を隔てる壁面 の外気側の面に冷却水液膜を形成する冷却水供給手段と、該冷却水液膜近傍の空 気を流動させる空気駆動手段と、冷却媒体循環手段と冷却水供給手段と空気駆動 手段とを独立して制御する手段とを含んで構成し、前記吸収器に、該吸収器の外 気と冷媒蒸気を隔てる壁面の冷媒蒸気側に面に溶液の液膜を形成する滴下手段と 、該壁面の外気側の面に冷却水液膜を形成する冷却水供給手段と、該冷却水液膜 近傍の空気を流動させる空気駆動手段とを備えることによっても達成される。The above-mentioned problems also include a high temperature regenerator that heats a dilute solution obtained by dissolving an absorbent in a refrigerant, and a separator that separates the refrigerant vapor and the solution from the dilute solution heated by the high temperature regenerator. A condenser for cooling the refrigerant vapor separated by the separator, the condenser for cooling the refrigerant vapor by the cooling means to condense and liquefy, and a liquid refrigerant produced by the condenser having an evaporation coil Is evaporated on the evaporation coil to cool the fluid in the evaporation coil, and the solution separated by the separator absorbs the refrigerant vapor generated in the evaporator to form a dilute solution. In an absorption chiller-heater comprising an absorber for cooling the generated heat of absorption and a means for communicating the separator and the evaporator via a valve, the cooling means for cooling the refrigerant vapor in the condenser is condensed. It is installed in the vessel to circulate the cooling medium A cooling medium circulating means connectable to a load, a cooling water supply means for forming a cooling water liquid film on the surface of the wall of the condenser separating the refrigerant vapor from the outside air on the outside air side, and air near the cooling water liquid film. And a cooling medium circulating means, a cooling water supply means, and a means for independently controlling the air driving means, and the absorber includes the outside air of the absorber and the refrigerant vapor. A wall of the wall that separates the liquid vapor of the solution on the surface on the side of the refrigerant vapor, a cooling water supply means that forms a liquid film of the cooling water on the surface of the wall on the outside air side, and an air near the liquid surface of the cooling water. It is also achieved by providing an air driving means for causing the fluid to flow.
【0007】 上記の課題を達成するための手段は、低温再生器を備えていない吸収冷温水機 について述べているが、低温再生器を備えた二重効用吸収冷温水機についても同 様に適用可能である。As means for achieving the above-mentioned object, the absorption chiller-heater without the low-temperature regenerator is described, but the same applies to the double-effect absorption chiller-heater with the low-temperature regenerator. It is possible.
【0008】[0008]
冷水のみが必要な場合、凝縮器に内装されて冷却媒体を循環させる冷却媒体循 環手段、もしくは、2系統のコイルのうちの温水負荷に接続可能なコイルの冷却 媒体の循環は停止され、凝縮器での冷媒蒸気の冷却は、凝縮器に内装された2系 統のコイルのうちの温水負荷に接続されていないコイルに循環される冷却媒体、 もしくは、冷却水供給手段によって凝縮器の冷媒蒸気と外気を隔てる壁面の外気 側の面に形成された冷却水液膜によって行われる。コイルに循環される冷却媒体 によって冷媒蒸気の冷却が行われる場合は、凝縮熱は該冷却媒体によって凝縮器 外に取り出される。冷却水液膜によって冷媒蒸気の冷却が行われる場合は、凝縮 熱を奪った冷却水液膜は外気中に水蒸気となって蒸発する。蒸発した水蒸気は空 気駆動手段によって流動させられる冷却水液膜近傍の空気とともに大気中に放出 される。凝縮器で形成された液冷媒は蒸発器に供給され、該液冷媒の蒸発コイル 上での蒸発によって蒸発コイル中の流体が冷却される。冷却された流体が負荷に 供給される。 When only cold water is required, the cooling medium circulating means installed in the condenser to circulate the cooling medium, or the cooling medium circulating in the coil of the two systems that can be connected to the hot water load is stopped and condensed. Refrigerant vapor in the condenser is cooled by a cooling medium circulated in a coil that is not connected to the hot water load among the coils of the two systems installed in the condenser, or by the cooling water supply means. The cooling water liquid film is formed on the outside surface of the wall surface that separates the outside air and the outside air. When the cooling medium circulated in the coil cools the refrigerant vapor, the heat of condensation is taken out of the condenser by the cooling medium. When the cooling medium vapor is cooled by the cooling water liquid film, the cooling water liquid film which has deprived the heat of condensation is evaporated as vapor in the outside air. The vaporized water vapor is released into the atmosphere together with the air near the liquid film of the cooling water which is made to flow by the air drive means. The liquid refrigerant formed in the condenser is supplied to the evaporator, and the fluid in the evaporation coil is cooled by the evaporation of the liquid refrigerant on the evaporation coil. Cooled fluid is supplied to the load.
【0009】 温水のみが必要な場合、分離器と蒸発器が連通され、分離器で分離された冷媒 蒸気は直接蒸発器に供給される。従って凝縮器での冷媒蒸気の凝縮は行われず、 凝縮器の冷却手段は停止される。蒸発器に直接供給された冷媒蒸気によって蒸発 コイル内の流体が加熱され、温水となる。この温水が温水負荷に供給される。When only hot water is required, the separator and the evaporator are communicated with each other, and the refrigerant vapor separated by the separator is directly supplied to the evaporator. Therefore, the refrigerant vapor is not condensed in the condenser, and the cooling means of the condenser is stopped. The refrigerant vapor directly supplied to the evaporator heats the fluid in the evaporation coil to form hot water. This hot water is supplied to the hot water load.
【0010】 冷水と温水が同時に必要な場合、凝縮器に内装されて冷却媒体を循環させ温水 負荷に接続可能な冷却媒体循環手段、もしくは、2系統のコイルのうちの温水負 荷に接続可能なコイルで温水が生成され、蒸発器の蒸発コイルで冷水が生成され る。凝縮器に2系統のコイルが内装されている場合、温水負荷に接続されていな いコイルの冷却媒体の循環が停止され、凝縮器に流入する冷媒蒸気の凝縮熱は温 水負荷に接続可能なコイル内を流れる冷却媒体に取り込まれる。凝縮熱を取り込 んだ冷却媒体が温水負荷に供給される。凝縮器に、冷却媒体を循環させる冷却媒 体循環手段と、凝縮器の冷媒蒸気と外気を隔てる壁面の外気側の面に冷却水液膜 を形成する冷却水供給手段と、該冷却水液膜近傍の空気を流動させる空気駆動手 段と、冷却媒体循環手段と冷却水供給手段と空気駆動手段とを独立して制御する 手段とが設けられている場合、冷却媒体循環手段に冷却媒体が循環され、冷却水 供給手段と空気駆動手段が停止される。凝縮器に流入する冷媒蒸気の凝縮熱は冷 却媒体循環手段内を流れる冷却媒体に取り込まれる。凝縮熱を取り込んだ冷却媒 体が温水負荷に供給される。蒸発器における冷水の生成と供給は前記冷水を供給 する場合と同じであるので、説明は省略する。When cold water and hot water are required at the same time, a cooling medium circulating means that is installed in the condenser and can circulate a cooling medium to connect to a hot water load, or connect to a hot water load of two system coils The coil produces hot water, and the evaporator coil of the evaporator produces cold water. When the condenser is equipped with two coils, the circulation of the cooling medium of the coil not connected to the hot water load is stopped, and the heat of condensation of the refrigerant vapor flowing into the condenser can be connected to the hot water load. It is taken into the cooling medium flowing in the coil. The cooling medium that takes in the heat of condensation is supplied to the hot water load. A cooling medium circulating means for circulating a cooling medium in the condenser, a cooling water supply means for forming a cooling water liquid film on the outside air side surface of the wall surface separating the refrigerant vapor of the condenser from the outside air, and the cooling water liquid film. When the air driving means for flowing the air in the vicinity and the means for independently controlling the cooling medium circulating means, the cooling water supplying means and the air driving means are provided, the cooling medium is circulated in the cooling medium circulating means. Then, the cooling water supply means and the air driving means are stopped. The condensation heat of the refrigerant vapor flowing into the condenser is taken into the cooling medium flowing in the cooling medium circulation means. The cooling medium that takes in the heat of condensation is supplied to the hot water load. The generation and supply of cold water in the evaporator are the same as those in the case of supplying the cold water, so the description thereof will be omitted.
【0011】[0011]
以下、本考案の実施例を図面を参照して説明する。 図1は、本考案の第1の実施例である吸収冷温水機を用いて構成した冷暖房装 置を示す系統図である。図示の冷暖房装置は、凝縮器に冷却水コイル1Fと温水 コイル1Eを備え、蒸発器に蒸発コイル1Kを備えた吸収冷温水機1と、前記温 水コイル1Eの出口側に接続された温水出口ヘッダ2Aと、前記温水コイル1E の入り口側に吐出口を接続させた温水ポンプ6Aと、該温水ポンプ6Aの入り口 側に接続された温水入り口ヘッダ2Bと、前記蒸発コイル1Kの出口側に接続さ れた冷水出口ヘッダ2Cと、前記蒸発コイル1Kの入り口側に吐出口を接続させ た冷水ポンプ6Bと、該冷水ポンプ6Bの入り口側に接続された冷水入り口ヘッ ダ2Dと、前記温水出口ヘッダ2A,温水入り口ヘッダ2B,冷水出口ヘッダ2 C,冷水入り口ヘッダ2Dにそれぞれ第1のポートを接続した三方弁3A,3B ,4A,4Bと、三方弁3Aの第2のポートに一端を接続され他端を三方弁4A の第2のポートに接続されたコイルを備えた室内機5Aと、三方弁3Bの第2の ポートに一端を接続され他端を三方弁4Bの第2のポートに接続されたコイルを 備えた室内機5Bとを含んで構成されている。前記三方弁3A,3B,4A,4 Bの第3のポートは、それぞれ、冷水出口ヘッダ2C,冷水入り口ヘッダ2D, 温水出口ヘッダ2A,温水入り口ヘッダ2Bに接続されている。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram showing a cooling and heating device configured using an absorption chiller-heater according to a first embodiment of the present invention. The illustrated cooling and heating apparatus includes an absorption chiller-heater 1 including a cooling water coil 1F and a hot water coil 1E in a condenser and an evaporation coil 1K in an evaporator, and a hot water outlet connected to the outlet side of the hot water coil 1E. A header 2A, a hot water pump 6A having a discharge port connected to the inlet side of the hot water coil 1E, a hot water inlet header 2B connected to the inlet side of the hot water pump 6A, and an outlet side of the evaporation coil 1K. Cold water outlet header 2C, cold water pump 6B having a discharge port connected to the inlet side of the evaporation coil 1K, cold water inlet header 2D connected to the inlet side of the cold water pump 6B, and hot water outlet header 2A , The hot water inlet header 2B, the cold water outlet header 2C, the cold water inlet header 2D, the three-way valves 3A, 3B, 4A, 4B, and the second one of the three-way valve 3A. Indoor unit 5A having a coil whose one end is connected to the port and the other end to the second port of the three-way valve 4A, and one end which is connected to the second port of the three-way valve 3B and whose other end is the three-way valve 4B. And an indoor unit 5B having a coil connected to the second port of the indoor unit 5B. The third ports of the three-way valves 3A, 3B, 4A and 4B are connected to the cold water outlet header 2C, the cold water inlet header 2D, the hot water outlet header 2A and the hot water inlet header 2B, respectively.
【0012】 また、吸収冷温水機1は、希溶液を加熱する再生器1Aと、該再生器1Aで加 熱された希溶液を冷媒蒸気と濃溶液に分離する分離器1Bと、該分離器1Bで分 離された冷媒蒸気を冷却水コイル1F内及び温水コイル1E内を流れる流体で冷 却凝縮して液冷媒とする凝縮器1Dと、蒸発コイル1Kを備え、前記凝縮器1D で生成された液冷媒を前記蒸発コイル1K上で蒸発させる蒸発器1Gと、前記分 離器1Bで分離された濃溶液と前記再生器に供給される希溶液を熱交換させる溶 液熱交換器1Cと、該溶液熱交換器1Cで熱交換を済ませた濃溶液を内装された 冷却水コイル1L上に散布し、前記蒸発器1Gで生成された冷媒蒸気を吸収させ て希溶液を生成する吸収器1Hと、該希溶液を吸入・圧送し、前記溶液熱交換器 1Cを経て前記再生器1Aに送りこむ溶液ポンプ1Jと、前記分離器1Bと前記 吸収器1Hとを連通する管に介装された冷暖切換弁1Mと、前記冷却水コイル1 Lに冷却水を供給する冷却水ポンプ1Nと、前記冷却水コイル1Lと冷却水コイ ル1Fを連通する管に介装された調整弁1Pと、を含んで構成されている。Further, the absorption chiller-heater 1 includes a regenerator 1A for heating a dilute solution, a separator 1B for separating the dilute solution heated by the regenerator 1A into a refrigerant vapor and a concentrated solution, and the separator. A condenser 1D that cools and condenses the refrigerant vapor separated in 1B with a fluid flowing in the cooling water coil 1F and the hot water coil 1E to form a liquid refrigerant, and an evaporation coil 1K, are generated by the condenser 1D. An evaporator 1G for evaporating the liquid refrigerant on the evaporation coil 1K, a solution heat exchanger 1C for exchanging heat between the concentrated solution separated by the separator 1B and the dilute solution supplied to the regenerator, An absorber 1H for spraying a concentrated solution, which has been heat-exchanged by the solution heat exchanger 1C, onto a cooling water coil 1L provided therein, and absorbing a refrigerant vapor produced by the evaporator 1G to produce a dilute solution. , The solution heat exchanger by sucking and pumping the dilute solution 1 Supplying cooling water to a solution pump 1J that feeds to the regenerator 1A via C, a cooling / heating switching valve 1M installed in a pipe that connects the separator 1B and the absorber 1H, and the cooling water coil 1L. The cooling water pump 1N and the regulating valve 1P interposed in the pipe that connects the cooling water coil 1L and the cooling water coil 1F.
【0013】 上記構成の冷暖房装置の運転動作を以下に説明する。 室内機5A,5Bをともに冷房運転するときは、冷暖切換弁1Mは閉じられ、 温水ポンプ6Aは停止され、三方弁3A,3Bはいずれも第2のポートと第3の ポートが連通される位置に操作され、三方弁4A,4Bはいずれも第1のポート と第2のポートが連通される位置に操作される。また、調整弁1Pは全開され、 冷却水ポンプ1N,冷水ポンプ6Bが運転される。この状態で吸収冷温水機1が 冷房運転される。温水ポンプ6Aが停止されているので、温水コイル1Eには流 体は流れず、蒸発コイル1K内で冷媒の蒸発により冷却された冷水は冷水出口ヘ ッダ2Cに導かれ、その一部は三方弁3Aを経て室内機5Aに流れる。室内機5 Aで冷房を行った冷水は、三方弁4A,冷水入り口ヘッダ2Dを経て冷水ポンプ 6Bに吸入され、再び蒸発コイル1Kに導入される。冷水出口ヘッダ2Cを出た 冷水の残りは三方弁3Bを経て室内機5Bに流れる。室内機5Bで冷房を行った 冷水は三方弁4Bを経て冷水入り口ヘッダ2Dに流入し、前記室内機5Aを経て きた冷水と合流して冷水ポンプ6Bに吸入され、再び蒸発コイル1Kに導入され る。The operation of the cooling and heating device having the above structure will be described below. When both the indoor units 5A and 5B are in the cooling operation, the cooling / heating switching valve 1M is closed, the hot water pump 6A is stopped, and the three-way valves 3A and 3B are both in the positions where the second port and the third port communicate with each other. The three-way valves 4A and 4B are operated to positions where the first port and the second port communicate with each other. Further, the adjusting valve 1P is fully opened, and the cooling water pump 1N and the cooling water pump 6B are operated. In this state, the absorption chiller-heater 1 is cooled. Since the hot water pump 6A is stopped, no fluid flows in the hot water coil 1E, and the cold water cooled by the evaporation of the refrigerant in the evaporation coil 1K is guided to the cold water outlet header 2C, and part of it is three-wayed. Flows to the indoor unit 5A through the valve 3A. The chilled water cooled in the indoor unit 5A is sucked into the chilled water pump 6B through the three-way valve 4A and the chilled water inlet header 2D, and then introduced into the evaporation coil 1K again. The rest of the cold water that exits the cold water outlet header 2C flows to the indoor unit 5B through the three-way valve 3B. The chilled water cooled in the indoor unit 5B flows into the chilled water inlet header 2D through the three-way valve 4B, merges with the chilled water that has passed through the indoor unit 5A, is sucked into the chilled water pump 6B, and is introduced into the evaporation coil 1K again. ..
【0014】 室内機5Aを暖房,5Bを冷房で運転するときは、冷暖切換弁1Mは閉じられ 、温水ポンプ6A,冷却水ポンプ1N,冷水ポンプ6Bは運転され、三方弁3A ,3B,4A,4Bはいずれも第1のポートと第2のポートが連通される位置に 操作される。また、調整弁1Pの開度は部分開度に調整される。この状態で吸収 冷温水機1が冷房運転される。温水ポンプ6Aが運転されているので、温水コイ ル1Eには温水が流れ、凝縮器内に流入する冷媒蒸気に加熱されて昇温された温 水が温水出口ヘッダ2A,三方弁3Aを経て室内機5Aに流れる。室内機5Aで 暖房を行った温水は三方弁4A,温水入り口ヘッダ2Bを経て温水ポンプ6Aに 吸入され、再び温水コイル1Eに導入される。一方、蒸発コイル1K内で冷媒の 蒸発により冷却された冷水は冷水出口ヘッダ2Cに導かれ、三方弁3Bを経て室 内機5Bに流れる。室内機5Bで冷房を行った冷水は三方弁4Bを経て冷水入り 口ヘッダ2Dに流入し、冷水ポンプ6Bに吸入されて、再び蒸発コイル1Kに導 入される。When the indoor unit 5A is operated by heating and 5B by cooling, the cooling / heating switching valve 1M is closed, the hot water pump 6A, the cooling water pump 1N, and the cold water pump 6B are operated, and the three-way valves 3A, 3B, 4A, 4B is operated to a position where the first port and the second port communicate with each other. Further, the opening degree of the adjusting valve 1P is adjusted to the partial opening degree. In this state, the absorption chiller-heater 1 is cooled. Since the hot water pump 6A is operated, hot water flows through the hot water coil 1E, and the hot water heated by the refrigerant vapor flowing into the condenser and heated is passed through the hot water outlet header 2A and the three-way valve 3A to the room. It flows to machine 5A. The hot water heated by the indoor unit 5A is sucked into the hot water pump 6A through the three-way valve 4A and the hot water inlet header 2B, and then introduced into the hot water coil 1E again. On the other hand, the cold water cooled by the evaporation of the refrigerant in the evaporation coil 1K is guided to the cold water outlet header 2C, and flows into the indoor unit 5B via the three-way valve 3B. The cold water cooled in the indoor unit 5B flows into the cold water inlet header 2D through the three-way valve 4B, is sucked into the cold water pump 6B, and is again introduced into the evaporation coil 1K.
【0015】 室内機5A,5Bをともに暖房運転するときは、冷暖切換弁1Mは開かれ、温 水ポンプ6A,冷却水ポンプ1Nは停止され、冷水ポンプ6Bが運転される。三 方弁3A,3Bはいずれも第2のポートと第3のポートが連通される位置に操作 され、三方弁4A,4Bはいずれも第1のポートと第2のポートが連通される位 置に操作される。冷却水ポンプ1Nが停止されているので、調整弁1Pの開度は 無関係である。この状態で吸収冷温水機1が暖房運転される。冷暖切換弁1Mが 開かれているので、分離器1Bで分離された濃溶液は吸収器1Hの底部に直接流 入し、分離器1Bで分離された冷媒蒸気は凝縮器を通過して蒸発器1Gに流入す る。蒸発コイル1K内の水は、流入する前記冷媒蒸気に加熱されて高温の温水と なって冷水出口ヘッダ2Cに導かれ、その一部は三方弁3Aを経て室内機5Aに 流れる。室内機5Aで暖房を行った温水は、三方弁4A,冷水入り口ヘッダ2D を経て冷水ポンプ6Bに吸入され、再び蒸発コイル1Kに導入される。冷水出口 ヘッダ2Cを出た温水の残りは三方弁3Bを経て室内機5Bに流れる。室内機5 Bで暖房を行った温水は三方弁4Bを経て冷水入り口ヘッダ2Dに流入し、前記 室内機5Aを経てきた温水と合流して冷水ポンプ6Bに吸入され、再び蒸発コイ ル1Kに導入される。When the indoor units 5A and 5B are both heated, the cooling / heating switching valve 1M is opened, the hot water pump 6A and the cooling water pump 1N are stopped, and the cold water pump 6B is operated. Each of the three-way valves 3A and 3B is operated to a position where the second port and the third port communicate with each other, and the three-way valves 4A and 4B both operate to the position where the first port and the second port communicate with each other. To be operated. Since the cooling water pump 1N is stopped, the opening degree of the regulating valve 1P is irrelevant. In this state, the absorption chiller-heater 1 is heated. Since the cooling / heating switching valve 1M is opened, the concentrated solution separated by the separator 1B directly flows into the bottom of the absorber 1H, and the refrigerant vapor separated by the separator 1B passes through the condenser and the evaporator. It flows into 1G. The water in the evaporation coil 1K is heated by the inflowing refrigerant vapor to become high-temperature hot water and is guided to the cold water outlet header 2C, and a part of the water flows to the indoor unit 5A through the three-way valve 3A. The hot water heated by the indoor unit 5A is sucked into the cold water pump 6B through the three-way valve 4A and the cold water inlet header 2D, and is again introduced into the evaporation coil 1K. Cold water outlet The rest of the hot water that exits the header 2C flows to the indoor unit 5B via the three-way valve 3B. The hot water heated by the indoor unit 5B flows into the cold water inlet header 2D through the three-way valve 4B, merges with the hot water that has passed through the indoor unit 5A, is sucked into the cold water pump 6B, and is again introduced into the evaporation coil 1K. To be done.
【0016】 室内機5Aを冷房,5Bを暖房で運転するときは、冷暖切換弁1Mは閉じられ 、温水ポンプ6A,冷却水ポンプ1N,冷水ポンプ6Bはいずれも運転され、三 方弁3A,3B,4A,4Bはいずれも第2のポートと第3のポートが連通され る位置に操作される。また、調整弁1Pの開度は部分開度に調整される。この状 態で吸収冷温水機1が冷房運転される。温水ポンプ6Aが運転されているので、 温水コイル1Eには温水が流れ、凝縮器内に流入する冷媒蒸気に加熱されて昇温 された温水が温水出口ヘッダ2A,三方弁3Bを経て室内機5Bに流れる。室内 機5Bで暖房を行った温水は三方弁4B,温水入り口ヘッダ2Bを経て温水ポン プ6Aに吸入され、再び温水コイル1Eに導入される。一方、蒸発コイル1K内 で冷媒の蒸発により冷却された冷水は冷水出口ヘッダ2Cに導かれ、三方弁3A を経て室内機5Aに流れる。室内機5Aで冷房を行った冷水は三方弁4Aを経て 冷水入り口ヘッダ2Dに流入し、冷水ポンプ6Bに吸入されて、再び蒸発コイル 1Kに導入される。When operating the indoor unit 5A for cooling and 5B for heating, the cooling / heating switching valve 1M is closed, the hot water pump 6A, the cooling water pump 1N, and the cold water pump 6B are all operated, and the three-way valves 3A, 3B are operated. , 4A, 4B are operated to positions where the second port and the third port are in communication with each other. Further, the opening degree of the adjusting valve 1P is adjusted to the partial opening degree. In this state, the absorption chiller-heater 1 is cooled. Since the hot water pump 6A is operating, hot water flows through the hot water coil 1E, and the hot water heated by the refrigerant vapor flowing into the condenser and heated is passed through the hot water outlet header 2A and the three-way valve 3B to the indoor unit 5B. Flow to. The hot water heated by the indoor unit 5B is sucked into the hot water pump 6A through the three-way valve 4B and the hot water inlet header 2B, and is again introduced into the hot water coil 1E. On the other hand, the cold water cooled by the evaporation of the refrigerant in the evaporation coil 1K is guided to the cold water outlet header 2C, and flows into the indoor unit 5A via the three-way valve 3A. The cold water cooled in the indoor unit 5A flows into the cold water inlet header 2D through the three-way valve 4A, is sucked into the cold water pump 6B, and is introduced into the evaporation coil 1K again.
【0017】 図2に上記各操作状態における弁、ポンプの状態をまとめて示す。図中、1P −2Pは、第1ポートと第2ポートが連通されることを示す。FIG. 2 collectively shows the states of the valve and the pump in each of the above operating states. In the figure, 1P-2P indicates that the first port and the second port are in communication.
【0018】 本実施例によれば、凝縮器に温水コイル1Eを追加し、温水ポンプ及び配管系 を追加することで冷水を供給しつつ温水を供給することが可能となり、吸収冷温 水機の構造を複雑化することなく、冷房と暖房を同時に行うことができる。According to the present embodiment, by adding the hot water coil 1E to the condenser and adding the hot water pump and the piping system, it becomes possible to supply the hot water while supplying the cold water, and thus the structure of the absorption chiller-heater Cooling and heating can be performed simultaneously without complicating.
【0019】 図3は本考案の第2の実施例を示す。図3は本考案の一実施例を示す吸収冷温 水機の概略構成図である。図3において、まず、この吸収冷温水機を冷房時冷水 を発生させる場合について説明する。高温再生器(再生器)301は内部に燃焼 室が収められ、冷媒を吸収し濃度が薄くなった稀溶液を加熱し、この稀溶液から 冷媒蒸気を発生する。分離器302は前記冷媒蒸気を蒸発して濃度が濃くなった 中間濃溶液と冷媒蒸気とを分離し、前者を高温溶液熱交換器307へ後者を低温 再生器303へと送出する。低温再生器(再生器)303は高温溶液熱交換器3 07により温度が低下した中間濃溶液を分離器302からくる冷媒蒸気で再加熱 し、中間濃溶液の中から更に冷媒蒸気を発生させこれを凝縮器304へ送出しか つ中間濃溶液自身を濃溶液にするとともに、分離器302からきた冷媒蒸気を一 部凝縮し冷媒液にして凝縮器304へと送出する。凝縮器304は低温再生器3 03で発生した冷媒蒸気と低温再生器303で液冷媒とならなかった冷媒蒸気を 冷却水と空気を用いて冷却液化して液冷媒にし蒸発器305へ送出する。蒸発器 305は内部に循環水が流れる蒸発コイル305Aが配設され、伝熱管305A に凝縮器304から送られてくる液冷媒を散布器305Bを用いて散布し、液冷 媒が冷媒蒸気となるときの気化熱を利用して循環水を冷却する。吸収器306は 低温再生器303から低温溶液熱交換器308を通ってきた濃溶液が流入し滴下 され、この濃溶液は蒸発器305内で気化した冷媒蒸気を吸収する。吸収器30 6の吸収作用によって蒸発器305内は高真空が確保されており、蒸発器305 内の蒸発コイル305A上に散布された液冷媒は直ちに蒸発できるようになって いる。また、吸収器306には濃溶液が冷媒蒸気を吸収して稀溶液となる際の冷 却のための冷却手段が配設されているが、この点については後に詳述する。高温 溶液熱交換器307は高温の中間濃溶液と低温の稀溶液との間で熱交換し、また 、低温溶液熱交換器308は高温の濃溶液と低温の稀溶液との間で熱交換を行い 、高温側と低温側とに2段に設けて熱交換効率の向上を図っている。溶液循環ポ ンプ309は吸収器306において冷媒蒸気を吸収して稀溶液となったものを低 温溶液熱交換器308および高温溶液熱交換器307を介して高温再生器301 に送り再び循環させるために設けられている。FIG. 3 shows a second embodiment of the present invention. FIG. 3 is a schematic configuration diagram of an absorption chiller-heater showing an embodiment of the present invention. In FIG. 3, first, a case will be described in which the absorption cold / hot water generator generates cold water during cooling. A high temperature regenerator (regenerator) 301 has a combustion chamber inside, and heats a dilute solution that has absorbed a refrigerant and has a low concentration, and generates a refrigerant vapor from this dilute solution. The separator 302 separates the refrigerant vapor from the intermediate concentrated solution whose concentration has been increased by evaporating the refrigerant vapor, and sends the former to the high temperature solution heat exchanger 307 and the latter to the low temperature regenerator 303. The low temperature regenerator (regenerator) 303 reheats the intermediate concentrated solution whose temperature has been lowered by the high temperature solution heat exchanger 307 with the refrigerant vapor coming from the separator 302, and further generates the refrigerant vapor from the intermediate concentrated solution. Is sent to the condenser 304 and the intermediate concentrated solution itself is made into a concentrated solution, and a part of the refrigerant vapor coming from the separator 302 is condensed to be a refrigerant liquid and sent to the condenser 304. The condenser 304 cools and liquefies the refrigerant vapor generated in the low-temperature regenerator 303 and the refrigerant vapor that has not become the liquid refrigerant in the low-temperature regenerator 303 by using cooling water and air to form a liquid refrigerant and sends it to the evaporator 305. The evaporator 305 is provided with an evaporation coil 305A through which circulating water flows, and the liquid refrigerant sent from the condenser 304 is sprayed to the heat transfer tube 305A using the sprayer 305B, and the liquid cooling medium becomes refrigerant vapor. The circulating water is cooled by utilizing the heat of vaporization. In the absorber 306, the concentrated solution that has passed through the low temperature solution heat exchanger 308 from the low temperature regenerator 303 flows in and is dropped, and this concentrated solution absorbs the refrigerant vapor vaporized in the evaporator 305. A high vacuum is secured in the evaporator 305 by the absorbing action of the absorber 306, and the liquid refrigerant sprayed on the evaporation coil 305A in the evaporator 305 can be immediately evaporated. Further, the absorber 306 is provided with cooling means for cooling when the concentrated solution absorbs the refrigerant vapor and becomes a dilute solution, which will be described later in detail. The high temperature solution heat exchanger 307 exchanges heat between the high temperature intermediate concentrated solution and the low temperature diluted solution, and the low temperature solution heat exchanger 308 exchanges heat between the high temperature concentrated solution and the low temperature diluted solution. In order to improve the heat exchange efficiency, two stages are provided on the high temperature side and the low temperature side. The solution circulation pump 309 absorbs the refrigerant vapor in the absorber 306 to form a dilute solution and sends it to the high temperature regenerator 301 via the low temperature solution heat exchanger 308 and the high temperature solution heat exchanger 307 to circulate it again. It is provided in.
【0020】 凝縮器304には、前述のように低温再生器303で発生した冷媒蒸気と、低 温再生器303で液冷媒とならなかった冷媒蒸気と一部冷されて液冷媒となった ものとが流入する。これらは凝縮器304内で冷却してすべて液冷媒としてやら ねばならないが、このためには冷媒蒸気と冷却媒体との間で熱交換が行われなけ ればならない。前記図1に示す実施例においてはこの熱交換を行うために冷却水 コイル1Fが設けられているが、図3に示す実施例においては、熱交換を行うた めの熱交換器部として内が中空で鉛直方向に縦長形の管310が複数本凝縮器3 04内に配設されている。そして、この管310の内壁面に冷却水の流下液膜を 形成してやるために、管310の上方から冷却水を滴下してやる。この流下液膜 を適切に形成するため管上部310Aを凝縮器304の上面304Aよりも若干 突出するように形成し、この上面304Aと管上部310Aの突出部とで形成さ れる部分に冷却水の液溜りを作り、ここに凝縮器散水給水弁311から送られて くる冷却水を供給する。こうすると管310Aの上端部をオ−バ−フロ−した冷 却水は管310の内壁面に沿って薄い液膜を形成しつつ流下する。一方、凝縮器 304内に流入した冷媒蒸気はこの管310の外壁面に接するような形で存在す る。その結果、冷媒蒸気と冷却水とは管310の壁面を介して熱交換し、冷媒蒸 気は冷却されて凝縮し液冷媒となって管310の外壁面に沿って流下し凝縮器3 04内の下面304Bに溜ってくる、また、冷却水は凝縮熱を得て熱せられその 一部が蒸発する。このようにして管310内で蒸発した水蒸気は、凝縮器304 の上方に設けられた冷却ファン312によって凝縮器304および吸収器306 の下方から強制的に導入された空気とともに大気中に放出される。なお、符号3 13は空気を導入する際の防塵用フィルタであり、符号314は空気を排出する 際の開閉用シャッタ−である。In the condenser 304, as described above, the refrigerant vapor generated in the low temperature regenerator 303 and the refrigerant vapor that has not become the liquid refrigerant in the low temperature regenerator 303 are partially cooled to become the liquid refrigerant. And inflow. These must be cooled in the condenser 304 and all must be used as liquid refrigerant, but for this purpose, heat exchange must be performed between the refrigerant vapor and the cooling medium. In the embodiment shown in FIG. 1, the cooling water coil 1F is provided to perform this heat exchange, but in the embodiment shown in FIG. 3, the inside is used as the heat exchanger portion for heat exchange. A plurality of hollow vertically elongated tubes 310 are arranged in the condenser 304. Then, in order to form a falling liquid film of cooling water on the inner wall surface of the pipe 310, cooling water is dropped from above the pipe 310. In order to properly form this falling liquid film, the pipe upper part 310A is formed so as to slightly project from the upper surface 304A of the condenser 304, and the cooling water is formed in a portion formed by the upper surface 304A and the pipe upper part 310A. A liquid pool is created, and the cooling water sent from the condenser sprinkling water supply valve 311 is supplied to this. In this way, the cooling water that overflows the upper end of the pipe 310A flows down while forming a thin liquid film along the inner wall surface of the pipe 310A. On the other hand, the refrigerant vapor flowing into the condenser 304 exists so as to contact the outer wall surface of the pipe 310. As a result, the refrigerant vapor and the cooling water exchange heat via the wall surface of the pipe 310, and the refrigerant vapor is cooled and condensed to become a liquid refrigerant, which flows down along the outer wall surface of the pipe 310 and inside the condenser 304. On the lower surface 304B of the cooling water, and the cooling water obtains heat of condensation and is heated, and a part thereof evaporates. The water vapor evaporated in the pipe 310 in this way is released into the atmosphere together with the air forcedly introduced from below the condenser 304 and the absorber 306 by the cooling fan 312 provided above the condenser 304. .. Reference numeral 313 is a dustproof filter when introducing air, and reference numeral 314 is an opening / closing shutter when discharging air.
【0021】 また、蒸発器304内には、一端を温水ポンプ6Aに接続された温水コイル1 Eが管310の外側に螺旋状に配設されており、該温水コイル1E内の循環水が 蒸発器304内に流入した冷媒蒸気と熱交換するように構成されている。つまり 、凝縮器304内に流入した冷媒蒸気は、温水コイル1E内に循環水が循環され るときは該循環水と熱交換して凝縮され、管310の内周面に沿って冷却水が流 下されて液膜面を形成するときは該液膜と熱交換して凝縮されるのである。もち ろん、温水コイル1E内の循環水と管310の内周面の液膜の両者と同時に熱交 換することも可能である。冷房のみを行う場合は温水を作る必要はないので、温 水ポンプ6Aは停止される。Further, in the evaporator 304, a hot water coil 1 E, one end of which is connected to the hot water pump 6 A, is spirally arranged outside the pipe 310, and the circulating water in the hot water coil 1 E is evaporated. It is configured to exchange heat with the refrigerant vapor flowing into the container 304. That is, the refrigerant vapor flowing into the condenser 304 is condensed by exchanging heat with the circulating water when the circulating water is circulated in the hot water coil 1E, and the cooling water flows along the inner peripheral surface of the pipe 310. When it is lowered to form a liquid film surface, it exchanges heat with the liquid film and is condensed. Of course, it is also possible to perform heat exchange simultaneously with both the circulating water in the hot water coil 1E and the liquid film on the inner peripheral surface of the pipe 310. When performing only cooling, it is not necessary to produce hot water, so the hot water pump 6A is stopped.
【0022】 次に、吸収器306には前述のように低温再生器303で形成された濃溶液が 低温溶液熱交換器308を通って流入し、かつ、吸収器306の側面部に設けら れた蒸発器305内で発生した冷媒蒸気が流入する。前記濃溶液は蒸発器から流 入する冷媒蒸気を吸収して希溶液となるが、濃溶液が冷媒蒸気を吸収する際に吸 収熱が発生する。濃溶液の温度が上昇すると冷媒蒸気を吸収する能力が低下する ので、蒸発器での冷媒蒸気の蒸発を継続的に行わせるには、発生する吸収熱を除 去する必要がある。そのためには、冷媒蒸気を吸収中の濃溶液(濃溶液から希溶 液になる過程の吸収液)と冷却媒体との間で熱交換が行われなければならない。 この熱交換を行うための熱交換器部として、凝縮器304と同様、中空で鉛直 方向に縦長形の管315が複数本吸収器306内に設けられている。そして、こ の管315の内壁面に冷却水の流下液膜を形成するために管上部315Aが吸収 器306の上面306Aよりも若干突出して形成され、液溜りを構成している点 も凝縮器304の場合と同じであるからその詳細な説明は省略する。該液溜りに は吸収器散水給水弁316を備えた冷却水管により冷却水が給水される。また、 管315の外壁面には吸収器306に流入した濃溶液が管の上端から接するよう に滴下され、液膜を形成しつつ流下する。その結果、液膜を形成しつつ管315 の壁面を流下する濃溶液は吸収熱を発生しつつ冷媒蒸気を吸収し、希溶液となっ て吸収器306の下面306Bへと流れる。管315の内周面には前述のように 冷却水が滴下されて液膜を形成しつつ流下しており、この冷却水の液膜が管31 5の管壁を介して管315の外周面で発生する吸収熱を取り入れて蒸発する。Next, the concentrated solution formed in the low temperature regenerator 303 as described above flows into the absorber 306 through the low temperature solution heat exchanger 308 and is provided on the side surface of the absorber 306. The refrigerant vapor generated in the evaporator 305 flows in. The concentrated solution absorbs the refrigerant vapor flowing from the evaporator to become a dilute solution, but when the concentrated solution absorbs the refrigerant vapor, heat of absorption is generated. As the temperature of the concentrated solution rises, the ability to absorb the refrigerant vapor decreases, so it is necessary to remove the generated heat of absorption in order to continuously evaporate the refrigerant vapor in the evaporator. For that purpose, heat exchange must be performed between the concentrated solution absorbing the refrigerant vapor (absorption solution in the process of changing from the concentrated solution to the dilute solution) and the cooling medium. As a heat exchanger portion for performing this heat exchange, as in the condenser 304, a plurality of hollow, vertically elongated tubes 315 are provided in the absorber 306. The upper part of the pipe 315A is formed so as to slightly project from the upper surface 306A of the absorber 306 in order to form a falling liquid film of the cooling water on the inner wall surface of the pipe 315, which also constitutes a liquid pool. Since it is the same as the case of 304, detailed description thereof will be omitted. Cooling water is supplied to the liquid pool by a cooling water pipe provided with an absorber watering water supply valve 316. Further, the concentrated solution that has flowed into the absorber 306 is dropped onto the outer wall surface of the pipe 315 so as to come into contact with the upper end of the pipe, and flows down while forming a liquid film. As a result, the concentrated solution flowing down the wall surface of the pipe 315 while forming a liquid film absorbs the refrigerant vapor while generating heat of absorption, and becomes a diluted solution and flows to the lower surface 306B of the absorber 306. As described above, the cooling water is dropped onto the inner peripheral surface of the pipe 315 while forming a liquid film, and the liquid film of the cooling water flows through the pipe wall of the pipe 315 to the outer peripheral surface of the pipe 315. It absorbs the heat of absorption generated in and evaporates.
【0023】 前記管310と管315とはそれぞれの中空部が互いに連通するように配置さ れており、前記冷却ファン312で吸入される外気は、管315の中空部を通過 したのち管310の中空部を通過する。吸収熱を取り入れた冷却水は水蒸気を発 生し、これが管315内に強制的に導入された空気によって大気中に放出される 点は凝縮器4の場合と同じである。The pipe 310 and the pipe 315 are arranged such that the hollow portions of the pipe 310 and the pipe 315 communicate with each other, and the outside air sucked by the cooling fan 312 passes through the hollow portion of the pipe 315 and then the pipe 310. Pass through the hollow part. As in the case of the condenser 4, the cooling water taking in the absorbed heat produces steam, which is released into the atmosphere by the air forcedly introduced into the pipe 315.
【0024】 吸収器306の場合には、管315の上端部より濃溶液が滴下され冷媒蒸気を 吸収しつつ流下するため下方になるに従い溶液濃度が低下する。このため管の下 方は上方に比べてより低温に冷却されることが必要となるが、本考案の構成によ れば下方から導入される空気は乾球温度.湿球温度ともに低く、上方になるに従 い乾球温度.湿球温度ともに高くなる。よって、熱交換器としては極めて合理的 なものであり熱交換の温度差を増大できる利点がある。In the case of the absorber 306, the concentrated solution drops from the upper end of the pipe 315 and flows down while absorbing the refrigerant vapor, so that the solution concentration decreases as it goes downward. For this reason, the lower part of the tube needs to be cooled to a lower temperature than the upper part, but according to the configuration of the present invention, the air introduced from the lower part has a dry-bulb temperature. Both the wet-bulb temperature is low, and the dry-bulb temperature increases as the temperature rises. Both wet bulb temperatures increase. Therefore, it is an extremely rational heat exchanger and has the advantage of increasing the temperature difference in heat exchange.
【0025】 この吸収冷温水機を暖房時温水を発生させる場合について説明する。この場合 には前記分離器2と蒸発器5とを接続する管路に設けられた冷暖切替弁1Mを開 く。その結果、高温再生器301において加熱された溶液と冷媒蒸気は直接蒸発 器5に導かれ、蒸発コイル305A内の循環水と熱交換して温水を発生する。こ の温水が温水負荷に供給される。冷媒蒸気は該循環水に熱を与え、自身は冷却凝 縮されて液冷媒となり溶液と混合して再び溶液循環ポンプ309によって高温再 生器301に送られる。この時、前記冷水を発生させる場合に冷却のために用い た凝縮器4および吸収器6の冷却装置は停止する。即ち、凝縮器散水給水弁31 1,吸収器散水給水弁316が閉じられて冷却水の滴下が停止され、温水ポンプ 6Aも停止される。冷却ファン12の運転も停止され、さらに冷却ファン12の 運転と同期して開閉していたシャッタ−14は閉じられ空気の対流による凝縮器 4および吸収器6の管内面からの放熱を防止するようにしている。A case of generating hot water during heating of the absorption chiller-heater will be described. In this case, the cooling / heating switching valve 1M provided in the pipe line connecting the separator 2 and the evaporator 5 is opened. As a result, the solution and refrigerant vapor heated in the high temperature regenerator 301 are directly guided to the evaporator 5 and exchange heat with the circulating water in the evaporation coil 305A to generate hot water. This hot water is supplied to the hot water load. The refrigerant vapor gives heat to the circulating water, and the refrigerant vapor is cooled and condensed to become a liquid refrigerant, mixed with the solution, and sent again to the high temperature regenerator 301 by the solution circulation pump 309. At this time, the cooling devices of the condenser 4 and the absorber 6 used for cooling when generating the cold water are stopped. That is, the condenser water sprinkling water supply valve 311 and the absorber water sprinkling water supply valve 316 are closed, the dropping of the cooling water is stopped, and the hot water pump 6A is also stopped. The operation of the cooling fan 12 is also stopped, and the shutter 14 that has been opened and closed in synchronization with the operation of the cooling fan 12 is closed to prevent heat radiation from the inner surfaces of the condenser 4 and the absorber 6 due to air convection. I have to.
【0026】 冷水と温水を同時に供給する場合には、凝縮器散水給水弁311は閉じられ、 温水ポンプ6Aが運転される。吸収器散水給水弁316は開かれて冷却水が管3 15の内周面に供給され、冷却ファン312は運転される。凝縮器304に流入 する冷媒蒸気は温水コイル1E内を流れる循環水によって冷却凝縮されて液冷媒 となり、散布器305Bから蒸発コイル305A上に散布される。前記温水コイ ル1E内の循環水は冷媒蒸気から凝縮熱を奪って温水となり、この温水が温水負 荷に供給される。蒸発コイル305A上に散布された液冷媒は、蒸発コイル30 5A内の循環水から蒸発熱を奪って蒸発し、管315の外周面に滴下されて液膜 をなして流下する濃溶液に吸収される。発生する吸収熱は、管315の内周面に 滴下されて液膜をなして流下する冷却水に取り込まれ、吸収熱を取り込んだ冷却 水は水蒸気として蒸発する。この水蒸気は、冷却ファン312に駆動されて管3 15,310の中空部を通過する外気とともに、大気中に放出される。すなわち 、温水のみを供給する場合は、蒸発コイルで温水が生成されるのに対し、温水と 冷水を同時に供給する場合は、蒸発コイルで冷水が、温水コイルで温水が、それ ぞれ生成され、供給されるのである。When supplying cold water and hot water at the same time, the condenser sprinkling water supply valve 311 is closed and the hot water pump 6A is operated. The absorber sprinkling water supply valve 316 is opened, cooling water is supplied to the inner peripheral surface of the pipe 315, and the cooling fan 312 is operated. The refrigerant vapor flowing into the condenser 304 is cooled and condensed by the circulating water flowing in the hot water coil 1E to become a liquid refrigerant, which is sprayed from the sprayer 305B onto the evaporation coil 305A. The circulating water in the hot water coil 1E removes the heat of condensation from the refrigerant vapor to become hot water, and this hot water is supplied to the hot water load. The liquid refrigerant sprayed on the evaporation coil 305A absorbs the heat of evaporation from the circulating water in the evaporation coil 305A to evaporate, is dropped on the outer peripheral surface of the pipe 315, and is absorbed by the concentrated solution flowing down to form a liquid film. It The generated absorption heat is dropped onto the inner peripheral surface of the pipe 315 and is taken in by the cooling water that forms a liquid film and flows down. The cooling water that has taken up the absorption heat evaporates as water vapor. The steam is driven by the cooling fan 312 and is discharged into the atmosphere together with the outside air passing through the hollow portions of the tubes 315 and 310. That is, when only hot water is supplied, hot water is generated by the evaporation coil, whereas when hot water and cold water are supplied simultaneously, cold water is generated by the evaporation coil and hot water is generated by the hot water coil, respectively. It will be supplied.
【0027】 図4は本考案の第3の実施例を示す概略構成図であり、凝縮器304および吸 収器306の熱交換器部として中空で鉛直方向縦長形の管を用いて冷却装置を構 成する点は図3の場合と同様である。ただ若干異なるのは凝縮器304と吸収器 306とが前記第2の実施例においては直列的に配設されているのに対し、本実 施例の場合には並列的に設けられていることである。そして、凝縮器304の管 310で発生する水蒸気を大気に放出する凝縮器冷却ファン312Bが、吸収器 306の管315で発生する水蒸気を大気に放出する冷却ファン312Aと別に 設けられている点である。その他の点は図3の場合と同一なので詳細な説明は省 略する。なお、図3において用いた符号と同一のものは、同じ作用および動作を するものである。FIG. 4 is a schematic configuration diagram showing a third embodiment of the present invention, in which a cooling device using a hollow vertically elongated tube as a heat exchanger portion of the condenser 304 and the absorber 306 is used. The structure is the same as in the case of FIG. The only difference is that the condenser 304 and the absorber 306 are arranged in series in the second embodiment, whereas they are arranged in parallel in the case of the present embodiment. Is. Further, the condenser cooling fan 312B for discharging the water vapor generated in the pipe 310 of the condenser 304 to the atmosphere is provided separately from the cooling fan 312A for discharging the water vapor generated in the pipe 315 of the absorber 306 to the atmosphere. is there. Since the other points are the same as those in FIG. 3, detailed description will be omitted. The same reference numerals as those used in FIG. 3 have the same operations and operations.
【0028】 本実施例において、冷水のみを供給する場合は、温水ポンプ6Aが停止され、 凝縮器散水給水弁311,吸収器散水給水弁316はいずれも開かれ、凝縮器冷 却ファン312B,冷却ファン312Aはいずれも運転される。冷水は蒸発コイ ル305Aで生成され、供給される。温水のみを供給する場合は、温水ポンプ6 Aが停止され、凝縮器散水給水弁311,吸収器散水給水弁316はいずれも閉 じられ、凝縮器冷却ファン312B,冷却ファン312Aはいずれも停止される 。また、冷暖切換弁1Mが開かれ、蒸発コイル305A内の循環水は、分離器か ら該冷暖切換弁1Mを経て蒸発器に流入する冷媒蒸気に加熱されて温水となる。 凝縮熱を奪われて液化した冷媒は、分離器から蒸発器/吸収器に流入してその底 部を流れる溶液に混合されて希溶液となり、溶液ポンプ309により再び低温溶 液熱交換器308、高温溶液熱交換器307を経て高温再生器301に送られる 。温水は蒸発コイル305Aで生成され、負荷に供給されるのである。In the present embodiment, when only cold water is supplied, the hot water pump 6A is stopped, the condenser water sprinkling water supply valve 311 and the absorber water sprinkling water supply valve 316 are all opened, and the condenser cooling fan 312B and the cooling water are supplied. All the fans 312A are operated. Cold water is generated and supplied in the evaporation coil 305A. When supplying only hot water, the hot water pump 6A is stopped, the condenser sprinkling water supply valve 311 and the absorber sprinkling water supply valve 316 are closed, and both the condenser cooling fan 312B and the cooling fan 312A are stopped. R. Further, the cooling / heating switching valve 1M is opened, and the circulating water in the evaporation coil 305A is heated by the refrigerant vapor flowing from the separator to the evaporator via the cooling / heating switching valve 1M to become warm water. The refrigerant liquefied by removing the heat of condensation flows into the evaporator / absorber from the separator and is mixed with the solution flowing at the bottom of the evaporator to become a dilute solution, and the solution pump 309 causes the low-temperature solution heat exchanger 308 to again It is sent to the high temperature regenerator 301 via the high temperature solution heat exchanger 307. The hot water is generated by the evaporation coil 305A and supplied to the load.
【0029】 温水及び冷水を同時に供給する場合は、温水ポンプ6Aが運転され、凝縮器散 水給水弁311は閉じられ,吸収器散水給水弁316は開かれ、凝縮器冷却ファ ン312Bは停止され、冷却ファン312Aは運転される。また、冷暖切換弁1 Mは閉じられる。凝縮器304に流入する冷媒蒸気は、温水コイル1E内を流れ る循環水に凝縮熱を奪われて凝縮、液化し、液冷媒となって散布器305Bから 蒸発コイル305A上に散布される。前記凝縮熱を奪った循環水は温水となって 温水負荷に供給される。蒸発コイル305A上に散布された液冷媒は蒸発コイル 内の循環水から蒸発熱を奪って蒸発し、該循環水は冷水となって冷水負荷に供給 される。蒸発した冷媒蒸気は管315の外周面に滴下され、液膜をなして流下す る濃溶液に吸収され、希溶液となる。吸収される過程で管315の外周面に発生 する吸収熱は、管315の内周面に沿って滴下され、液膜をなして流下する冷却 水に取り込まれる。吸収熱を取り込んだ冷却水は水蒸気となって蒸発し、冷却フ ァン312Aで駆動される外気とともに大気中に放出される。管315の外周面 で形成された前記希溶液は、吸収器/蒸発器の低部306Bを経て溶液ポンプ3 09に吸引され、低温溶液熱交換器308、高温溶液熱交換器307を経て高温 再生器301に送られる。温水は温水コイル1Eで生成されて温水負荷に供給さ れ、冷水は蒸発コイル305Aで生成され、冷水負荷に供給されるのである。When hot water and cold water are supplied at the same time, the hot water pump 6A is operated, the condenser water sprinkling water supply valve 311 is closed, the absorber water sprinkling water supply valve 316 is opened, and the condenser cooling fan 312B is stopped. The cooling fan 312A is operated. Further, the cooling / heating switching valve 1 M is closed. The refrigerant vapor flowing into the condenser 304 is deprived of the heat of condensation by the circulating water flowing in the hot water coil 1E to be condensed and liquefied to become a liquid refrigerant, which is then sprayed from the sprayer 305B onto the evaporation coil 305A. The circulating water that has deprived the heat of condensation becomes hot water and is supplied to the hot water load. The liquid refrigerant sprayed on the evaporation coil 305A takes the evaporation heat from the circulating water in the evaporation coil to evaporate, and the circulating water becomes cold water and is supplied to the cold water load. The evaporated refrigerant vapor is dropped on the outer peripheral surface of the pipe 315, is absorbed by the concentrated solution that forms a liquid film and flows down, and becomes a dilute solution. The absorbed heat generated on the outer peripheral surface of the pipe 315 in the process of being absorbed is dropped along the inner peripheral surface of the pipe 315, and is taken into the cooling water flowing down in the form of a liquid film. The cooling water that has absorbed the absorbed heat becomes water vapor and evaporates, and is released into the atmosphere together with the outside air driven by the cooling fan 312A. The dilute solution formed on the outer peripheral surface of the pipe 315 is sucked by the solution pump 309 through the lower portion 306B of the absorber / evaporator, and is regenerated at a high temperature through the low temperature solution heat exchanger 308 and the high temperature solution heat exchanger 307. Sent to the vessel 301. The hot water is generated by the hot water coil 1E and supplied to the hot water load, and the cold water is generated by the evaporation coil 305A and supplied to the cold water load.
【0030】 図5は本考案の第4の実施例の概略構成図を示すものである。本実施例では凝 縮器304と吸収器306とが冷却水および冷却用空気に対し図3と同様直列的 一体的に設けられている。そして、凝縮器304および吸収器306の熱交換器 部として鉛直方向縦長形のプレ−ト317を複数本、図6にその断面を示すよう な形状にして用い、これと凝縮器304および吸収器306の外側面304C. 306Cとの間に中空部318を形成して冷却装置を構成したものである。この 中空部318の内を冷却水は前記プレ−ト17の内壁面に沿って上方から液膜を 形成しつつ流下し、冷却ファン312によって強制的に導入された空気は下方か ら上方に向かって流れて発生した水蒸気を大気中に放出する。プレ−ト317の 内壁面に流下液膜を形成するために、図3と同様に、凝縮器304の上面304 Aとプレ−ト上部317Aとで形成される部分に冷却水の液溜りを設ける。この 液溜りには凝縮器散水給水弁311を備えた給水管により冷却水が供給される。 その結果、図3における管の場合と同様にプレ−ト317の壁面を介して熱交換 が行われ凝縮器304の冷却が行われる。なお、その作用は図3における管を用 いた場合と同じであるから詳細な説明は省略する。また、この実施例では凝縮器 304と吸収器306とを直列的に構成したが、凝縮器304の下面304Bと 吸収器306の上面306Aとは離して構成され、吸収器306の上面306A とプレ−ト上部317Bとで形成される部分に冷却水の液溜り設けられている。 この液溜りには吸収器散水給水弁316を備えた給水管により冷却水が供給され る。その結果、図3における管の場合と同様にプレ−ト317の壁面を介して熱 交換が行われ吸収器306の冷却が行われる。なお、その作用は図3における管 を用いた場合と同じであるから詳細な説明は省略する。蒸発器305は吸収器3 06に形成されたプレ−ト317の内部に設けられている。冷却された冷媒蒸気 が液冷媒となって凝縮器4の下面304Bに、同様に冷却され冷媒蒸気を吸収し た濃溶液は稀溶液となって吸収器306の下面306Bに溜ってくるのは図3に おいて管を用いた場合と同じである。この実施例における凝縮器および吸収器以 外の部分は作用および動作ともに図3に説明したもの同じであるので、同図で用 いた符号は同じものを付してある。FIG. 5 is a schematic block diagram of the fourth embodiment of the present invention. In this embodiment, the condenser 304 and the absorber 306 are integrally provided in series with the cooling water and the cooling air as in FIG. Then, a plurality of vertically elongated plates 317 are used as the heat exchanger portions of the condenser 304 and the absorber 306, and are used in the shape shown in the cross section in FIG. 306 outer surface 304C. A cooling unit is configured by forming a hollow portion 318 between the cooling unit and 306C. Cooling water flows through the hollow portion 318 along the inner wall surface of the plate 17 from above while forming a liquid film, and the air forcedly introduced by the cooling fan 312 flows from below to above. The water vapor generated by the flow is released into the atmosphere. In order to form a falling liquid film on the inner wall surface of the plate 317, similarly to FIG. 3, a pool of cooling water is provided in a portion formed by the upper surface 304A of the condenser 304 and the plate upper portion 317A. .. Cooling water is supplied to the liquid pool by a water supply pipe provided with a condenser water spray supply valve 311. As a result, as in the case of the pipe in FIG. 3, heat exchange is performed through the wall surface of the plate 317, and the condenser 304 is cooled. The operation is the same as the case of using the tube in FIG. 3, so detailed description will be omitted. Further, in this embodiment, the condenser 304 and the absorber 306 are configured in series, but the lower surface 304B of the condenser 304 and the upper surface 306A of the absorber 306 are configured separately, and the upper surface 306A of the absorber 306 and the pre-assembler A cooling water reservoir is provided in a portion formed with the upper part 317B. Cooling water is supplied to this liquid pool by a water supply pipe provided with an absorber watering water supply valve 316. As a result, heat is exchanged through the wall surface of the plate 317 to cool the absorber 306 as in the case of the pipe in FIG. The operation is the same as that of the case of using the tube in FIG. 3, so detailed description will be omitted. The evaporator 305 is provided inside the plate 317 formed in the absorber 306. The cooled refrigerant vapor becomes a liquid refrigerant on the lower surface 304B of the condenser 4, and the concentrated solution that is also cooled and absorbs the refrigerant vapor becomes a dilute solution and accumulates on the lower surface 306B of the absorber 306. The same as in the case of using a tube in 3. The parts other than the condenser and the absorber in this embodiment are the same in operation and operation as described in FIG.
【0031】 本実施例において温水を供給する場合、冷水を供給する場合、温水と冷水を同 時に供給する場合のポンプ、弁、冷却ファンの操作は、前記第2の実施例の場合 と同じであるので、説明は省略する。In this embodiment, when hot water is supplied, cold water is supplied, and hot water and cold water are supplied at the same time, the operation of the pump, valve, and cooling fan is the same as in the case of the second embodiment. Therefore, the description will be omitted.
【0032】 図7は、前記図3,4,5に示す吸収冷温水機を用いて構成した冷暖房装置を 示し、前記図1と同一の符号を用いて記載してあるので、詳細な説明は省略する 。吸収冷温水機の部分の詳細は記載していないが、前記図3,4,5に示す吸収 冷温水機のいずれをあてはめてもよい。FIG. 7 shows a cooling and heating apparatus configured by using the absorption chiller-heater shown in FIGS. 3, 4 and 5, and is described using the same reference numerals as those in FIG. 1, so a detailed description will be given. Omit it. Although details of the absorption chiller / heater are not described, any of the absorption chiller / heaters shown in FIGS. 3, 4 and 5 may be applied.
【0033】 図8に、吸収冷温水機として図3に示す吸収冷温水機を用いた場合の、室内機 5A,5Bを冷房、暖房のいずれかで運転する組合せそれぞれに対し、ポンプ、 弁、冷却ファンの操作状態を示す。三方弁のポートの定義は前記第1の実施例の 場合と同様である。吸収冷温水機として図5に示す吸収冷温水機を用いた場合も 同様の操作状態となる。FIG. 8 shows a pump, a valve, and a pump for each combination of operating the indoor units 5A and 5B for cooling or heating when the absorption chiller-heater shown in FIG. 3 is used as the absorption chiller-heater. The operation state of the cooling fan is shown. The definition of the port of the three-way valve is the same as in the case of the first embodiment. When the absorption chiller-heater shown in FIG. 5 is used as the absorption chiller-heater, the same operation state is obtained.
【0034】 図9は、吸収冷温水機として図4に示す吸収冷温水機を用いた場合の、ポンプ 、弁、冷却ファンの操作状態を示す。FIG. 9 shows the operating states of the pump, the valve, and the cooling fan when the absorption chiller-heater shown in FIG. 4 is used as the absorption chiller-heater.
【0035】 上記第2,第3,第4の実施例によれば、吸収器、凝縮器の冷却を冷却水の蒸 発潜熱によって行うため、熱伝達効率が良く、伝熱面積が小さくて済むので機器 のコンパクト化が図れる、冷却水放熱のための冷却塔が不要である、吸収器にお いては熱交換の温度変化を合理的に配置できるので熱交換の温度差を大きく出来 、機器を小型できる、などの効果がある。According to the second, third and fourth embodiments, since the absorber and the condenser are cooled by the latent heat of vaporization of the cooling water, the heat transfer efficiency is good and the heat transfer area is small. Therefore, the equipment can be made compact, a cooling tower for cooling water radiation is not required, and in the absorber, the temperature change of heat exchange can be rationally arranged, so the temperature difference of heat exchange can be increased and the equipment It has the effect of being compact.
【0036】[0036]
本考案によれば、凝縮器に、温水負荷に接続される冷却媒体循環手段と温水負 荷に接続されない冷却手段が設けられるので、冷水負荷と温水負荷が同時に加わ るとき、蒸発器の蒸発コイルで冷水を生成する一方、凝縮器の、温水負荷に接続 されない冷却手段を停止して温水負荷に接続される冷却媒体循環手段を流れる冷 却媒体に凝縮器に流入する冷媒蒸気の凝縮熱を取り込むことができ、余分に熱交 換器などの機器を増設することなく、冷水と温水を同時に供給することが可能と なった。 According to the present invention, the condenser is provided with the cooling medium circulating means connected to the hot water load and the cooling means not connected to the hot water load, so that when the cold water load and the hot water load are simultaneously applied, the evaporation coil of the evaporator is While the cold water is generated by the condenser, the cooling means of the condenser that is not connected to the hot water load is stopped, and the heat of condensation of the refrigerant vapor flowing into the condenser is taken into the cooling medium that flows through the cooling medium circulating means that is connected to the hot water load. As a result, cold water and hot water can be supplied at the same time without adding additional equipment such as heat exchangers.
【図1】本考案の第1の実施例の構成を示す系統図であ
る。FIG. 1 is a system diagram showing a configuration of a first embodiment of the present invention.
【図2】図1に示す実施例の負荷の状態に対応する機器
の運転状態を示す図である。FIG. 2 is a diagram showing an operating state of a device corresponding to a load state of the embodiment shown in FIG.
【図3】本考案の第2の実施例の構成を示す系統図であ
る。FIG. 3 is a system diagram showing a configuration of a second embodiment of the present invention.
【図4】本考案の第3の実施例の構成を示す系統図であ
る。FIG. 4 is a system diagram showing a configuration of a third embodiment of the present invention.
【図5】本考案の第4の実施例の構成を示す系統図であ
る。FIG. 5 is a system diagram showing a configuration of a fourth embodiment of the present invention.
【図6】図5のA−A矢視断面を示す平面図である。6 is a plan view showing a cross section taken along the line AA of FIG.
【図7】本考案の第2,第3,第4の実施例を適用した
冷暖房装置の構成を示す系統図である。FIG. 7 is a system diagram showing a configuration of a cooling and heating apparatus to which second, third and fourth embodiments of the present invention are applied.
【図8】図3,図5に示す実施例を適用した図7の冷暖
房装置の負荷の状態に対応する機器の運転状態を示す図
である。FIG. 8 is a diagram showing an operating state of a device corresponding to a load state of the cooling and heating apparatus of FIG. 7 to which the embodiment shown in FIGS. 3 and 5 is applied.
【図9】図4に示す実施例を適用した図7の冷暖房装置
の負荷の状態に対応する機器の運転状態を示す図であ
る。9 is a diagram showing an operating state of a device corresponding to a load state of the cooling and heating apparatus of FIG. 7 to which the embodiment shown in FIG. 4 is applied.
【図10】従来技術の例を示す系統図である。FIG. 10 is a system diagram showing an example of a conventional technique.
1 吸収冷温水機 1A 高温再生器 1B 分離器 1C 溶液熱交換器 1D 凝縮器 1E 温水コイル 1F 冷却水コイル 1G 蒸発器 1H 吸収器 1J 溶液ポンプ 1K 蒸発コイル 1L 冷却水コイル 1M 冷暖切換弁 1N 冷却水ポンプ 1P 調整弁 2A 温水出口ヘッダ 2B 温水入り口ヘ
ッダ 2C 温水出口ヘッダ 2D 温水入り口ヘ
ッダ 3A,3B,4A,4B 三方弁 5A,5B 室内機 6A 温水ポンプ 6B 冷水ポンプ 301 高温再生器 302 分離器 303 低温再生器 304 凝縮器 304A 凝縮器頂部 304B 凝縮器底
部 305 蒸発器 305A 蒸発コイ
ル 305B 散布器 306 吸収器 306A 吸収器頂部 306B 吸収器底
部 307 高温溶液熱交換器 308 低温溶液熱
交換器 309 溶液ポンプ 310 管 310A 管上部 311 凝縮器散水
給水弁 312,312A 冷却ファン 312B 凝縮器冷
却ファン 313 フィルタ 314 シャッタ 315 管 315A 管上部 316 吸収器散水給水弁 317 プレート 317A プレート上部 318 空間部1 Absorption chiller / heater 1A High temperature regenerator 1B Separator 1C Solution heat exchanger 1D Condenser 1E Hot water coil 1F Cooling water coil 1G Evaporator 1H Absorber 1J Solution pump 1K Evaporating coil 1L Cooling water coil 1M Cooling / heating switching valve 1N Cooling water Pump 1P Regulator 2A Hot water outlet header 2B Hot water inlet header 2C Hot water outlet header 2D Hot water inlet header 3A, 3B, 4A, 4B Three-way valve 5A, 5B Indoor unit 6A Hot water pump 6B Cold water pump 301 High temperature regenerator 302 Separator 303 Low temperature regeneration Container 304 Condenser 304A Condenser top 304B Condenser bottom 305 Evaporator 305A Evaporation coil 305B Disperser 306 Absorber 306A Absorber top 306B Absorber bottom 307 High temperature solution heat exchanger 308 Low temperature solution heat exchanger 309 Solution pump 310 Tube 310A Pipe top 11 condenser sprinkler feed valve 312,312A cooling fan 312B condenser cooling fan 313 filter 314 shutter 315 tubes 315A tube top 316 absorber sprinkler water supply valve 317 plate 317A plate upper 318 space
Claims (3)
加熱する高温再生器と、該高温再生器で加熱された希溶
液から冷媒蒸気と溶液を分離する分離器と、該分離器で
分離された冷媒蒸気を冷却する冷却手段を備え該冷却手
段により前記冷媒蒸気を冷却して凝縮液化する凝縮器
と、蒸発コイルを内装し前記凝縮器で生成された液冷媒
を該蒸発コイル上で蒸発させて該蒸発コイル内の流体を
冷却する蒸発器と、前記分離器で分離された溶液に前記
蒸発器で発生した冷媒蒸気を吸収させて希溶液を生成し
発生する吸収熱を冷却する吸収器と、前記分離器と蒸発
器を弁を介して連通する手段とを備えてなる吸収冷温水
機において、前記凝縮器で冷媒蒸気を冷却する冷却手段
が、凝縮器に内装されてそれぞれ冷却媒体を循環させる
少なくとも2系統のコイルを含み、その内の少なくとも
1系統は温水負荷に接続可能であることと、該2系統の
コイル内の冷却媒体の循環を独立して制御する手段を備
えていることとを特徴とする吸収冷温水機。1. A high temperature regenerator for heating a dilute solution obtained by dissolving an absorbent in a refrigerant, a separator for separating a refrigerant vapor and a solution from the dilute solution heated by the high temperature regenerator, and the separator. And a condenser for cooling and condensing the refrigerant vapor by the cooling means to condense and liquefy the refrigerant vapor separated by the cooling means, and a liquid refrigerant generated in the condenser, which is equipped with an evaporation coil, on the evaporation coil. An evaporator for evaporating the fluid in the evaporating coil to cool the fluid in the evaporating coil, and a solution separated by the separator to absorb the refrigerant vapor generated in the evaporator to form a dilute solution and cool the generated heat of absorption. In an absorption chiller-heater comprising an absorber and means for communicating the separator and the evaporator via a valve, cooling means for cooling the refrigerant vapor in the condenser is installed in the condenser and cooled respectively. At least two systems that circulate the medium Absorption, at least one of which is connectable to a hot water load and which is provided with means for independently controlling the circulation of the cooling medium in the coils of the two systems. Hot and cold water machine.
加熱する高温再生器と、該高温再生器で加熱された希溶
液から冷媒蒸気と溶液を分離する分離器と、該分離器で
分離された冷媒蒸気を冷却する冷却手段を備え該冷却手
段により前記冷媒蒸気を冷却して凝縮液化する凝縮器
と、蒸発コイルを内装し前記凝縮器で生成された液冷媒
を該蒸発コイル上で蒸発させて該蒸発コイル内の流体を
冷却する蒸発器と、前記分離器で分離された溶液に前記
蒸発器で発生した冷媒蒸気を吸収させて希溶液を生成し
発生する吸収熱を冷却する吸収器と、前記分離器と蒸発
器を弁を介して連通する手段とを備えてなる吸収冷温水
機において、前記凝縮器で冷媒蒸気を冷却する冷却手段
が、凝縮器に内装されて冷却媒体を循環させ温水負荷に
接続可能な冷却媒体循環手段と、該凝縮器の冷媒蒸気と
外気を隔てる壁面の外気側の面に冷却水液膜を形成する
冷却水供給手段と、該冷却水液膜近傍の空気を流動させ
る空気駆動手段と、冷却媒体循環手段と冷却水供給手段
と空気駆動手段とを独立して制御する手段を備えている
ことと、前記吸収器が、該吸収器の外気と冷媒蒸気を隔
てる壁面の冷媒蒸気側面に溶液の液膜を形成する滴下手
段と、該壁面の外気側の面に冷却水液膜を形成する冷却
水供給手段と、該冷却水液膜近傍の空気を流動させる空
気駆動手段とを備えていることとを特徴とする吸収冷温
水機。2. A high temperature regenerator for heating a dilute solution obtained by dissolving an absorbent in a refrigerant, a separator for separating the refrigerant vapor and the solution from the dilute solution heated by the high temperature regenerator, and the separator. And a condenser for cooling and condensing the refrigerant vapor by the cooling means to condense and liquefy the refrigerant vapor separated by the cooling means, and a liquid refrigerant generated in the condenser, which is equipped with an evaporation coil, on the evaporation coil. An evaporator for evaporating the fluid in the evaporating coil to cool the fluid in the evaporating coil, and a solution separated by the separator to absorb the refrigerant vapor generated in the evaporator to form a dilute solution and cool the generated heat of absorption. In an absorption chiller-heater comprising an absorber and means for communicating the separator and the evaporator via a valve, a cooling means for cooling the refrigerant vapor in the condenser is installed in the condenser and is a cooling medium. Coolant circulation that can be connected to a hot water load by circulating A ring means, a cooling water supply means for forming a cooling water liquid film on the surface of the wall surface that separates the refrigerant vapor and the outside air from the outside air, and an air driving means for flowing air in the vicinity of the cooling water liquid film, A means for independently controlling the cooling medium circulating means, the cooling water supply means, and the air driving means, and the absorber is a solution on the refrigerant vapor side surface of the wall surface separating the refrigerant vapor from the outside air of the absorber. Of the liquid wall, cooling water supply means for forming a cooling water liquid film on the surface of the wall surface on the outside air side, and air driving means for flowing air in the vicinity of the cooling water liquid film. Absorption chiller / heater characterized by
された希溶液の間で熱交換させる溶液熱交換器と、該溶
液熱交換器を通過した溶液を前記分離器で分離された冷
媒蒸気で加熱して新たな冷媒蒸気を発生させる低温再生
器とを備え、該低温再生器で加熱を終了した冷媒と該低
温再生器で新たに発生した冷媒蒸気が共に凝縮器に導入
されるように構成されていることを特徴とする請求項1
または2に記載の吸収冷温水機。3. A solution heat exchanger for exchanging heat between the solution separated by the separator and the dilute solution produced by the absorber, and the solution passed through the solution heat exchanger is separated by the separator. A low-temperature regenerator that heats with refrigerant vapor to generate new refrigerant vapor, and refrigerant that has finished heating in the low-temperature regenerator and refrigerant vapor that is newly generated in the low-temperature regenerator are both introduced into the condenser. It is comprised as follows, Claim 1 characterized by the above-mentioned.
Or the absorption chiller-heater according to 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991094760U JP2520975Y2 (en) | 1991-11-19 | 1991-11-19 | Absorption cold water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991094760U JP2520975Y2 (en) | 1991-11-19 | 1991-11-19 | Absorption cold water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0547762U true JPH0547762U (en) | 1993-06-25 |
JP2520975Y2 JP2520975Y2 (en) | 1996-12-18 |
Family
ID=14119059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1991094760U Expired - Lifetime JP2520975Y2 (en) | 1991-11-19 | 1991-11-19 | Absorption cold water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2520975Y2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10300261A (en) * | 1997-04-28 | 1998-11-13 | Daikin Ind Ltd | Air-cooled absorption refrigerating equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58179780A (en) * | 1982-04-16 | 1983-10-21 | 株式会社竹中工務店 | Absorption type cold and hot water machine |
JPS58182064A (en) * | 1982-04-20 | 1983-10-24 | 三洋電機株式会社 | Absorption cold and hot water machine |
JPH0445363A (en) * | 1990-06-11 | 1992-02-14 | Takuma Co Ltd | Absorption refrigerating and heating hot water supply machine |
-
1991
- 1991-11-19 JP JP1991094760U patent/JP2520975Y2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58179780A (en) * | 1982-04-16 | 1983-10-21 | 株式会社竹中工務店 | Absorption type cold and hot water machine |
JPS58182064A (en) * | 1982-04-20 | 1983-10-24 | 三洋電機株式会社 | Absorption cold and hot water machine |
JPH0445363A (en) * | 1990-06-11 | 1992-02-14 | Takuma Co Ltd | Absorption refrigerating and heating hot water supply machine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10300261A (en) * | 1997-04-28 | 1998-11-13 | Daikin Ind Ltd | Air-cooled absorption refrigerating equipment |
Also Published As
Publication number | Publication date |
---|---|
JP2520975Y2 (en) | 1996-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0684822B2 (en) | Indirect air conditioner | |
CN101846367A (en) | Internally-cooled solution dehumidifying fresh air handling unit driven by heat pump | |
CN107537167A (en) | Evaporating, concentrating and crystallizing system and evaporation process method | |
JP2723454B2 (en) | Absorption air conditioner | |
JPH07233968A (en) | Air conditioner system | |
JP2829080B2 (en) | Absorption heat pump | |
JPH08159594A (en) | Multiple effect absorption refrigerator | |
JPH1038406A (en) | Air-cooled absorption type air conditioner | |
JP2520975Y2 (en) | Absorption cold water heater | |
CN110017706A (en) | Heat exchanger and Absorption Refrigerator | |
JPH1078265A (en) | Air-cooled absorption air conditioner | |
JPS5812507B2 (en) | Hybrid type absorption heat pump | |
JP3007708B2 (en) | Cooling / hot air direct-blowing absorption air conditioner and absorption air conditioning system | |
JP2945972B1 (en) | Absorption chiller / heater | |
KR100321582B1 (en) | Absorption air conditioner | |
JP7080001B2 (en) | Absorption chiller | |
JP2565923Y2 (en) | Absorption chiller / heater | |
JPH109622A (en) | Air conditioner using absorption type refrigerating machine | |
JP3904726B2 (en) | Absorption refrigeration system | |
JP2583579B2 (en) | Absorption chiller with refrigerant circulation system for cooling and heating | |
JPH07849Y2 (en) | Air-cooled absorption chiller / heater | |
JPH0221167A (en) | Air-cooled absorption system cold and hot water apparatus | |
KR0138080B1 (en) | Equi-center cylinder type absorptive airconditioner | |
KR100295093B1 (en) | Control method of diluting operation of absorption air conditioner | |
JPH041267B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |